/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#pragma once
/**
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Derived from Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see .
*/
#include "../inc/MarlinConfig.h"
#include "planner.h"
#include "stepper/indirection.h"
#ifdef __AVR__
#include "speed_lookuptable.h"
#endif
// Disable multiple steps per ISR
//#define DISABLE_MULTI_STEPPING
//
// Estimate the amount of time the Stepper ISR will take to execute
//
#ifdef CPU_32_BIT
// The base ISR takes 792 cycles
#define ISR_BASE_CYCLES 792UL
// Linear advance base time is 64 cycles
#if ENABLED(LIN_ADVANCE)
#define ISR_LA_BASE_CYCLES 64UL
#else
#define ISR_LA_BASE_CYCLES 0UL
#endif
// S curve interpolation adds 40 cycles
#if ENABLED(S_CURVE_ACCELERATION)
#define ISR_S_CURVE_CYCLES 40UL
#else
#define ISR_S_CURVE_CYCLES 0UL
#endif
// Stepper Loop base cycles
#define ISR_LOOP_BASE_CYCLES 4UL
// To start the step pulse, in the worst case takes
#define ISR_START_STEPPER_CYCLES 13UL
// And each stepper (start + stop pulse) takes in worst case
#define ISR_STEPPER_CYCLES 16UL
#else
// The base ISR takes 752 cycles
#define ISR_BASE_CYCLES 752UL
// Linear advance base time is 32 cycles
#if ENABLED(LIN_ADVANCE)
#define ISR_LA_BASE_CYCLES 32UL
#else
#define ISR_LA_BASE_CYCLES 0UL
#endif
// S curve interpolation adds 160 cycles
#if ENABLED(S_CURVE_ACCELERATION)
#define ISR_S_CURVE_CYCLES 160UL
#else
#define ISR_S_CURVE_CYCLES 0UL
#endif
// Stepper Loop base cycles
#define ISR_LOOP_BASE_CYCLES 32UL
// To start the step pulse, in the worst case takes
#define ISR_START_STEPPER_CYCLES 57UL
// And each stepper (start + stop pulse) takes in worst case
#define ISR_STEPPER_CYCLES 88UL
#endif
// Add time for each stepper
#if HAS_X_STEP
#define ISR_START_X_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
#define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
#else
#define ISR_START_X_STEPPER_CYCLES 0UL
#define ISR_X_STEPPER_CYCLES 0UL
#endif
#if HAS_Y_STEP
#define ISR_START_Y_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
#define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
#else
#define ISR_START_Y_STEPPER_CYCLES 0UL
#define ISR_Y_STEPPER_CYCLES 0UL
#endif
#if HAS_Z_STEP
#define ISR_START_Z_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
#define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
#else
#define ISR_START_Z_STEPPER_CYCLES 0UL
#define ISR_Z_STEPPER_CYCLES 0UL
#endif
// E is always interpolated, even for mixing extruders
#define ISR_START_E_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
#define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
// If linear advance is disabled, the loop also handles them
#if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
#define ISR_START_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_START_STEPPER_CYCLES))
#define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
#else
#define ISR_START_MIXING_STEPPER_CYCLES 0UL
#define ISR_MIXING_STEPPER_CYCLES 0UL
#endif
// Calculate the minimum time to start all stepper pulses in the ISR loop
#define MIN_ISR_START_LOOP_CYCLES (ISR_START_X_STEPPER_CYCLES + ISR_START_Y_STEPPER_CYCLES + ISR_START_Z_STEPPER_CYCLES + ISR_START_E_STEPPER_CYCLES + ISR_START_MIXING_STEPPER_CYCLES)
// And the total minimum loop time, not including the base
#define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
#define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
#if MINIMUM_STEPPER_PULSE
#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(uint32_t(MINIMUM_STEPPER_PULSE))
#elif HAS_DRIVER(LV8729)
#define MIN_STEPPER_PULSE_CYCLES uint32_t((((F_CPU) - 1) / 2000000) + 1) // 0.5µs, aka 500ns
#else
#define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
#endif
// Calculate the minimum ticks of the PULSE timer that must elapse with the step pulse enabled
// adding the "start stepper pulse" code section execution cycles to account for that not all
// pulses start at the beginning of the loop, so an extra time must be added to compensate so
// the last generated pulse (usually the extruder stepper) has the right length
#if HAS_DRIVER(LV8729) && MINIMUM_STEPPER_PULSE == 0
#define MIN_PULSE_TICKS ((((PULSE_TIMER_TICKS_PER_US) + 1) / 2) + ((MIN_ISR_START_LOOP_CYCLES) / uint32_t(PULSE_TIMER_PRESCALE)))
#else
#define MIN_PULSE_TICKS (((PULSE_TIMER_TICKS_PER_US) * uint32_t(MINIMUM_STEPPER_PULSE)) + ((MIN_ISR_START_LOOP_CYCLES) / uint32_t(PULSE_TIMER_PRESCALE)))
#endif
// Calculate the extra ticks of the PULSE timer between step pulses
#define ADDED_STEP_TICKS (((MIN_STEPPER_PULSE_CYCLES) / (PULSE_TIMER_PRESCALE)) - (MIN_PULSE_TICKS))
// But the user could be enforcing a minimum time, so the loop time is
#define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
// If linear advance is enabled, then it is handled separately
#if ENABLED(LIN_ADVANCE)
// Estimate the minimum LA loop time
#if ENABLED(MIXING_EXTRUDER) // ToDo: ???
// HELP ME: What is what?
// Directions are set up for MIXING_STEPPERS - like before.
// Finding the right stepper may last up to MIXING_STEPPERS loops in get_next_stepper().
// These loops are a bit faster than advancing a bresenham counter.
// Always only one e-stepper is stepped.
#define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
#else
#define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
#endif
// And the real loop time
#define ISR_LA_LOOP_CYCLES _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
#else
#define ISR_LA_LOOP_CYCLES 0UL
#endif
// Now estimate the total ISR execution time in cycles given a step per ISR multiplier
#define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
#define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
#define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
#define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
#define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
#define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
#define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
#define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
#define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
// The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)
#define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X
//
// Stepper class definition
//
class Stepper {
public:
#if HAS_EXTRA_ENDSTOPS || ENABLED(Z_STEPPER_AUTO_ALIGN)
static bool separate_multi_axis;
#endif
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
static uint32_t motor_current_setting[3];
static bool initialized;
#endif
private:
static block_t* current_block; // A pointer to the block currently being traced
static uint8_t last_direction_bits, // The next stepping-bits to be output
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
static bool abort_current_block; // Signals to the stepper that current block should be aborted
// Last-moved extruder, as set when the last movement was fetched from planner
#if EXTRUDERS < 2
static constexpr uint8_t last_moved_extruder = 0;
#elif DISABLED(MIXING_EXTRUDER)
static uint8_t last_moved_extruder;
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
static bool locked_X_motor, locked_X2_motor;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
static bool locked_Y_motor, locked_Y2_motor;
#endif
#if Z_MULTI_ENDSTOPS || ENABLED(Z_STEPPER_AUTO_ALIGN)
static bool locked_Z_motor, locked_Z2_motor;
#endif
#if ENABLED(Z_TRIPLE_ENDSTOPS) || BOTH(Z_STEPPER_AUTO_ALIGN, Z_TRIPLE_STEPPER_DRIVERS)
static bool locked_Z3_motor;
#endif
static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
#else
static constexpr uint8_t oversampling_factor = 0;
#endif
// Delta error variables for the Bresenham line tracer
static int32_t delta_error[XYZE];
static uint32_t advance_dividend[XYZE],
advance_divisor,
step_events_completed, // The number of step events executed in the current block
accelerate_until, // The point from where we need to stop acceleration
decelerate_after, // The point from where we need to start decelerating
step_event_count; // The total event count for the current block
#if EXTRUDERS > 1 || ENABLED(MIXING_EXTRUDER)
static uint8_t stepper_extruder;
#else
static constexpr uint8_t stepper_extruder = 0;
#endif
#if ENABLED(S_CURVE_ACCELERATION)
static int32_t bezier_A, // A coefficient in Bézier speed curve
bezier_B, // B coefficient in Bézier speed curve
bezier_C; // C coefficient in Bézier speed curve
static uint32_t bezier_F, // F coefficient in Bézier speed curve
bezier_AV; // AV coefficient in Bézier speed curve
#ifdef __AVR__
static bool A_negative; // If A coefficient was negative
#endif
static bool bezier_2nd_half; // If Bézier curve has been initialized or not
#endif
static uint32_t nextMainISR; // time remaining for the next Step ISR
#if ENABLED(LIN_ADVANCE)
static uint32_t nextAdvanceISR, LA_isr_rate;
static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static int8_t LA_steps;
static bool LA_use_advance_lead;
#endif // LIN_ADVANCE
static int32_t ticks_nominal;
#if DISABLED(S_CURVE_ACCELERATION)
static uint32_t acc_step_rate; // needed for deceleration start point
#endif
//
// Exact steps at which an endstop was triggered
//
static volatile int32_t endstops_trigsteps[XYZ];
//
// Positions of stepper motors, in step units
//
static volatile int32_t count_position[NUM_AXIS];
//
// Current direction of stepper motors (+1 or -1)
//
static int8_t count_direction[NUM_AXIS];
public:
//
// Constructor / initializer
//
Stepper() { };
// Initialize stepper hardware
static void init();
// Interrupt Service Routines
// The ISR scheduler
static void isr();
// The stepper pulse phase ISR
static void stepper_pulse_phase_isr();
// The stepper block processing phase ISR
static uint32_t stepper_block_phase_isr();
#if ENABLED(LIN_ADVANCE)
// The Linear advance stepper ISR
static uint32_t advance_isr();
#endif
// Check if the given block is busy or not - Must not be called from ISR contexts
static bool is_block_busy(const block_t* const block);
// Get the position of a stepper, in steps
static int32_t position(const AxisEnum axis);
// Report the positions of the steppers, in steps
static void report_positions();
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
static void wake_up();
// Quickly stop all steppers
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
// The direction of a single motor
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
// The extruder associated to the last movement
FORCE_INLINE static uint8_t movement_extruder() {
return
#if ENABLED(MIXING_EXTRUDER) || EXTRUDERS < 2
0
#else
last_moved_extruder
#endif
;
}
// Handle a triggered endstop
static void endstop_triggered(const AxisEnum axis);
// Triggered position of an axis in steps
static int32_t triggered_position(const AxisEnum axis);
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digitalPotWrite(const int16_t address, const int16_t value);
static void digipot_current(const uint8_t driver, const int16_t current);
#endif
#if HAS_MICROSTEPS
static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3);
static void microstep_mode(const uint8_t driver, const uint8_t stepping);
static void microstep_readings();
#endif
#if HAS_EXTRA_ENDSTOPS || ENABLED(Z_STEPPER_AUTO_ALIGN)
FORCE_INLINE static void set_separate_multi_axis(const bool state) { separate_multi_axis = state; }
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
#endif
#if Z_MULTI_ENDSTOPS || (ENABLED(Z_STEPPER_AUTO_ALIGN) && Z_MULTI_STEPPER_DRIVERS)
FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; }
FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
#endif
#if ENABLED(Z_TRIPLE_ENDSTOPS) || BOTH(Z_STEPPER_AUTO_ALIGN, Z_TRIPLE_STEPPER_DRIVERS)
FORCE_INLINE static void set_z3_lock(const bool state) { locked_Z3_motor = state; }
#endif
#if ENABLED(BABYSTEPPING)
static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
#if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power();
#endif
// Set the current position in steps
static inline void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
planner.synchronize();
const bool was_enabled = STEPPER_ISR_ENABLED();
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
_set_position(a, b, c, e);
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
}
static inline void set_position(const AxisEnum a, const int32_t &v) {
planner.synchronize();
#ifdef __AVR__
// Protect the access to the position. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
const bool was_enabled = STEPPER_ISR_ENABLED();
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
#endif
count_position[a] = v;
#ifdef __AVR__
// Reenable Stepper ISR
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
#endif
}
// Set direction bits for all steppers
static void set_directions();
private:
// Set the current position in steps
static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t scale, uint8_t* loops) {
uint32_t timer;
// Scale the frequency, as requested by the caller
step_rate <<= scale;
uint8_t multistep = 1;
#if DISABLED(DISABLE_MULTI_STEPPING)
// The stepping frequency limits for each multistepping rate
static const uint32_t limit[] PROGMEM = {
( MAX_STEP_ISR_FREQUENCY_1X ),
( MAX_STEP_ISR_FREQUENCY_2X >> 1),
( MAX_STEP_ISR_FREQUENCY_4X >> 2),
( MAX_STEP_ISR_FREQUENCY_8X >> 3),
( MAX_STEP_ISR_FREQUENCY_16X >> 4),
( MAX_STEP_ISR_FREQUENCY_32X >> 5),
( MAX_STEP_ISR_FREQUENCY_64X >> 6),
(MAX_STEP_ISR_FREQUENCY_128X >> 7)
};
// Select the proper multistepping
uint8_t idx = 0;
while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
step_rate >>= 1;
multistep <<= 1;
++idx;
};
#else
NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
#endif
*loops = multistep;
#ifdef CPU_32_BIT
// In case of high-performance processor, it is able to calculate in real-time
timer = uint32_t(STEPPER_TIMER_RATE) / step_rate;
#else
constexpr uint32_t min_step_rate = F_CPU / 500000U;
NOLESS(step_rate, min_step_rate);
step_rate -= min_step_rate; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
const uint8_t tmp_step_rate = (step_rate & 0x00FF);
const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
gain = (uint16_t)pgm_read_word(table_address + 2);
timer = MultiU16X8toH16(tmp_step_rate, gain);
timer = (uint16_t)pgm_read_word(table_address) - timer;
}
else { // lower step rates
uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xFFFC;
timer = (uint16_t)pgm_read_word(table_address)
- (((uint16_t)pgm_read_word(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
}
// (there is no need to limit the timer value here. All limits have been
// applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
#endif
return timer;
}
#if ENABLED(S_CURVE_ACCELERATION)
static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
static int32_t _eval_bezier_curve(const uint32_t curr_step);
#endif
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digipot_init();
#endif
#if HAS_MICROSTEPS
static void microstep_init();
#endif
};
extern Stepper stepper;