/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifndef MARLIN_H #define MARLIN_H #include #include #include #include #include #include #include #include #include "MarlinConfig.h" #ifdef DEBUG_GCODE_PARSER #include "parser.h" #endif #include "enum.h" #include "types.h" #include "fastio.h" #include "utility.h" #include "serial.h" void idle( #if ENABLED(ADVANCED_PAUSE_FEATURE) bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout #endif ); void manage_inactivity(const bool ignore_stepper_queue=false); extern const char axis_codes[XYZE]; #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) extern bool extruder_duplication_enabled; #endif #if HAS_X2_ENABLE #define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0) #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #elif HAS_X_ENABLE #define enable_X() X_ENABLE_WRITE( X_ENABLE_ON) #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #else #define enable_X() NOOP #define disable_X() NOOP #endif #if HAS_Y2_ENABLE #define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0) #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #elif HAS_Y_ENABLE #define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON) #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #else #define enable_Y() NOOP #define disable_Y() NOOP #endif #if HAS_Z2_ENABLE #define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0) #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #elif HAS_Z_ENABLE #define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON) #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #else #define enable_Z() NOOP #define disable_Z() NOOP #endif #if ENABLED(MIXING_EXTRUDER) /** * Mixing steppers synchronize their enable (and direction) together */ #if MIXING_STEPPERS > 3 #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); } #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); } #elif MIXING_STEPPERS > 2 #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); } #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); } #else #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); } #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); } #endif #define enable_E1() NOOP #define disable_E1() NOOP #define enable_E2() NOOP #define disable_E2() NOOP #define enable_E3() NOOP #define disable_E3() NOOP #define enable_E4() NOOP #define disable_E4() NOOP #else // !MIXING_EXTRUDER #if HAS_E0_ENABLE #define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON) #define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E0() NOOP #define disable_E0() NOOP #endif #if E_STEPPERS > 1 && HAS_E1_ENABLE #define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON) #define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E1() NOOP #define disable_E1() NOOP #endif #if E_STEPPERS > 2 && HAS_E2_ENABLE #define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON) #define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E2() NOOP #define disable_E2() NOOP #endif #if E_STEPPERS > 3 && HAS_E3_ENABLE #define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON) #define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E3() NOOP #define disable_E3() NOOP #endif #if E_STEPPERS > 4 && HAS_E4_ENABLE #define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON) #define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E4() NOOP #define disable_E4() NOOP #endif #endif // !MIXING_EXTRUDER #if ENABLED(G38_PROBE_TARGET) extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active #endif void enable_all_steppers(); void disable_e_stepper(const uint8_t e); void disable_e_steppers(); void disable_all_steppers(); void sync_plan_position(); void sync_plan_position_e(); #if IS_KINEMATIC void sync_plan_position_kinematic(); #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic() #else #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() #endif void flush_and_request_resend(); void ok_to_send(); void kill(const char*); void quickstop_stepper(); extern uint8_t marlin_debug_flags; #define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F)) extern bool Running; inline bool IsRunning() { return Running; } inline bool IsStopped() { return !Running; } bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure. void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command. void clear_command_queue(); #define HAS_LCD_QUEUE_NOW (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE))) #define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW) #if HAS_QUEUE_NOW // Return only when commands are actually enqueued void enqueue_and_echo_command_now(const char* cmd, bool say_ok=false); #if HAS_LCD_QUEUE_NOW void enqueue_and_echo_commands_P_now(const char * const cmd); #endif #endif extern millis_t previous_move_ms; inline void reset_stepper_timeout() { previous_move_ms = millis(); } /** * Feedrate scaling and conversion */ extern float feedrate_mm_s; extern int16_t feedrate_percentage; #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01) extern bool axis_relative_modes[]; extern bool axis_known_position[XYZ]; extern bool axis_homed[XYZ]; extern volatile bool wait_for_heatup; #if HAS_RESUME_CONTINUE extern volatile bool wait_for_user; #endif #if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE) extern bool suspend_auto_report; #endif extern float current_position[XYZE], destination[XYZE]; /** * Workspace offsets */ #if HAS_WORKSPACE_OFFSET #if HAS_HOME_OFFSET extern float home_offset[XYZ]; #endif #if HAS_POSITION_SHIFT extern float position_shift[XYZ]; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT extern float workspace_offset[XYZ]; #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS] #elif HAS_HOME_OFFSET #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS] #elif HAS_POSITION_SHIFT #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS] #endif #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS)) #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS)) #else #define NATIVE_TO_LOGICAL(POS, AXIS) (POS) #define LOGICAL_TO_NATIVE(POS, AXIS) (POS) #endif #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS) #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS) #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS) #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS) #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS) // Hotend Offsets #if HOTENDS > 1 extern float hotend_offset[XYZ][HOTENDS]; #endif // Software Endstops extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ]; #if HAS_SOFTWARE_ENDSTOPS extern bool soft_endstops_enabled; void clamp_to_software_endstops(float target[XYZ]); #else #define soft_endstops_enabled false #define clamp_to_software_endstops(x) NOOP #endif #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) void update_software_endstops(const AxisEnum axis); #endif #define MAX_COORDINATE_SYSTEMS 9 #if ENABLED(CNC_COORDINATE_SYSTEMS) extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; bool select_coordinate_system(const int8_t _new); #endif void report_current_position(); #if IS_KINEMATIC extern float delta[ABC]; void inverse_kinematics(const float raw[XYZ]); #endif #if ENABLED(DELTA) extern float delta_height, delta_endstop_adj[ABC], delta_radius, delta_tower_angle_trim[ABC], delta_tower[ABC][2], delta_diagonal_rod, delta_calibration_radius, delta_diagonal_rod_2_tower[ABC], delta_segments_per_second, delta_clip_start_height; void recalc_delta_settings(); float delta_safe_distance_from_top(); #if ENABLED(DELTA_FAST_SQRT) float Q_rsqrt(const float number); #define _SQRT(n) (1.0f / Q_rsqrt(n)) #else #define _SQRT(n) SQRT(n) #endif // Macro to obtain the Z position of an individual tower #define DELTA_Z(V,T) V[Z_AXIS] + _SQRT( \ delta_diagonal_rod_2_tower[T] - HYPOT2( \ delta_tower[T][X_AXIS] - V[X_AXIS], \ delta_tower[T][Y_AXIS] - V[Y_AXIS] \ ) \ ) #define DELTA_IK(V) do { \ delta[A_AXIS] = DELTA_Z(V, A_AXIS); \ delta[B_AXIS] = DELTA_Z(V, B_AXIS); \ delta[C_AXIS] = DELTA_Z(V, C_AXIS); \ }while(0) #elif IS_SCARA void forward_kinematics_SCARA(const float &a, const float &b); #endif #if ENABLED(G26_MESH_VALIDATION) extern bool g26_debug_flag; #elif ENABLED(AUTO_BED_LEVELING_UBL) constexpr bool g26_debug_flag = false; #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #define _GET_MESH_X(I) (bilinear_start[X_AXIS] + (I) * bilinear_grid_spacing[X_AXIS]) #define _GET_MESH_Y(J) (bilinear_start[Y_AXIS] + (J) * bilinear_grid_spacing[Y_AXIS]) #elif ENABLED(AUTO_BED_LEVELING_UBL) #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I) #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J) #elif ENABLED(MESH_BED_LEVELING) #define _GET_MESH_X(I) mbl.index_to_xpos[I] #define _GET_MESH_Y(J) mbl.index_to_ypos[J] #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) extern int bilinear_grid_spacing[2], bilinear_start[2]; extern float bilinear_grid_factor[2], z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; float bilinear_z_offset(const float raw[XYZ]); #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING) typedef float (*element_2d_fn)(const uint8_t, const uint8_t); void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn); #endif #if ENABLED(AUTO_BED_LEVELING_UBL) typedef struct { double A, B, D; } linear_fit; linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int); #endif #if HAS_LEVELING bool leveling_is_valid(); void set_bed_leveling_enabled(const bool enable=true); void reset_bed_level(); #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) void set_z_fade_height(const float zfh, const bool do_report=true); #endif #if HAS_BED_PROBE extern float zprobe_zoffset; bool set_probe_deployed(const bool deploy); #if Z_AFTER_PROBING void move_z_after_probing(); #endif enum ProbePtRaise : unsigned char { PROBE_PT_NONE, // No raise or stow after run_z_probe PROBE_PT_STOW, // Do a complete stow after run_z_probe PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe }; float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true); #define DEPLOY_PROBE() set_probe_deployed(true) #define STOW_PROBE() set_probe_deployed(false) #else #define DEPLOY_PROBE() #define STOW_PROBE() #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) extern MarlinBusyState busy_state; #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0) #else #define KEEPALIVE_STATE(n) NOOP #endif #if FAN_COUNT > 0 extern int16_t fanSpeeds[FAN_COUNT]; #if ENABLED(EXTRA_FAN_SPEED) extern int16_t old_fanSpeeds[FAN_COUNT], new_fanSpeeds[FAN_COUNT]; #endif #if ENABLED(PROBING_FANS_OFF) extern bool fans_paused; extern int16_t paused_fanSpeeds[FAN_COUNT]; #endif #endif #if ENABLED(USE_CONTROLLER_FAN) extern int controllerFanSpeed; #endif #if ENABLED(BARICUDA) extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) extern bool filament_sensor; // Flag that filament sensor readings should control extrusion extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75 filament_width_meas; // Measured filament diameter extern uint8_t meas_delay_cm; // Delay distance extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delay measurement filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) extern int8_t did_pause_print; extern AdvancedPauseMenuResponse advanced_pause_menu_response; extern float filament_change_unload_length[EXTRUDERS], filament_change_load_length[EXTRUDERS]; #endif #if ENABLED(PID_EXTRUSION_SCALING) extern int lpq_len; #endif #if HAS_POWER_SWITCH extern bool powersupply_on; #define PSU_PIN_ON() do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0) #define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0) #endif // Handling multiple extruders pins extern uint8_t active_extruder; #if ENABLED(MIXING_EXTRUDER) extern float mixing_factor[MIXING_STEPPERS]; #endif inline void set_current_from_destination() { COPY(current_position, destination); } inline void set_destination_from_current() { COPY(destination, current_position); } void prepare_move_to_destination(); /** * Blocking movement and shorthand functions */ void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0.0); void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0.0); void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0.0); void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0.0); #define HAS_AXIS_UNHOMED_ERR ( \ ENABLED(Z_PROBE_ALLEN_KEY) \ || ENABLED(Z_PROBE_SLED) \ || HAS_PROBING_PROCEDURE \ || HOTENDS > 1 \ || ENABLED(NOZZLE_CLEAN_FEATURE) \ || ENABLED(NOZZLE_PARK_FEATURE) \ || (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \ || HAS_M206_COMMAND \ ) || ENABLED(NO_MOTION_BEFORE_HOMING) #if HAS_AXIS_UNHOMED_ERR bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true); #endif /** * position_is_reachable family of functions */ #if IS_KINEMATIC // (DELTA or SCARA) #if IS_SCARA extern const float L1, L2; #endif // Return true if the given point is within the printable area inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) { #if ENABLED(DELTA) return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset); #elif IS_SCARA const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); return ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) #endif ); #endif } #if HAS_BED_PROBE // Return true if the both nozzle and the probe can reach the given point. // Note: This won't work on SCARA since the probe offset rotates with the arm. inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER)) && position_is_reachable(rx, ry, FABS(MIN_PROBE_EDGE)); } #endif #else // CARTESIAN // Return true if the given position is within the machine bounds. inline bool position_is_reachable(const float &rx, const float &ry) { // Add 0.001 margin to deal with float imprecision return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001) && WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001); } #if HAS_BED_PROBE /** * Return whether the given position is within the bed, and whether the nozzle * can reach the position required to put the probe at the given position. * * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the * nozzle must be be able to reach +10,-10. */ inline bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER)) && WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001) && WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001); } #endif #endif // CARTESIAN #if !HAS_BED_PROBE FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); } #endif #endif // MARLIN_H