/**
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */


bool endstop_monitor_flag = false;

#define NAME_FORMAT "%-28s"   // one place to specify the format of all the sources of names
                               // "-" left justify, "28" minimum width of name, pad with blanks

#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(7)))

#define AVR_ATmega2560_FAMILY (defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__))
#define AVR_AT90USB1286_FAMILY (defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1286P__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB646P__)  || defined(__AVR_AT90USB647__))
#define AVR_ATmega1284_FAMILY (defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__))

/**
 *  This routine minimizes RAM usage by creating a FLASH resident array to
 *  store the pin names, pin numbers and analog/digital flag.
 *
 *  Creating the array in FLASH is a two pass process.  The first pass puts the
 *  name strings into FLASH.  The second pass actually creates the array.
 *
 *  Both passes use the same pin list.  The list contains two macro names. The
 *  actual macro definitions are changed depending on which pass is being done.
 *
 */

// first pass - put the name strings into FLASH

#define _ADD_PIN_2(PIN_NAME, ENTRY_NAME) static const unsigned char ENTRY_NAME[] PROGMEM = {PIN_NAME};
#define _ADD_PIN(PIN_NAME, COUNTER)  _ADD_PIN_2(PIN_NAME, entry_NAME_##COUNTER)
#define REPORT_NAME_DIGITAL(NAME, COUNTER)  _ADD_PIN(#NAME, COUNTER)
#define REPORT_NAME_ANALOG(NAME, COUNTER)  _ADD_PIN(#NAME, COUNTER)

#line 0   // set __LINE__ to a known value for the first pass

#include "pinsDebug_list.h"

#line 59   // set __LINE__ to the correct line number or else compiler error messages don't make sense

// manually add pins that have names that are macros which don't play well with these macros
#if SERIAL_PORT == 0 && (AVR_ATmega2560_FAMILY || AVR_ATmega1284_FAMILY)
  static const unsigned char RXD_NAME[] PROGMEM = {"RXD"};
  static const unsigned char TXD_NAME[] PROGMEM = {"TXD"};
#endif

/////////////////////////////////////////////////////////////////////////////

// second pass - create the array

#undef _ADD_PIN_2
#undef _ADD_PIN
#undef REPORT_NAME_DIGITAL
#undef REPORT_NAME_ANALOG

#define _ADD_PIN_2( ENTRY_NAME, NAME, IS_DIGITAL) {(const char*) ENTRY_NAME, (const char*)NAME, (const char*)IS_DIGITAL},
#define _ADD_PIN( NAME, COUNTER, IS_DIGITAL)  _ADD_PIN_2( entry_NAME_##COUNTER, NAME, IS_DIGITAL)
#define REPORT_NAME_DIGITAL(NAME, COUNTER)  _ADD_PIN( NAME, COUNTER, (uint8_t)1)
#define REPORT_NAME_ANALOG(NAME, COUNTER)  _ADD_PIN( analogInputToDigitalPin(NAME), COUNTER, 0)


const char* const pin_array[][3] PROGMEM = {

  /**
   *  [pin name]  [pin number]  [is digital or analog]  1 = digital, 0 = analog
   *  Each entry takes up 6 bytes in FLASH:
   *     2 byte pointer to location of the name string
   *     2 bytes containing the pin number
   *         analog pin numbers were convereted to digital when the array was created
   *     2 bytes containing the digital/analog bool flag
   */

  // manually add pins ...
  #if SERIAL_PORT == 0
    #if AVR_ATmega2560_FAMILY
      {RXD_NAME, 0, 1},
      {TXD_NAME, 1, 1},
    #elif AVR_ATmega1284_FAMILY
      {RXD_NAME, 8, 1},
      {TXD_NAME, 9, 1},
    #endif
  #endif

  #line 0   // set __LINE__ to the SAME known value for the second pass
  #include "pinsDebug_list.h"

};  // done populating the array

#line 109  // set __LINE__ to the correct line number or else compiler error messages don't make sense

#define n_array (sizeof (pin_array) / sizeof (const char *))/3

#ifndef TIMER1B
  // working with Teensyduino extension so need to re-define some things
  #include "pinsDebug_Teensyduino.h"
#endif


#define PWM_PRINT(V) do{ sprintf(buffer, "PWM:  %4d", V); SERIAL_ECHO(buffer); }while(0)
#define PWM_CASE(N,Z) \
  case TIMER##N##Z: \
    if (TCCR##N##A & (_BV(COM##N##Z##1) | _BV(COM##N##Z##0))) { \
      PWM_PRINT(OCR##N##Z); \
      return true; \
    } else return false

/**
 * Print a pin's PWM status.
 * Return true if it's currently a PWM pin.
 */
static bool pwm_status(uint8_t pin) {
  char buffer[20];   // for the sprintf statements

  switch(digitalPinToTimer(pin)) {

    #if defined(TCCR0A) && defined(COM0A1)
      #ifdef TIMER0A
        PWM_CASE(0,A);
      #endif
      PWM_CASE(0,B);
    #endif

    #if defined(TCCR1A) && defined(COM1A1)
      PWM_CASE(1,A);
      PWM_CASE(1,B);
     #if defined(COM1C1) && defined(TIMER1C)
      PWM_CASE(1,C);
     #endif
    #endif

    #if defined(TCCR2A) && defined(COM2A1)
      PWM_CASE(2,A);
      PWM_CASE(2,B);
    #endif

    #if defined(TCCR3A) && defined(COM3A1)
      PWM_CASE(3,A);
      PWM_CASE(3,B);
      #ifdef COM3C1
        PWM_CASE(3,C);
      #endif
    #endif

    #ifdef TCCR4A
      PWM_CASE(4,A);
      PWM_CASE(4,B);
      PWM_CASE(4,C);
    #endif

    #if defined(TCCR5A) && defined(COM5A1)
      PWM_CASE(5,A);
      PWM_CASE(5,B);
      PWM_CASE(5,C);
    #endif

    case NOT_ON_TIMER:
    default:
      return false;
  }
  SERIAL_PROTOCOLPGM("  ");
} // pwm_status



const uint8_t* const PWM_other[][3] PROGMEM = {
    {&TCCR0A, &TCCR0B, &TIMSK0},
    {&TCCR1A, &TCCR1B, &TIMSK1},
  #if defined(TCCR2A) && defined(COM2A1)
    {&TCCR2A, &TCCR2B, &TIMSK2},
  #endif
  #if defined(TCCR3A) && defined(COM3A1)
    {&TCCR3A, &TCCR3B, &TIMSK3},
  #endif
  #ifdef TCCR4A
    {&TCCR4A, &TCCR4B, &TIMSK4},
  #endif
  #if defined(TCCR5A) && defined(COM5A1)
    {&TCCR5A, &TCCR5B, &TIMSK5},
  #endif
};


const uint8_t* const PWM_OCR[][3] PROGMEM = {

  #ifdef TIMER0A
    {&OCR0A,&OCR0B,0},
  #else
    {0,&OCR0B,0},
  #endif

  #if defined(COM1C1) && defined(TIMER1C)
   { (const uint8_t*) &OCR1A, (const uint8_t*) &OCR1B, (const uint8_t*) &OCR1C},
  #else
   { (const uint8_t*) &OCR1A, (const uint8_t*) &OCR1B,0},
  #endif

  #if defined(TCCR2A) && defined(COM2A1)
    {&OCR2A,&OCR2B,0},
  #endif

  #if defined(TCCR3A) && defined(COM3A1)
    #ifdef COM3C1
      { (const uint8_t*) &OCR3A, (const uint8_t*) &OCR3B, (const uint8_t*) &OCR3C},
    #else
      { (const uint8_t*) &OCR3A, (const uint8_t*) &OCR3B,0},
    #endif
  #endif

  #ifdef TCCR4A
    { (const uint8_t*) &OCR4A, (const uint8_t*) &OCR4B, (const uint8_t*) &OCR4C},
  #endif

  #if defined(TCCR5A) && defined(COM5A1)
    { (const uint8_t*) &OCR5A, (const uint8_t*) &OCR5B, (const uint8_t*) &OCR5C},
  #endif
};


#define TCCR_A(T)   pgm_read_word(&PWM_other[T][0])
#define TCCR_B(T)   pgm_read_word(&PWM_other[T][1])
#define TIMSK(T)    pgm_read_word(&PWM_other[T][2])
#define CS_0       0
#define CS_1       1
#define CS_2       2
#define WGM_0      0
#define WGM_1      1
#define WGM_2      3
#define WGM_3      4
#define TOIE       0


#define OCR_VAL(T, L)   pgm_read_word(&PWM_OCR[T][L])


static void err_is_counter() {
  SERIAL_PROTOCOLPGM("   non-standard PWM mode");
}
static void err_is_interrupt() {
  SERIAL_PROTOCOLPGM("   compare interrupt enabled ");
}
static void err_prob_interrupt() {
  SERIAL_PROTOCOLPGM("   overflow interrupt enabled");
}
static void can_be_used() { SERIAL_PROTOCOLPGM("   can be used as PWM   "); }

void com_print(uint8_t N, uint8_t Z) {
  uint8_t *TCCRA = (uint8_t*) TCCR_A(N);
  SERIAL_PROTOCOLPGM("    COM");
  SERIAL_PROTOCOLCHAR(N + '0');
  switch(Z) {
    case 'A' :
      SERIAL_PROTOCOLPAIR("A: ", ((*TCCRA & (_BV(7) | _BV(6))) >> 6));
      break;
    case 'B' :
      SERIAL_PROTOCOLPAIR("B: ", ((*TCCRA & (_BV(5) | _BV(4))) >> 4));
      break;
    case 'C' :
      SERIAL_PROTOCOLPAIR("C: ", ((*TCCRA & (_BV(3) | _BV(2))) >> 2));
      break;
  }
}


void timer_prefix(uint8_t T, char L, uint8_t N) {  // T - timer    L - pwm  n - WGM bit layout
  char buffer[20];   // for the sprintf statements
  uint8_t *TCCRB = (uint8_t*)TCCR_B(T);
  uint8_t *TCCRA = (uint8_t*)TCCR_A(T);
  uint8_t WGM = (((*TCCRB & _BV(WGM_2)) >> 1) | (*TCCRA & (_BV(WGM_0) | _BV(WGM_1))));
  if (N == 4) WGM |= ((*TCCRB & _BV(WGM_3)) >> 1);

  SERIAL_PROTOCOLPGM("    TIMER");
  SERIAL_PROTOCOLCHAR(T + '0');
  SERIAL_PROTOCOLCHAR(L);
  SERIAL_PROTOCOLPGM("   ");

  if (N == 3) {
    uint8_t *OCRVAL8 = (uint8_t*) OCR_VAL(T, L - 'A');
    PWM_PRINT(*OCRVAL8);
  }
  else {
    uint16_t *OCRVAL16 = (uint16_t*) OCR_VAL(T, L - 'A');
    PWM_PRINT(*OCRVAL16);
  }
  SERIAL_PROTOCOLPAIR("    WGM: ", WGM);
  com_print(T,L);
  SERIAL_PROTOCOLPAIR("    CS: ", (*TCCRB & (_BV(CS_0) | _BV(CS_1) | _BV(CS_2)) ));

  SERIAL_PROTOCOLPGM("    TCCR");
  SERIAL_PROTOCOLCHAR(T + '0');
  SERIAL_PROTOCOLPAIR("A: ", *TCCRA);

  SERIAL_PROTOCOLPGM("    TCCR");
  SERIAL_PROTOCOLCHAR(T + '0');
  SERIAL_PROTOCOLPAIR("B: ", *TCCRB);

  uint8_t *TMSK = (uint8_t*) TIMSK(T);
  SERIAL_PROTOCOLPGM("    TIMSK");
  SERIAL_PROTOCOLCHAR(T + '0');
  SERIAL_PROTOCOLPAIR(": ", *TMSK);

  uint8_t OCIE = L - 'A' + 1;
  if (N == 3) {if (WGM == 0 || WGM == 2 || WGM ==  4 || WGM ==  6) err_is_counter();}
  else        {if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) err_is_counter();}
  if (TEST(*TMSK, OCIE)) err_is_interrupt();
  if (TEST(*TMSK, TOIE)) err_prob_interrupt();
}

static void pwm_details(uint8_t pin) {
  char buffer[20];   // for the sprintf statements
  uint8_t WGM;

  switch(digitalPinToTimer(pin)) {

    #if defined(TCCR0A) && defined(COM0A1)

      #ifdef TIMER0A
        case TIMER0A:
          timer_prefix(0,'A',3);
          break;
      #endif
      case TIMER0B:
        timer_prefix(0,'B',3);
        break;
    #endif

    #if defined(TCCR1A) && defined(COM1A1)
      case TIMER1A:
        timer_prefix(1,'A',4);
        break;
      case TIMER1B:
        timer_prefix(1,'B',4);
        break;
      #if defined(COM1C1) && defined(TIMER1C)
        case TIMER1C:
          timer_prefix(1,'C',4);
          break;
      #endif
    #endif

    #if defined(TCCR2A) && defined(COM2A1)
      case TIMER2A:
        timer_prefix(2,'A',3);
        break;
      case TIMER2B:
        timer_prefix(2,'B',3);
        break;
    #endif

    #if defined(TCCR3A) && defined(COM3A1)
      case TIMER3A:
        timer_prefix(3,'A',4);
        break;
      case TIMER3B:
        timer_prefix(3,'B',4);
        break;
      #ifdef COM3C1
        case TIMER3C:
          timer_prefix(3,'C',4);
          break;
      #endif
    #endif

    #ifdef TCCR4A
      case TIMER4A:
        timer_prefix(4,'A',4);
        break;
      case TIMER4B:
        timer_prefix(4,'B',4);
        break;
      case TIMER4C:
        timer_prefix(4,'C',4);
        break;
    #endif

    #if defined(TCCR5A) && defined(COM5A1)
      case TIMER5A:
        timer_prefix(5,'A',4);
        break;
      case TIMER5B:
        timer_prefix(5,'B',4);
        break;
      case TIMER5C:
        timer_prefix(5,'C',4);
        break;
    #endif

    case NOT_ON_TIMER: break;

  }
  SERIAL_PROTOCOLPGM("  ");

  // on pins that have two PWMs, print info on second PWM
  #if AVR_ATmega2560_FAMILY || AVR_AT90USB1286_FAMILY
    // looking for port B7 - PWMs 0A and 1C
    if ( ('B' == digitalPinToPort(pin) + 64) && (0x80 == digitalPinToBitMask(pin))) {
      #ifndef TEENSYDUINO_IDE
        SERIAL_PROTOCOLPGM("\n .                  TIMER1C is also tied to this pin             ");
        timer_prefix(1,'C',4);
      #else
        SERIAL_PROTOCOLPGM("\n .                  TIMER0A is also tied to this pin             ");
        timer_prefix(0,'A',3);
      #endif
    }
  #endif
} // pwm_details

bool get_pinMode(int8_t pin) { return *portModeRegister(digitalPinToPort(pin)) & digitalPinToBitMask(pin); }

#ifndef digitalRead_mod             // use Teensyduino's version of digitalRead - it doesn't disable the PWMs
  int digitalRead_mod(int8_t pin) { // same as digitalRead except the PWM stop section has been removed
    uint8_t port = digitalPinToPort(pin);
    return (port != NOT_A_PIN) && (*portInputRegister(port) & digitalPinToBitMask(pin)) ? HIGH : LOW;
  }
#endif

void print_port(int8_t pin) {   // print port number
  #ifdef digitalPinToPort
    SERIAL_PROTOCOLPGM("  Port: ");
    uint8_t x = digitalPinToPort(pin) + 64;
    SERIAL_CHAR(x);
    uint8_t temp = digitalPinToBitMask(pin);
    for (x = '0'; x < '9' && temp != 1; x++) temp >>= 1;
    SERIAL_CHAR(x);
  #else
    SERIAL_PROTOCOLPGM("          ");
  #endif
}

// pretty report with PWM info
inline void report_pin_state_extended(int8_t pin, bool ignore, bool extended = true) {
  uint8_t temp_char;
  char *name_mem_pointer;
  char buffer[30];   // for the sprintf statements
  bool found = false,
       multi_name_pin = false;
  for (uint8_t x = 0; x < n_array; x++)  {    // scan entire array and report all instances of this pin
    if (pgm_read_byte(&pin_array[x][1]) == pin) {
      if (found) multi_name_pin = true;
      found = true;
      if (!multi_name_pin) {    // report digitial and analog pin number only on the first time through
        sprintf(buffer, "PIN: %3d ", pin);     // digital pin number
        SERIAL_ECHO(buffer);
        print_port(pin);
        if (IS_ANALOG(pin)) {
          sprintf(buffer, " (A%2d)  ", int(pin - analogInputToDigitalPin(0)));    // analog pin number
          SERIAL_ECHO(buffer);
        }
        else SERIAL_ECHOPGM("        ");   // add padding if not an analog pin
      }
      else SERIAL_ECHOPGM(".                         ");  // add padding if not the first instance found
      name_mem_pointer = (char*) pgm_read_word(&pin_array[x][0]);
      for (uint8_t y = 0; y < 28; y++) {                   // always print pin name
        temp_char = pgm_read_byte(name_mem_pointer + y);
        if (temp_char != 0) MYSERIAL.write(temp_char);
        else {
          for (uint8_t i = 0; i < 28 - y; i++) MYSERIAL.write(' ');
          break;
        }
      }
      if (pin_is_protected(pin) && !ignore)
        SERIAL_ECHOPGM("protected ");
      else {
        if (!(pgm_read_byte(&pin_array[x][2]))) {
          sprintf(buffer, "Analog in = %5d", analogRead(pin - analogInputToDigitalPin(0)));
          SERIAL_ECHO(buffer);
        }
        else {
          if (!get_pinMode(pin)) {
            //pinMode(pin, INPUT_PULLUP);  // make sure input isn't floating - stopped doing this
                                           // because this could interfere with inductive/capacitive
                                           // sensors (high impedance voltage divider) and with PT100 amplifier
            SERIAL_PROTOCOLPAIR("Input  = ", digitalRead_mod(pin));
          }
          else if (pwm_status(pin)) {
            // do nothing
          }
          else SERIAL_PROTOCOLPAIR("Output = ", digitalRead_mod(pin));
        }
        if (!multi_name_pin && extended) pwm_details(pin);  // report PWM capabilities only on the first pass & only if doing an extended report
      }
      SERIAL_EOL;
    }  // end of IF
  } // end of for loop

  if (!found) {
    sprintf(buffer, "PIN: %3d ", pin);
    SERIAL_ECHO(buffer);
    print_port(pin);
    if (IS_ANALOG(pin)) {
      sprintf(buffer, " (A%2d)  ", int(pin - analogInputToDigitalPin(0)));    // analog pin number
      SERIAL_ECHO(buffer);
    }
    else
      SERIAL_ECHOPGM("        ");   // add padding if not an analog pin
    SERIAL_ECHOPGM("<unused/unknown>");
    if (get_pinMode(pin))
      SERIAL_PROTOCOLPAIR("            Output = ", digitalRead_mod(pin));
    else {
      if (IS_ANALOG(pin)) {
        sprintf(buffer, "   Analog in = %5d", analogRead(pin - analogInputToDigitalPin(0)));
        SERIAL_ECHO(buffer);
      }
      else
        SERIAL_ECHOPGM("         ");   // add padding if not an analog pin

      SERIAL_PROTOCOLPAIR("   Input  = ", digitalRead_mod(pin));
    }
    //if (!pwm_status(pin)) SERIAL_ECHOCHAR(' ');    // add padding if it's not a PWM pin
    if (extended) pwm_details(pin);  // report PWM capabilities only if doing an extended report
    SERIAL_EOL;
  }
}

inline void report_pin_state(int8_t pin) {
  report_pin_state_extended(pin, false, false);
}