/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors * Derived from Grbl * * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see . */ #ifndef STEPPER_H #define STEPPER_H #include "planner.h" #include "speed_lookuptable.h" #include "stepper_indirection.h" #include "language.h" #include "types.h" class Stepper; extern Stepper stepper; // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result static FORCE_INLINE uint16_t MultiU16X8toH16(uint8_t charIn1, uint16_t intIn2) { register uint8_t tmp; register uint16_t intRes; __asm__ __volatile__ ( A("clr %[tmp]") A("mul %[charIn1], %B[intIn2]") A("movw %A[intRes], r0") A("mul %[charIn1], %A[intIn2]") A("add %A[intRes], r1") A("adc %B[intRes], %[tmp]") A("lsr r0") A("adc %A[intRes], %[tmp]") A("adc %B[intRes], %[tmp]") A("clr r1") : [intRes] "=&r" (intRes), [tmp] "=&r" (tmp) : [charIn1] "d" (charIn1), [intIn2] "d" (intIn2) : "cc" ); return intRes; } class Stepper { public: static block_t* current_block; // A pointer to the block currently being traced #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) static bool performing_homing; #endif #if HAS_MOTOR_CURRENT_PWM #ifndef PWM_MOTOR_CURRENT #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT #endif static uint32_t motor_current_setting[3]; #endif private: static uint8_t last_direction_bits, // The next stepping-bits to be output last_movement_extruder, // Last movement extruder, as computed when the last movement was fetched from planner axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner static bool abort_current_block; // Signals to the stepper that current block should be aborted #if ENABLED(X_DUAL_ENDSTOPS) static bool locked_x_motor, locked_x2_motor; #endif #if ENABLED(Y_DUAL_ENDSTOPS) static bool locked_y_motor, locked_y2_motor; #endif #if ENABLED(Z_DUAL_ENDSTOPS) static bool locked_z_motor, locked_z2_motor; #endif // Counter variables for the Bresenham line tracer static int32_t counter_X, counter_Y, counter_Z, counter_E; static uint32_t step_events_completed; // The number of step events executed in the current block #if ENABLED(S_CURVE_ACCELERATION) static int32_t bezier_A, // A coefficient in Bézier speed curve bezier_B, // B coefficient in Bézier speed curve bezier_C; // C coefficient in Bézier speed curve static uint32_t bezier_F, // F coefficient in Bézier speed curve bezier_AV; // AV coefficient in Bézier speed curve static bool A_negative, // If A coefficient was negative bezier_2nd_half; // If Bézier curve has been initialized or not #endif static uint32_t nextMainISR; // time remaining for the next Step ISR static bool all_steps_done; // all steps done #if ENABLED(LIN_ADVANCE) static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early". static uint32_t nextAdvanceISR, eISR_Rate; static uint16_t current_adv_steps, final_adv_steps, max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early". static int8_t e_steps; static bool use_advance_lead; #if E_STEPPERS > 1 static int8_t LA_active_extruder; // Copy from current executed block. Needed because current_block is set to NULL "too early". #else static constexpr int8_t LA_active_extruder = 0; #endif #endif // LIN_ADVANCE static uint32_t acceleration_time, deceleration_time; static uint8_t step_loops, step_loops_nominal; static uint32_t ticks_nominal; #if DISABLED(S_CURVE_ACCELERATION) static uint32_t acc_step_rate; // needed for deceleration start point #endif static volatile int32_t endstops_trigsteps[XYZ]; static volatile int32_t endstops_stepsTotal, endstops_stepsDone; // // Positions of stepper motors, in step units // static volatile int32_t count_position[NUM_AXIS]; // // Current direction of stepper motors (+1 or -1) // static volatile signed char count_direction[NUM_AXIS]; // // Mixing extruder mix counters // #if ENABLED(MIXING_EXTRUDER) static int32_t counter_m[MIXING_STEPPERS]; #define MIXING_STEPPERS_LOOP(VAR) \ for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) \ if (current_block->mix_event_count[VAR]) #endif public: // // Constructor / initializer // Stepper() { }; // Initialize stepper hardware static void init(); // Interrupt Service Routines // The ISR scheduler static hal_timer_t isr_scheduler(); // The stepper pulse phase ISR static void stepper_pulse_phase_isr(); // The stepper block processing phase ISR static uint32_t stepper_block_phase_isr(); #if ENABLED(LIN_ADVANCE) // The Linear advance stepper ISR static uint32_t advance_isr(); #endif // Get the position of a stepper, in steps static int32_t position(const AxisEnum axis); // Report the positions of the steppers, in steps static void report_positions(); // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. static void wake_up(); // Quickly stop all steppers FORCE_INLINE static void quick_stop() { abort_current_block = true; } // The direction of a single motor FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); } // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same. FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); } // The extruder associated to the last movement FORCE_INLINE static uint8_t movement_extruder() { return last_movement_extruder; } // Handle a triggered endstop static void endstop_triggered(const AxisEnum axis); // Triggered position of an axis in steps static int32_t triggered_position(const AxisEnum axis); #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digitalPotWrite(const int16_t address, const int16_t value); static void digipot_current(const uint8_t driver, const int16_t current); #endif #if HAS_MICROSTEPS static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2); static void microstep_mode(const uint8_t driver, const uint8_t stepping); static void microstep_readings(); #endif #if ENABLED(X_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_flag_x(const bool state) { performing_homing = state; } FORCE_INLINE static void set_x_lock(const bool state) { locked_x_motor = state; } FORCE_INLINE static void set_x2_lock(const bool state) { locked_x2_motor = state; } #endif #if ENABLED(Y_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_flag_y(const bool state) { performing_homing = state; } FORCE_INLINE static void set_y_lock(const bool state) { locked_y_motor = state; } FORCE_INLINE static void set_y2_lock(const bool state) { locked_y2_motor = state; } #endif #if ENABLED(Z_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_flag_z(const bool state) { performing_homing = state; } FORCE_INLINE static void set_z_lock(const bool state) { locked_z_motor = state; } FORCE_INLINE static void set_z2_lock(const bool state) { locked_z2_motor = state; } #endif #if ENABLED(BABYSTEPPING) static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif #if HAS_MOTOR_CURRENT_PWM static void refresh_motor_power(); #endif // Set the current position in steps inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { planner.synchronize(); CRITICAL_SECTION_START; _set_position(a, b, c, e); CRITICAL_SECTION_END; } inline static void set_position(const AxisEnum a, const int32_t &v) { planner.synchronize(); CRITICAL_SECTION_START; count_position[a] = v; CRITICAL_SECTION_END; } private: // Set the current position in steps static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e); // Set direction bits for all steppers static void set_directions(); FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate) { uint32_t timer; NOMORE(step_rate, uint32_t(MAX_STEP_FREQUENCY)); if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate >>= 2; step_loops = 4; } else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate >>= 1; step_loops = 2; } else { step_loops = 1; } NOLESS(step_rate, uint32_t(F_CPU / 500000U)); step_rate -= F_CPU / 500000; // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate const uint8_t tmp_step_rate = (step_rate & 0x00FF); const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0], gain = (uint16_t)pgm_read_word_near(table_address + 2); timer = MultiU16X8toH16(tmp_step_rate, gain); timer = (uint16_t)pgm_read_word_near(table_address) - timer; } else { // lower step rates uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0]; table_address += ((step_rate) >> 1) & 0xFFFC; timer = (uint16_t)pgm_read_word_near(table_address) - (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3); } if (timer < 100) { // (20kHz - this should never happen) timer = 100; SERIAL_ECHOLNPAIR(MSG_STEPPER_TOO_HIGH, step_rate); } return timer; } #if ENABLED(S_CURVE_ACCELERATION) static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av); static int32_t _eval_bezier_curve(const uint32_t curr_step); #endif #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digipot_init(); #endif #if HAS_MICROSTEPS static void microstep_init(); #endif }; #endif // STEPPER_H