/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) //#define UBL_DEVEL_DEBUGGING #include "ubl.h" #include "Marlin.h" #include "hex_print_routines.h" #include "configuration_store.h" #include "ultralcd.h" #include "stepper.h" #include "planner.h" #include "parser.h" #include "serial.h" #include "bitmap_flags.h" #include #include "least_squares_fit.h" #define UBL_G29_P31 extern float destination[XYZE], current_position[XYZE]; #if ENABLED(NEWPANEL) void lcd_return_to_status(); void _lcd_ubl_output_map_lcd(); #endif extern float meshedit_done; extern long babysteps_done; #define SIZE_OF_LITTLE_RAISE 1 #define BIG_RAISE_NOT_NEEDED 0 int unified_bed_leveling::g29_verbose_level, unified_bed_leveling::g29_phase_value, unified_bed_leveling::g29_repetition_cnt, unified_bed_leveling::g29_storage_slot = 0, unified_bed_leveling::g29_map_type; bool unified_bed_leveling::g29_c_flag, unified_bed_leveling::g29_x_flag, unified_bed_leveling::g29_y_flag; float unified_bed_leveling::g29_x_pos, unified_bed_leveling::g29_y_pos, unified_bed_leveling::g29_card_thickness = 0.0, unified_bed_leveling::g29_constant = 0.0; #if HAS_BED_PROBE int unified_bed_leveling::g29_grid_size; #endif /** * G29: Unified Bed Leveling by Roxy * * Parameters understood by this leveling system: * * A Activate Activate the Unified Bed Leveling system. * * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2. * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card. * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the * same resistance is felt in the shim. You can omit the numerical value on first invocation * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously- * measured thickness by default. * * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating * previous measurements. * * C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle * location in its search for the closest unmeasured Mesh Point. Instead, attempt to * start at one end of the uprobed points and Continue sequentially. * * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value. * * C Current G29 Z C uses the Current location (instead of bed center or nearest edge). * * D Disable Disable the Unified Bed Leveling system. * * E Stow_probe Stow the probe after each sampled point. * * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the * specified height, no correction is applied and natural printer kenimatics take over. If no * number is specified for the command, 10mm is assumed to be reasonable. * * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed. * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES. * * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle. * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used. * * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted, * the nozzle location is used. If no 'I' value is given, only the point nearest to the location * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You * can move the nozzle around and use this feature to select the center of the area (or cell) to * invalidate. * * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side. * Not specifying a grid size will invoke the 3-Point leveling function. * * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This * command literally performs a diff between two Meshes. * * L Load Load Mesh from the previously activated location in the EEPROM. * * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated * for subsequent Load and Store operations. * * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with * each additional Phase that processes it. * * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * was turned on. Setting the entire Mesh to Zero is a special case that allows * a subsequent G or T leveling operation for backward compatibility. * * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta * printers only the areas where the probe and nozzle can both reach will be automatically probed. * * Unreachable points will be handled in Phase 2 and Phase 3. * * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you * to invalidate parts of the Mesh but still use Automatic Probing. * * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current * probe position is used. * * Use 'T' (Topology) to generate a report of mesh generation. * * P1 will suspend Mesh generation if the controller button is held down. Note that you may need * to press and hold the switch for several seconds if moves are underway. * * P2 Phase 2 Probe unreachable points. * * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used. * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer! * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.) * * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2" * with an 'H' parameter more suitable for the area you're manually probing. Note that the command * tries to start in a corner of the bed where movement will be predictable. Override the distance * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to * indicate that the search should be based on the current position. * * The 'B' parameter for this command is described above. It places the manual probe subsystem into * Business Card mode where the thickness of a business card is measured and then used to accurately * set the nozzle height in all manual probing for the duration of the command. A Business card can * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it * easier to produce similar amounts of force and get more accurate measurements. Google if you're * not sure how to use a shim. * * The 'T' (Map) parameter helps track Mesh building progress. * * NOTE: P2 requires an LCD controller! * * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to * go down: * * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled, * and a repeat count can then also be specified with 'R'. * * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution. * * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using * G42 and M421. See the UBL documentation for further details. * * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable * adhesion. * * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height * by the given 'H' offset (or default Z_CLEARANCE_BETWEEN_PROBES), and waits while the controller is * used to adjust the nozzle height. On click the displayed height is saved in the mesh. * * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button. * * The general form is G29 P4 [R points] [X position] [Y position] * * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim, * and on click the height minus the shim thickness will be saved in the mesh. * * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!! * * NOTE: P4 is not available unless you have LCD support enabled! * * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically * execute a G29 P6 C . * * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring * 0.000 at the Z Home location. * * Q Test Load specified Test Pattern to assist in checking correct operation of system. This * command is not anticipated to be of much value to the typical user. It is intended * for developers to help them verify correct operation of the Unified Bed Leveling System. * * R # Repeat Repeat this command the specified number of times. If no number is specified the * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times. * * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the * current state of the Unified Bed Leveling system in the EEPROM. * * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and * extend to a limit related to the available EEPROM storage. * * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system * at a later date. The GCode output can be saved and later replayed by the host software * to reconstruct the current mesh on another machine. * * T Topology Display the Mesh Map Topology. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O) * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can * is suitable to paste into a spreadsheet for a 3D graph of the mesh. * * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful * when the entire bed doesn't need to be probed because it will be adjusted. * * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0) * * W What? Display valuable Unified Bed Leveling System data. * * X # X Location for this command * * Y # Y Location for this command * * * Release Notes: * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all * kinds of problems. Enabling EEPROM Storage is required. * * When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that * UBL probes points increasingly further from the starting location. (The starting location defaults * to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is * especially better for Delta printers, since it populates the center of the mesh first, allowing for * a quicker test print to verify settings. You don't need to populate the entire mesh to use it. * After all, you don't want to spend a lot of time generating a mesh only to realize the resolution * or zprobe_zoffset are incorrect. Mesh-generation gathers points starting closest to the nozzle unless * an (X,Y) coordinate pair is given. * * Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get * the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure * evolves, UBL stores all mesh data at the end of EEPROM. * * UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of * 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and * features of all three systems combined. */ void unified_bed_leveling::G29() { if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem, // Check for commands that require the printer to be homed if (axis_unhomed_error()) { const int8_t p_val = parser.intval('P', -1); if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J')) home_all_axes(); } // Invalidate Mesh Points. This command is a little bit asymmetrical because // it directly specifies the repetition count and does not use the 'R' parameter. if (parser.seen('I')) { uint8_t cnt = 0; g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1; if (g29_repetition_cnt >= GRID_MAX_POINTS) { set_all_mesh_points_to_value(NAN); } else { while (g29_repetition_cnt--) { if (cnt > 20) { cnt = 0; idle(); } const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL); if (location.x_index < 0) { // No more REACHABLE mesh points to invalidate, so we ASSUME the user // meant to invalidate the ENTIRE mesh, which cannot be done with // find_closest_mesh_point loop which only returns REACHABLE points. set_all_mesh_points_to_value(NAN); SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } z_values[location.x_index][location.y_index] = NAN; cnt++; } } SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); } if (parser.seen('Q')) { const int test_pattern = parser.has_value() ? parser.value_int() : -99; if (!WITHIN(test_pattern, -1, 2)) { SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n"); return; } SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n"); switch (test_pattern) { case -1: g29_eeprom_dump(); break; case 0: for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x, p2 = 0.5 * (GRID_MAX_POINTS_Y) - y; z_values[x][y] += 2.0 * HYPOT(p1, p2); } } break; case 1: for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised z_values[x][x] += 9.999; z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick } break; case 2: // Allow the user to specify the height because 10mm is a little extreme in some cases. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed z_values[x][y] += parser.seen('C') ? g29_constant : 9.99; break; } } #if HAS_BED_PROBE if (parser.seen('J')) { if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed save_ubl_active_state_and_disable(); tilt_mesh_based_on_probed_grid(false /* false says to do normal grid probing */ ); restore_ubl_active_state_and_leave(); } else { // grid_size == 0 : A 3-Point leveling has been requested save_ubl_active_state_and_disable(); tilt_mesh_based_on_probed_grid(true /* true says to do 3-Point leveling */ ); restore_ubl_active_state_and_leave(); } do_blocking_move_to_xy(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y))); report_current_position(); } #endif // HAS_BED_PROBE if (parser.seen('P')) { if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) { storage_slot = 0; SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected."); } switch (g29_phase_value) { case 0: // // Zero Mesh Data // reset(); SERIAL_PROTOCOLLNPGM("Mesh zeroed."); break; #if HAS_BED_PROBE case 1: // // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // if (!parser.seen('C')) { invalidate(); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh."); } if (g29_verbose_level > 1) { SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(g29_y_pos); SERIAL_PROTOCOLLNPGM(").\n"); } probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, parser.seen('T'), parser.seen('E'), parser.seen('U')); report_current_position(); break; #endif // HAS_BED_PROBE case 2: { #if ENABLED(NEWPANEL) // // Manually Probe Mesh in areas that can't be reached by the probe // SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations."); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); if (parser.seen('C') && !g29_x_flag && !g29_y_flag) { /** * Use a good default location for the path. * The flipped > and < operators in these comparisons is intentional. * It should cause the probed points to follow a nice path on Cartesian printers. * It may make sense to have Delta printers default to the center of the bed. * Until that is decided, this can be forced with the X and Y parameters. */ #if IS_KINEMATIC g29_x_pos = X_HOME_POS; g29_y_pos = Y_HOME_POS; #else // cartesian g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0; g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0; #endif } if (parser.seen('B')) { g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness((float) Z_CLEARANCE_BETWEEN_PROBES); if (FABS(g29_card_thickness) > 1.5) { SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement."); return; } } if (!position_is_reachable(g29_x_pos, g29_y_pos)) { SERIAL_PROTOCOLLNPGM("XY outside printable radius."); return; } const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES); manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T')); SERIAL_PROTOCOLLNPGM("G29 P2 finished."); report_current_position(); #else SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present."); return; #endif } break; case 3: { /** * Populate invalid mesh areas. Proceed with caution. * Two choices are available: * - Specify a constant with the 'C' parameter. * - Allow 'G29 P3' to choose a 'reasonable' constant. */ if (g29_c_flag) { if (g29_repetition_cnt >= GRID_MAX_POINTS) { set_all_mesh_points_to_value(g29_constant); } else { while (g29_repetition_cnt--) { // this only populates reachable mesh points near const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL); if (location.x_index < 0) { // No more REACHABLE INVALID mesh points to populate, so we ASSUME // user meant to populate ALL INVALID mesh points to value for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) if (isnan(z_values[x][y])) z_values[x][y] = g29_constant; break; // No more invalid Mesh Points to populate } z_values[location.x_index][location.y_index] = g29_constant; } } } else { const float cvf = parser.value_float(); switch ((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1 #if ENABLED(UBL_G29_P31) case 1: { // P3.1 use least squares fit to fill missing mesh values // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane // P3.11 10X weighting for nearest grid points versus farthest grid points // P3.12 100X distance weighting // P3.13 1000X distance weighting, approaches simple average of nearest points const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345 weight_factor = weight_power ? POW(10.0, weight_power) : 0; smart_fill_wlsf(weight_factor); } break; #endif case 0: // P3 or P3.0 default: // and anything P3.x that's not P3.1 smart_fill_mesh(); // Do a 'Smart' fill using nearby known values break; } } break; } case 4: // Fine Tune (i.e., Edit) the Mesh #if ENABLED(NEWPANEL) fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T')); #else SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present."); return; #endif break; case 5: find_mean_mesh_height(); break; case 6: shift_mesh_height(); break; } } // // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is // good to have the extra information. Soon... we prune this to just a few items // if (parser.seen('W')) g29_what_command(); // // When we are fully debugged, this may go away. But there are some valid // use cases for the users. So we can wait and see what to do with it. // if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh g29_compare_current_mesh_to_stored_mesh(); // // Load a Mesh from the EEPROM // if (parser.seen('L')) { // Load Current Mesh Data g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available."); return; } if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_PROTOCOLLNPGM("?Invalid storage slot."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); return; } settings.load_mesh(g29_storage_slot); storage_slot = g29_storage_slot; SERIAL_PROTOCOLLNPGM("Done."); } // // Store a Mesh in the EEPROM // if (parser.seen('S')) { // Store (or Save) Current Mesh Data g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot; if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the return report_current_mesh(); // host program to be saved on the user's computer int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available."); goto LEAVE; } if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_PROTOCOLLNPGM("?Invalid storage slot."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); goto LEAVE; } settings.store_mesh(g29_storage_slot); storage_slot = g29_storage_slot; SERIAL_PROTOCOLLNPGM("Done."); } if (parser.seen('T')) display_map(g29_map_type); LEAVE: #if ENABLED(NEWPANEL) lcd_reset_alert_level(); LCD_MESSAGEPGM(""); lcd_quick_feedback(true); lcd_external_control = false; #endif return; } void unified_bed_leveling::find_mean_mesh_height() { float sum = 0.0; int n = 0; for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(z_values[x][y])) { sum += z_values[x][y]; n++; } const float mean = sum / n; // // Sum the squares of difference from mean // float sum_of_diff_squared = 0.0; for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(z_values[x][y])) sum_of_diff_squared += sq(z_values[x][y] - mean); SERIAL_ECHOLNPAIR("# of samples: ", n); SERIAL_ECHOPGM("Mean Mesh Height: "); SERIAL_ECHO_F(mean, 6); SERIAL_EOL(); const float sigma = SQRT(sum_of_diff_squared / (n + 1)); SERIAL_ECHOPGM("Standard Deviation: "); SERIAL_ECHO_F(sigma, 6); SERIAL_EOL(); if (g29_c_flag) for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(z_values[x][y])) z_values[x][y] -= mean + g29_constant; } void unified_bed_leveling::shift_mesh_height() { for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) if (!isnan(z_values[x][y])) z_values[x][y] += g29_constant; } #if ENABLED(NEWPANEL) typedef void (*clickFunc_t)(); bool click_and_hold(const clickFunc_t func=NULL) { if (is_lcd_clicked()) { lcd_quick_feedback(false); // Do NOT clear button status! If cleared, the code // code can not look for a 'click and hold' const millis_t nxt = millis() + 1500UL; while (is_lcd_clicked()) { // Loop while the encoder is pressed. Uses hardware flag! idle(); // idle, of course if (ELAPSED(millis(), nxt)) { // After 1.5 seconds lcd_quick_feedback(true); if (func) (*func)(); wait_for_release(); safe_delay(50); // Debounce the Encoder wheel return true; } } } safe_delay(15); return false; } #endif // NEWPANEL #if HAS_BED_PROBE /** * Probe all invalidated locations of the mesh that can be reached by the probe. * This attempts to fill in locations closest to the nozzle's start location first. */ void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) { mesh_index_pair location; #if ENABLED(NEWPANEL) lcd_external_control = true; #endif save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe DEPLOY_PROBE(); uint16_t count = GRID_MAX_POINTS; do { if (do_ubl_mesh_map) display_map(g29_map_type); #if ENABLED(NEWPANEL) if (is_lcd_clicked()) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n"); lcd_quick_feedback(false); STOW_PROBE(); while (is_lcd_clicked()) idle(); lcd_external_control = false; restore_ubl_active_state_and_leave(); lcd_quick_feedback(true); safe_delay(50); // Debounce the Encoder wheel return; } #endif if (do_furthest) location = find_furthest_invalid_mesh_point(); else location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_PROBE_AS_REFERENCE, NULL); if (location.x_index >= 0) { // mesh point found and is reachable by probe const float rawx = mesh_index_to_xpos(location.x_index), rawy = mesh_index_to_ypos(location.y_index); const float measured_z = probe_pt(rawx, rawy, stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling z_values[location.x_index][location.y_index] = measured_z; } SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (location.x_index >= 0 && --count); STOW_PROBE(); #if Z_AFTER_PROBING move_z_after_probing(); #endif restore_ubl_active_state_and_leave(); do_blocking_move_to_xy( constrain(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_X, MESH_MAX_X), constrain(ry - (Y_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_Y, MESH_MAX_Y) ); } #endif // HAS_BED_PROBE #if ENABLED(NEWPANEL) void unified_bed_leveling::move_z_with_encoder(const float &multiplier) { wait_for_release(); while (!is_lcd_clicked()) { idle(); reset_stepper_timeout(); // Keep steppers powered if (encoder_diff) { do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * multiplier); encoder_diff = 0; } } } float unified_bed_leveling::measure_point_with_encoder() { KEEPALIVE_STATE(PAUSED_FOR_USER); move_z_with_encoder(0.01); KEEPALIVE_STATE(IN_HANDLER); return current_position[Z_AXIS]; } static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); } float unified_bed_leveling::measure_business_card_thickness(float in_height) { lcd_external_control = true; save_ubl_active_state_and_disable(); // Disable bed level correction for probing do_blocking_move_to(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)), in_height); //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0); stepper.synchronize(); SERIAL_PROTOCOLPGM("Place shim under nozzle"); LCD_MESSAGEPGM(MSG_UBL_BC_INSERT); lcd_return_to_status(); echo_and_take_a_measurement(); const float z1 = measure_point_with_encoder(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); stepper.synchronize(); SERIAL_PROTOCOLPGM("Remove shim"); LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE); echo_and_take_a_measurement(); const float z2 = measure_point_with_encoder(); do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES); const float thickness = abs(z1 - z2); if (g29_verbose_level > 1) { SERIAL_PROTOCOLPGM("Business Card is "); SERIAL_PROTOCOL_F(thickness, 4); SERIAL_PROTOCOLLNPGM("mm thick."); } lcd_external_control = false; restore_ubl_active_state_and_leave(); return thickness; } void abort_manual_probe_remaining_mesh() { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_external_control = false; KEEPALIVE_STATE(IN_HANDLER); lcd_quick_feedback(true); ubl.restore_ubl_active_state_and_leave(); } void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) { lcd_external_control = true; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_clearance); lcd_return_to_status(); mesh_index_pair location; do { location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_NOZZLE_AS_REFERENCE, NULL); // It doesn't matter if the probe can't reach the NAN location. This is a manual probe. if (location.x_index < 0 && location.y_index < 0) continue; const float xProbe = mesh_index_to_xpos(location.x_index), yProbe = mesh_index_to_ypos(location.y_index); if (!position_is_reachable(xProbe, yProbe)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points) LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT); do_blocking_move_to(xProbe, yProbe, Z_CLEARANCE_BETWEEN_PROBES); do_blocking_move_to_z(z_clearance); KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_external_control = true; if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2)); const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step //const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click move_z_with_encoder(z_step); if (click_and_hold()) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_external_control = false; KEEPALIVE_STATE(IN_HANDLER); restore_ubl_active_state_and_leave(); return; } z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick; if (g29_verbose_level > 2) { SERIAL_PROTOCOLPGM("Mesh Point Measured at: "); SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); SERIAL_EOL(); } SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (location.x_index >= 0 && location.y_index >= 0); if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing restore_ubl_active_state_and_leave(); KEEPALIVE_STATE(IN_HANDLER); do_blocking_move_to(rx, ry, Z_CLEARANCE_DEPLOY_PROBE); } #endif // NEWPANEL bool unified_bed_leveling::g29_parameter_parsing() { bool err_flag = false; #if ENABLED(NEWPANEL) LCD_MESSAGEPGM(MSG_UBL_DOING_G29); lcd_quick_feedback(true); #endif g29_constant = 0.0; g29_repetition_cnt = 0; g29_x_flag = parser.seenval('X'); g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS]; g29_y_flag = parser.seenval('Y'); g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS]; if (parser.seen('R')) { g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS; NOMORE(g29_repetition_cnt, GRID_MAX_POINTS); if (g29_repetition_cnt < 1) { SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n"); return UBL_ERR; } } g29_verbose_level = parser.seen('V') ? parser.value_int() : 0; if (!WITHIN(g29_verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n"); err_flag = true; } if (parser.seen('P')) { const int pv = parser.value_int(); #if !HAS_BED_PROBE if (pv == 1) { SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n"); err_flag = true; } else #endif { g29_phase_value = pv; if (!WITHIN(g29_phase_value, 0, 6)) { SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n"); err_flag = true; } } } if (parser.seen('J')) { #if HAS_BED_PROBE g29_grid_size = parser.has_value() ? parser.value_int() : 0; if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) { SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n"); err_flag = true; } #else SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n"); err_flag = true; #endif } if (g29_x_flag != g29_y_flag) { SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); err_flag = true; } // If X or Y are not valid, use center of the bed values if (!WITHIN(g29_x_pos, X_MIN_BED, X_MAX_BED)) g29_x_pos = X_CENTER; if (!WITHIN(g29_y_pos, Y_MIN_BED, Y_MAX_BED)) g29_y_pos = Y_CENTER; if (err_flag) return UBL_ERR; /** * Activate or deactivate UBL * Note: UBL's G29 restores the state set here when done. * Leveling is being enabled here with old data, possibly * none. Error handling should disable for safety... */ if (parser.seen('A')) { if (parser.seen('D')) { SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n"); return UBL_ERR; } set_bed_leveling_enabled(true); report_state(); } else if (parser.seen('D')) { set_bed_leveling_enabled(false); report_state(); } // Set global 'C' flag and its value if ((g29_c_flag = parser.seen('C'))) g29_constant = parser.value_float(); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (parser.seenval('F')) { const float fh = parser.value_float(); if (!WITHIN(fh, 0.0, 100.0)) { SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n"); return UBL_ERR; } set_z_fade_height(fh); } #endif g29_map_type = parser.intval('T'); if (!WITHIN(g29_map_type, 0, 2)) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } return UBL_OK; } static uint8_t ubl_state_at_invocation = 0; #ifdef UBL_DEVEL_DEBUGGING static uint8_t ubl_state_recursion_chk = 0; #endif void unified_bed_leveling::save_ubl_active_state_and_disable() { #ifdef UBL_DEVEL_DEBUGGING ubl_state_recursion_chk++; if (ubl_state_recursion_chk != 1) { SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row."); #if ENABLED(NEWPANEL) LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR); lcd_quick_feedback(true); #endif return; } #endif ubl_state_at_invocation = planner.leveling_active; set_bed_leveling_enabled(false); } void unified_bed_leveling::restore_ubl_active_state_and_leave() { #ifdef UBL_DEVEL_DEBUGGING if (--ubl_state_recursion_chk) { SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times."); #if ENABLED(NEWPANEL) LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR); lcd_quick_feedback(true); #endif return; } #endif set_bed_leveling_enabled(ubl_state_at_invocation); } /** * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is * good to have the extra information. Soon... we prune this to just a few items */ void unified_bed_leveling::g29_what_command() { report_state(); if (storage_slot == -1) SERIAL_PROTOCOLPGM("No Mesh Loaded."); else { SERIAL_PROTOCOLPAIR("Mesh ", storage_slot); SERIAL_PROTOCOLPGM(" Loaded."); } SERIAL_EOL(); safe_delay(50); SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_PROTOCOLPGM("planner.z_fade_height : "); SERIAL_PROTOCOL_F(planner.z_fade_height, 4); SERIAL_EOL(); #endif find_mean_mesh_height(); #if HAS_BED_PROBE SERIAL_PROTOCOLPGM("zprobe_zoffset: "); SERIAL_PROTOCOL_F(zprobe_zoffset, 7); SERIAL_EOL(); #endif SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X); safe_delay(50); SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y); safe_delay(50); SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X); safe_delay(50); SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y); safe_delay(50); SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X); safe_delay(50); SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y); safe_delay(50); SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST); SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST); safe_delay(50); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3); SERIAL_PROTOCOLPGM(" "); safe_delay(25); } SERIAL_EOL(); SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) { SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3); SERIAL_PROTOCOLPGM(" "); safe_delay(25); } SERIAL_EOL(); #if HAS_KILL SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN); SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN)); #endif SERIAL_EOL(); safe_delay(50); #ifdef UBL_DEVEL_DEBUGGING SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation); SERIAL_EOL(); SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); SERIAL_EOL(); safe_delay(50); SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index())); SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.meshes_end_index())); safe_delay(50); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_EOL(); SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); SERIAL_EOL(); safe_delay(25); SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index()))); safe_delay(50); SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes()); SERIAL_PROTOCOLLNPGM(" meshes.\n"); safe_delay(25); #endif // UBL_DEVEL_DEBUGGING if (!sanity_check()) { echo_name(); SERIAL_PROTOCOLLNPGM(" sanity checks passed."); } } /** * When we are fully debugged, the EEPROM dump command will get deleted also. But * right now, it is good to have the extra information. Soon... we prune this. */ void unified_bed_leveling::g29_eeprom_dump() { unsigned char cccc; unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms SERIAL_ECHO_START(); SERIAL_ECHOLNPGM("EEPROM Dump:"); for (uint16_t i = 0; i <= E2END; i += 16) { if (!(i & 0x3)) idle(); print_hex_word(i); SERIAL_ECHOPGM(": "); for (uint16_t j = 0; j < 16; j++) { kkkk = i + j; eeprom_read_block(&cccc, (const void *)kkkk, sizeof(unsigned char)); print_hex_byte(cccc); SERIAL_ECHO(' '); } SERIAL_EOL(); } SERIAL_EOL(); } /** * When we are fully debugged, this may go away. But there are some valid * use cases for the users. So we can wait and see what to do with it. */ void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() { int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available."); return; } if (!parser.has_value()) { SERIAL_PROTOCOLLNPGM("?Storage slot # required."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); return; } g29_storage_slot = parser.value_int(); if (!WITHIN(g29_storage_slot, 0, a - 1)) { SERIAL_PROTOCOLLNPGM("?Invalid storage slot."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); return; } float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; settings.load_mesh(g29_storage_slot, &tmp_z_values); SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot); SERIAL_PROTOCOLLNPGM(" from current mesh."); for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) z_values[x][y] -= tmp_z_values[x][y]; } mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() { bool found_a_NAN = false, found_a_real = false; mesh_index_pair out_mesh; out_mesh.x_index = out_mesh.y_index = -1; out_mesh.distance = -99999.99; for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { if (isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point const float mx = mesh_index_to_xpos(i), my = mesh_index_to_ypos(j); if (!position_is_reachable_by_probe(mx, my)) // make sure the probe can get to the mesh point continue; found_a_NAN = true; int8_t closest_x = -1, closest_y = -1; float d1, d2 = 99999.9; for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) { for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { if (!isnan(z_values[k][l])) { found_a_real = true; // Add in a random weighting factor that scrambles the probing of the // last half of the mesh (when every unprobed mesh point is one index // from a probed location). d1 = HYPOT(i - k, j - l) + (1.0 / ((millis() % 47) + 13)); if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l) d2 = d1; // found a closer location with closest_x = i; // an assigned mesh point value closest_y = j; } } } } // // At this point d2 should have the closest defined mesh point to invalid mesh point (i,j) // if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) { out_mesh.distance = d2; // found an invalid location with a greater distance out_mesh.x_index = closest_x; // to a defined mesh point out_mesh.y_index = closest_y; } } } // for j } // for i if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing out_mesh.x_index = GRID_MAX_POINTS_X / 2; out_mesh.y_index = GRID_MAX_POINTS_Y / 2; out_mesh.distance = 1.0; } return out_mesh; } mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) { mesh_index_pair out_mesh; out_mesh.x_index = out_mesh.y_index = -1; out_mesh.distance = -99999.9; // Get our reference position. Either the nozzle or probe location. const float px = rx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), py = ry - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); float best_so_far = 99999.99; for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing || (type == REAL && !isnan(z_values[i][j])) || (type == SET_IN_BITMAP && is_bitmap_set(bits, i, j)) ) { // We only get here if we found a Mesh Point of the specified type const float mx = mesh_index_to_xpos(i), my = mesh_index_to_ypos(j); // If using the probe as the reference there are some unreachable locations. // Also for round beds, there are grid points outside the bed the nozzle can't reach. // Prune them from the list and ignore them till the next Phase (manual nozzle probing). if (probe_as_reference ? !position_is_reachable_by_probe(mx, my) : !position_is_reachable(mx, my)) continue; // Reachable. Check if it's the best_so_far location to the nozzle. float distance = HYPOT(px - mx, py - my); // factor in the distance from the current location for the normal case // so the nozzle isn't running all over the bed. distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1; if (distance < best_so_far) { best_so_far = distance; // We found a closer location with out_mesh.x_index = i; // the specified type of mesh value. out_mesh.y_index = j; out_mesh.distance = best_so_far; } } } // for j } // for i return out_mesh; } #if ENABLED(NEWPANEL) void abort_fine_tune() { lcd_return_to_status(); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); LCD_MESSAGEPGM(MSG_EDITING_STOPPED); lcd_quick_feedback(true); } void unified_bed_leveling::fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) { if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided. #if ENABLED(UBL_MESH_EDIT_MOVES_Z) const bool is_offset = parser.seen('H'); const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES; if (is_offset && !WITHIN(h_offset, 0, 10)) { SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n"); return; } #endif mesh_index_pair location; if (!position_is_reachable(rx, ry)) { SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius."); return; } save_ubl_active_state_and_disable(); LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH); do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES); uint16_t not_done[16]; memset(not_done, 0xFF, sizeof(not_done)); do { location = find_closest_mesh_point_of_type(SET_IN_BITMAP, rx, ry, USE_NOZZLE_AS_REFERENCE, not_done); if (location.x_index < 0) break; // stop when we can't find any more reachable points. bitmap_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a // different location the next time through the loop const float rawx = mesh_index_to_xpos(location.x_index), rawy = mesh_index_to_ypos(location.y_index); if (!position_is_reachable(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable break; do_blocking_move_to(rawx, rawy, Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to the edit point KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_external_control = true; if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted lcd_refresh(); float new_z = z_values[location.x_index][location.y_index]; if (isnan(new_z)) new_z = 0.0; // Set invalid mesh points to 0.0 so they can be edited new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place lcd_mesh_edit_setup(new_z); do { new_z = lcd_mesh_edit(); #if ENABLED(UBL_MESH_EDIT_MOVES_Z) do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited #endif idle(); SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (!is_lcd_clicked()); if (!lcd_map_control) lcd_return_to_status(); // The technique used here generates a race condition for the encoder click. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here. // Let's work on specifying a proper API for the LCD ASAP, OK? lcd_external_control = true; if (click_and_hold(abort_fine_tune)) goto FINE_TUNE_EXIT; safe_delay(20); // We don't want any switch noise. z_values[location.x_index][location.y_index] = new_z; lcd_refresh(); } while (location.x_index >= 0 && --g29_repetition_cnt > 0); FINE_TUNE_EXIT: lcd_external_control = false; KEEPALIVE_STATE(IN_HANDLER); if (do_ubl_mesh_map) display_map(g29_map_type); restore_ubl_active_state_and_leave(); do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES); LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH); SERIAL_ECHOLNPGM("Done Editing Mesh"); if (lcd_map_control) lcd_goto_screen(_lcd_ubl_output_map_lcd); else lcd_return_to_status(); } #endif // NEWPANEL /** * 'Smart Fill': Scan from the outward edges of the mesh towards the center. * If an invalid location is found, use the next two points (if valid) to * calculate a 'reasonable' value for the unprobed mesh point. */ bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { const int8_t x1 = x + xdir, x2 = x1 + xdir, y1 = y + ydir, y2 = y1 + ydir; // A NAN next to a pair of real values? if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) { if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward? z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.) else z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward... return true; } return false; } typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info; void unified_bed_leveling::smart_fill_mesh() { static const smart_fill_info info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 }; for (uint8_t i = 0; i < COUNT(info); ++i) { const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]); const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy), ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey); if (pgm_read_byte(&f->yfirst)) { const int8_t dir = ex > sx ? 1 : -1; for (uint8_t y = sy; y != ey; ++y) for (uint8_t x = sx; x != ex; x += dir) if (smart_fill_one(x, y, dir, 0)) break; } else { const int8_t dir = ey > sy ? 1 : -1; for (uint8_t x = sx; x != ex; ++x) for (uint8_t y = sy; y != ey; y += dir) if (smart_fill_one(x, y, 0, dir)) break; } } } #if HAS_BED_PROBE void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) { constexpr int16_t x_min = max(MIN_PROBE_X, MESH_MIN_X), x_max = min(MAX_PROBE_X, MESH_MAX_X), y_min = max(MIN_PROBE_Y, MESH_MIN_Y), y_max = min(MAX_PROBE_Y, MESH_MAX_Y); bool abort_flag = false; float measured_z; const float dx = float(x_max - x_min) / (g29_grid_size - 1.0), dy = float(y_max - y_min) / (g29_grid_size - 1.0); struct linear_fit_data lsf_results; //float z1, z2, z3; // Needed for algorithm validation down below. incremental_LSF_reset(&lsf_results); if (do_3_pt_leveling) { measured_z = probe_pt(PROBE_PT_1_X, PROBE_PT_1_Y, PROBE_PT_RAISE, g29_verbose_level); if (isnan(measured_z)) abort_flag = true; else { measured_z -= get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y); //z1 = measured_z; if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, PROBE_PT_1_X, PROBE_PT_1_Y, measured_z); } if (!abort_flag) { measured_z = probe_pt(PROBE_PT_2_X, PROBE_PT_2_Y, PROBE_PT_RAISE, g29_verbose_level); //z2 = measured_z; if (isnan(measured_z)) abort_flag = true; else { measured_z -= get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y); if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, PROBE_PT_2_X, PROBE_PT_2_Y, measured_z); } } if (!abort_flag) { measured_z = probe_pt(PROBE_PT_3_X, PROBE_PT_3_Y, PROBE_PT_STOW, g29_verbose_level); //z3 = measured_z; if (isnan(measured_z)) abort_flag = true; else { measured_z -= get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y); if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, PROBE_PT_3_X, PROBE_PT_3_Y, measured_z); } } if (abort_flag) { SERIAL_ECHOPGM("?Error probing point. Aborting operation.\n"); return; } } else { // !do_3_pt_leveling bool zig_zag = false; for (uint8_t ix = 0; ix < g29_grid_size; ix++) { const float rx = float(x_min) + ix * dx; for (int8_t iy = 0; iy < g29_grid_size; iy++) { const float ry = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy); if (!abort_flag) { measured_z = probe_pt(rx, ry, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling abort_flag = isnan(measured_z); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_CHAR('('); SERIAL_PROTOCOL_F(rx, 7); SERIAL_CHAR(','); SERIAL_PROTOCOL_F(ry, 7); SERIAL_ECHOPGM(") logical: "); SERIAL_CHAR('('); SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 7); SERIAL_CHAR(','); SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 7); SERIAL_ECHOPGM(") measured: "); SERIAL_PROTOCOL_F(measured_z, 7); SERIAL_ECHOPGM(" correction: "); SERIAL_PROTOCOL_F(get_z_correction(rx, ry), 7); } #endif measured_z -= get_z_correction(rx, ry) /* + zprobe_zoffset */ ; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM(" final >>>---> "); SERIAL_PROTOCOL_F(measured_z, 7); SERIAL_EOL(); } #endif if (g29_verbose_level > 3) { serial_spaces(16); SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z); } incremental_LSF(&lsf_results, rx, ry, measured_z); } } zig_zag ^= true; } STOW_PROBE(); } if (abort_flag || finish_incremental_LSF(&lsf_results)) { SERIAL_ECHOPGM("Could not complete LSF!"); return; } vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal(); if (g29_verbose_level > 2) { SERIAL_ECHOPGM("bed plane normal = ["); SERIAL_PROTOCOL_F(normal.x, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(normal.y, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(normal.z, 7); SERIAL_ECHOLNPGM("]"); } matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1)); for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { float x_tmp = mesh_index_to_xpos(i), y_tmp = mesh_index_to_ypos(j), z_tmp = z_values[i][j]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("before rotation = ["); SERIAL_PROTOCOL_F(x_tmp, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(y_tmp, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(z_tmp, 7); SERIAL_ECHOPGM("] ---> "); safe_delay(20); } #endif apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("after rotation = ["); SERIAL_PROTOCOL_F(x_tmp, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(y_tmp, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(z_tmp, 7); SERIAL_ECHOLNPGM("]"); safe_delay(55); } #endif z_values[i][j] = z_tmp - lsf_results.D; } } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { rotation.debug(PSTR("rotation matrix:\n")); SERIAL_ECHOPGM("LSF Results A="); SERIAL_PROTOCOL_F(lsf_results.A, 7); SERIAL_ECHOPGM(" B="); SERIAL_PROTOCOL_F(lsf_results.B, 7); SERIAL_ECHOPGM(" D="); SERIAL_PROTOCOL_F(lsf_results.D, 7); SERIAL_EOL(); safe_delay(55); SERIAL_ECHOPGM("bed plane normal = ["); SERIAL_PROTOCOL_F(normal.x, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(normal.y, 7); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL_F(normal.z, 7); SERIAL_ECHOPGM("]\n"); SERIAL_EOL(); /** * The following code can be used to check the validity of the mesh tilting algorithm. * When a 3-Point Mesh Tilt is done, the same algorithm is used as the grid based tilting. * The only difference is just 3 points are used in the calculations. That fact guarantees * each probed point should have an exact match when a get_z_correction() for that location * is calculated. The Z error between the probed point locations and the get_z_correction() * numbers for those locations should be 0.000 */ #if 0 float t, t1, d; t = normal.x * (PROBE_PT_1_X) + normal.y * (PROBE_PT_1_Y); d = t + normal.z * z1; SERIAL_ECHOPGM("D from 1st point: "); SERIAL_ECHO_F(d, 6); SERIAL_ECHOPGM(" Z error: "); SERIAL_ECHO_F(normal.z*z1-get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y), 6); SERIAL_EOL(); t = normal.x * (PROBE_PT_2_X) + normal.y * (PROBE_PT_2_Y); d = t + normal.z * z2; SERIAL_EOL(); SERIAL_ECHOPGM("D from 2nd point: "); SERIAL_ECHO_F(d, 6); SERIAL_ECHOPGM(" Z error: "); SERIAL_ECHO_F(normal.z*z2-get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y), 6); SERIAL_EOL(); t = normal.x * (PROBE_PT_3_X) + normal.y * (PROBE_PT_3_Y); d = t + normal.z * z3; SERIAL_ECHOPGM("D from 3rd point: "); SERIAL_ECHO_F(d, 6); SERIAL_ECHOPGM(" Z error: "); SERIAL_ECHO_F(normal.z*z3-get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y), 6); SERIAL_EOL(); t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT); d = t + normal.z * 0.000; SERIAL_ECHOPGM("D from home location with Z=0 : "); SERIAL_ECHO_F(d, 6); SERIAL_EOL(); t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT); d = t + get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT); // normal.z * 0.000; SERIAL_ECHOPGM("D from home location using mesh value for Z: "); SERIAL_ECHO_F(d, 6); SERIAL_ECHOPAIR(" Z error: (", Z_SAFE_HOMING_X_POINT); SERIAL_ECHOPAIR(",", Z_SAFE_HOMING_Y_POINT ); SERIAL_ECHOPGM(") = "); SERIAL_ECHO_F(get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT), 6); SERIAL_EOL(); #endif } // DEBUGGING(LEVELING) #endif } #endif // HAS_BED_PROBE #if ENABLED(UBL_G29_P31) void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) { // For each undefined mesh point, compute a distance-weighted least squares fit // from all the originally populated mesh points, weighted toward the point // being extrapolated so that nearby points will have greater influence on // the point being extrapolated. Then extrapolate the mesh point from WLSF. static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big"); uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 }; struct linear_fit_data lsf_results; SERIAL_ECHOPGM("Extrapolating mesh..."); const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST); for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) if (!isnan(z_values[jx][jy])) SBI(bitmap[jx], jy); for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) { const float px = mesh_index_to_xpos(ix); for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) { const float py = mesh_index_to_ypos(iy); if (isnan(z_values[ix][iy])) { // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points. incremental_LSF_reset(&lsf_results); for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) { const float rx = mesh_index_to_xpos(jx); for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) { if (TEST(bitmap[jx], jy)) { const float ry = mesh_index_to_ypos(jy), rz = z_values[jx][jy], w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py)); incremental_WLSF(&lsf_results, rx, ry, rz, w); } } } if (finish_incremental_LSF(&lsf_results)) { SERIAL_ECHOLNPGM("Insufficient data"); return; } const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py; z_values[ix][iy] = ez; idle(); // housekeeping } } } SERIAL_ECHOLNPGM("done"); } #endif // UBL_G29_P31 #endif // AUTO_BED_LEVELING_UBL