/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "../inc/MarlinConfigPre.h"
#if ENABLED(ULTRA_LCD)
#include
#include "ultralcd.h"
#include "lcdprint.h"
#include "../sd/cardreader.h"
#include "../module/temperature.h"
#include "../module/planner.h"
#include "../module/stepper.h"
#include "../module/motion.h"
#include "../module/probe.h"
#include "../module/printcounter.h"
#include "../gcode/gcode.h"
#include "../gcode/queue.h"
#include "../module/configuration_store.h"
#include "../module/tool_change.h"
#include "../Marlin.h"
#if ENABLED(ADVANCED_PAUSE_FEATURE)
#include "../feature/pause.h"
#endif
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../feature/power_loss_recovery.h"
#if HAS_LCD_MENU
void menu_job_recovery();
#endif
#endif
#if ENABLED(PRINTCOUNTER) && ENABLED(LCD_INFO_MENU)
#include "../libs/duration_t.h"
#endif
#if ENABLED(FILAMENT_LCD_DISPLAY)
#include "../feature/filwidth.h"
#endif
#if ENABLED(BLTOUCH)
#include "../module/endstops.h"
#endif
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if DISABLED(LCD_USE_I2C_BUZZER)
#include "../libs/buzzer.h"
#endif
// Buttons
volatile uint8_t buttons;
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
uint8_t lcd_sd_status;
#endif
#if ENABLED(STATUS_MESSAGE_SCROLLING)
uint8_t status_scroll_offset = 0;
#if LONG_FILENAME_LENGTH > CHARSIZE * 2 * (LCD_WIDTH)
#define MAX_MESSAGE_LENGTH LONG_FILENAME_LENGTH
#else
#define MAX_MESSAGE_LENGTH CHARSIZE * 2 * (LCD_WIDTH)
#endif
#else
#define MAX_MESSAGE_LENGTH CHARSIZE * (LCD_WIDTH)
#endif
char lcd_status_message[MAX_MESSAGE_LENGTH + 1];
uint8_t lcd_status_update_delay = 1, // First update one loop delayed
lcd_status_message_level; // Higher level blocks lower level
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
millis_t previous_lcd_status_ms = 0;
#endif
#if HAS_LCD_MENU && ENABLED(SDSUPPORT) && ENABLED(SCROLL_LONG_FILENAMES)
uint8_t filename_scroll_pos, filename_scroll_max;
#endif
#if ENABLED(LCD_SET_PROGRESS_MANUALLY)
uint8_t progress_bar_percent;
#endif
millis_t next_button_update_ms;
#if HAS_GRAPHICAL_LCD
bool drawing_screen, first_page; // = false
#endif
// Encoder Handling
#if HAS_ENCODER_ACTION
uint32_t encoderPosition;
volatile int8_t encoderDiff; // Updated in lcd_buttons_update, added to encoderPosition every LCD update
#if ENABLED(ENCODER_RATE_MULTIPLIER)
bool encoderRateMultiplierEnabled;
#endif
#if ENABLED(REVERSE_MENU_DIRECTION)
int8_t encoderDirection = 1;
#endif
#endif
#if HAS_LCD_MENU
#include "menu/menu.h"
screenFunc_t currentScreen = lcd_status_screen;
#if ENABLED(ENCODER_RATE_MULTIPLIER)
millis_t lastEncoderMovementMillis = 0;
#endif
bool lcd_clicked, wait_for_unclick;
float move_menu_scale;
bool use_click() {
const bool click = lcd_clicked;
lcd_clicked = false;
return click;
}
#else
constexpr bool lcd_clicked = false;
#endif
void lcd_init() {
lcd_implementation_init();
#if ENABLED(NEWPANEL)
#if BUTTON_EXISTS(EN1)
SET_INPUT_PULLUP(BTN_EN1);
#endif
#if BUTTON_EXISTS(EN2)
SET_INPUT_PULLUP(BTN_EN2);
#endif
#if BUTTON_EXISTS(ENC)
SET_INPUT_PULLUP(BTN_ENC);
#endif
#if ENABLED(REPRAPWORLD_KEYPAD) && DISABLED(ADC_KEYPAD)
SET_OUTPUT(SHIFT_CLK);
OUT_WRITE(SHIFT_LD, HIGH);
SET_INPUT_PULLUP(SHIFT_OUT);
#endif
#if BUTTON_EXISTS(UP)
SET_INPUT(BTN_UP);
#endif
#if BUTTON_EXISTS(DWN)
SET_INPUT(BTN_DWN);
#endif
#if BUTTON_EXISTS(LFT)
SET_INPUT(BTN_LFT);
#endif
#if BUTTON_EXISTS(RT)
SET_INPUT(BTN_RT);
#endif
#else // !NEWPANEL
#if ENABLED(SR_LCD_2W_NL) // Non latching 2 wire shift register
SET_OUTPUT(SR_DATA_PIN);
SET_OUTPUT(SR_CLK_PIN);
#elif defined(SHIFT_CLK)
SET_OUTPUT(SHIFT_CLK);
OUT_WRITE(SHIFT_LD, HIGH);
OUT_WRITE(SHIFT_EN, LOW);
SET_INPUT_PULLUP(SHIFT_OUT);
#endif // SR_LCD_2W_NL
#endif // !NEWPANEL
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
SET_INPUT_PULLUP(SD_DETECT_PIN);
lcd_sd_status = 2; // UNKNOWN
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = 0;
#endif
lcd_buttons_update();
#if HAS_ENCODER_ACTION
encoderDiff = 0;
#endif
}
bool lcd_blink() {
static uint8_t blink = 0;
static millis_t next_blink_ms = 0;
millis_t ms = millis();
if (ELAPSED(ms, next_blink_ms)) {
blink ^= 0xFF;
next_blink_ms = ms + 1000 - (LCD_UPDATE_INTERVAL) / 2;
}
return blink != 0;
}
////////////////////////////////////////////
///////////// Keypad Handling //////////////
////////////////////////////////////////////
#if ENABLED(REPRAPWORLD_KEYPAD)
volatile uint8_t buttons_reprapworld_keypad;
#endif
#if ENABLED(ADC_KEYPAD)
inline bool handle_adc_keypad() {
#define ADC_MIN_KEY_DELAY 100
if (buttons_reprapworld_keypad) {
#if HAS_ENCODER_ACTION
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
if (encoderDirection == -1) { // side effect which signals we are inside a menu
#if HAS_LCD_MENU
if (RRK(EN_REPRAPWORLD_KEYPAD_DOWN)) encoderPosition -= ENCODER_STEPS_PER_MENU_ITEM;
else if (RRK(EN_REPRAPWORLD_KEYPAD_UP)) encoderPosition += ENCODER_STEPS_PER_MENU_ITEM;
else if (RRK(EN_REPRAPWORLD_KEYPAD_LEFT)) { menu_item_back::action(); lcd_quick_feedback(); }
else if (RRK(EN_REPRAPWORLD_KEYPAD_RIGHT)) { lcd_return_to_status(); lcd_quick_feedback(); }
#endif
}
else if (RRK(EN_REPRAPWORLD_KEYPAD_DOWN)) encoderPosition += ENCODER_PULSES_PER_STEP;
else if (RRK(EN_REPRAPWORLD_KEYPAD_UP)) encoderPosition -= ENCODER_PULSES_PER_STEP;
else if (RRK(EN_REPRAPWORLD_KEYPAD_RIGHT)) encoderPosition = 0;
#endif
next_button_update_ms = millis() + ADC_MIN_KEY_DELAY;
return true;
}
return false;
}
#elif ENABLED(REPRAPWORLD_KEYPAD)
#if HAS_LCD_MENU
void lcd_move_x();
void lcd_move_y();
void lcd_move_z();
void _reprapworld_keypad_move(const AxisEnum axis, const int16_t dir) {
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
encoderPosition = dir;
switch (axis) {
case X_AXIS: lcd_move_x(); break;
case Y_AXIS: lcd_move_y(); break;
case Z_AXIS: lcd_move_z();
default: break;
}
}
#endif
inline void handle_reprapworld_keypad() {
static uint8_t keypad_debounce = 0;
if (!RRK( EN_REPRAPWORLD_KEYPAD_F1 | EN_REPRAPWORLD_KEYPAD_F2
| EN_REPRAPWORLD_KEYPAD_F3 | EN_REPRAPWORLD_KEYPAD_DOWN
| EN_REPRAPWORLD_KEYPAD_RIGHT | EN_REPRAPWORLD_KEYPAD_MIDDLE
| EN_REPRAPWORLD_KEYPAD_UP | EN_REPRAPWORLD_KEYPAD_LEFT )
) {
if (keypad_debounce > 0) keypad_debounce--;
}
else if (!keypad_debounce) {
keypad_debounce = 2;
const bool homed = all_axes_homed();
#if HAS_LCD_MENU
if (RRK(EN_REPRAPWORLD_KEYPAD_MIDDLE)) lcd_goto_screen(menu_move);
#if DISABLED(DELTA) && Z_HOME_DIR == -1
if (RRK(EN_REPRAPWORLD_KEYPAD_F2)) _reprapworld_keypad_move(Z_AXIS, 1);
#endif
if (homed) {
#if ENABLED(DELTA) || Z_HOME_DIR != -1
if (RRK(EN_REPRAPWORLD_KEYPAD_F2)) _reprapworld_keypad_move(Z_AXIS, 1);
#endif
if (RRK(EN_REPRAPWORLD_KEYPAD_F3)) _reprapworld_keypad_move(Z_AXIS, -1);
if (RRK(EN_REPRAPWORLD_KEYPAD_LEFT)) _reprapworld_keypad_move(X_AXIS, -1);
if (RRK(EN_REPRAPWORLD_KEYPAD_RIGHT)) _reprapworld_keypad_move(X_AXIS, 1);
if (RRK(EN_REPRAPWORLD_KEYPAD_DOWN)) _reprapworld_keypad_move(Y_AXIS, 1);
if (RRK(EN_REPRAPWORLD_KEYPAD_UP)) _reprapworld_keypad_move(Y_AXIS, -1);
}
#endif // HAS_LCD_MENU
if (!homed && RRK(EN_REPRAPWORLD_KEYPAD_F1)) enqueue_and_echo_commands_P(PSTR("G28"));
}
}
#endif // REPRAPWORLD_KEYPAD
/**
* Status Screen
*
* This is very display-dependent, so the lcd implementation draws this.
*/
#if ENABLED(LCD_PROGRESS_BAR)
millis_t progress_bar_ms = 0; // Start millis of the current progress bar cycle
#if PROGRESS_MSG_EXPIRE > 0
static millis_t expire_status_ms = 0;
void dontExpireStatus() { expire_status_ms = 0; }
#endif
#endif
#if LCD_INFO_SCREEN_STYLE == 0
void lcd_impl_status_screen_0();
#elif LCD_INFO_SCREEN_STYLE == 1
void lcd_impl_status_screen_1();
#endif
void lcd_status_screen() {
#if HAS_LCD_MENU
ENCODER_DIRECTION_NORMAL();
ENCODER_RATE_MULTIPLY(false);
#endif
#if ENABLED(LCD_SET_PROGRESS_MANUALLY) && ENABLED(SDSUPPORT) && (ENABLED(LCD_PROGRESS_BAR) || HAS_GRAPHICAL_LCD)
// Progress bar % comes from SD when actively printing
if (IS_SD_PRINTING())
progress_bar_percent = card.percentDone();
#endif
#if ENABLED(LCD_PROGRESS_BAR)
//
// HD44780 implements the following message blinking and
// message expiration because Status Line and Progress Bar
// share the same line on the display.
//
millis_t ms = millis();
// If the message will blink rather than expire...
#if DISABLED(PROGRESS_MSG_ONCE)
if (ELAPSED(ms, progress_bar_ms + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME))
progress_bar_ms = ms;
#endif
#if PROGRESS_MSG_EXPIRE > 0
// Handle message expire
if (expire_status_ms > 0) {
#if DISABLED(LCD_SET_PROGRESS_MANUALLY)
const uint8_t progress_bar_percent = card.percentDone();
#endif
// Expire the message if a job is active and the bar has ticks
if (progress_bar_percent > 2 && !print_job_timer.isPaused()) {
if (ELAPSED(ms, expire_status_ms)) {
lcd_status_message[0] = '\0';
expire_status_ms = 0;
}
}
else {
// Defer message expiration before bar appears
// and during any pause (not just SD)
expire_status_ms += LCD_UPDATE_INTERVAL;
}
}
#endif // PROGRESS_MSG_EXPIRE
#endif // LCD_PROGRESS_BAR
#if HAS_LCD_MENU
if (use_click()) {
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
previous_lcd_status_ms = millis(); // get status message to show up for a while
#endif
lcd_goto_screen(menu_main);
lcd_implementation_init(); // May revive the LCD if static electricity killed it
return;
}
#endif // HAS_LCD_MENU
#if ENABLED(ULTIPANEL_FEEDMULTIPLY)
const int16_t new_frm = feedrate_percentage + (int32_t)encoderPosition;
// Dead zone at 100% feedrate
if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
feedrate_percentage = 100;
encoderPosition = 0;
}
else if (feedrate_percentage == 100) {
if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) {
feedrate_percentage += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
encoderPosition = 0;
}
else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) {
feedrate_percentage += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
}
else {
feedrate_percentage = new_frm;
encoderPosition = 0;
}
feedrate_percentage = constrain(feedrate_percentage, 10, 999);
#endif // ULTIPANEL_FEEDMULTIPLY
#if LCD_INFO_SCREEN_STYLE == 0
lcd_impl_status_screen_0();
#elif LCD_INFO_SCREEN_STYLE == 1
lcd_impl_status_screen_1();
#endif
}
/**
* Reset the status message
*/
void lcd_reset_status() {
static const char paused[] PROGMEM = MSG_PRINT_PAUSED;
static const char printing[] PROGMEM = MSG_PRINTING;
static const char welcome[] PROGMEM = WELCOME_MSG;
PGM_P msg;
if (print_job_timer.isPaused())
msg = paused;
#if ENABLED(SDSUPPORT)
else if (IS_SD_PRINTING())
return lcd_setstatus(card.longest_filename(), true);
#endif
else if (print_job_timer.isRunning())
msg = printing;
else
msg = welcome;
lcd_setstatusPGM(msg, -1);
}
void kill_screen(PGM_P lcd_msg) {
lcd_init();
lcd_setalertstatusPGM(lcd_msg);
lcd_kill_screen();
}
#if HAS_BUZZER
void lcd_buzz(const long duration, const uint16_t freq) {
#if ENABLED(LCD_USE_I2C_BUZZER)
lcd.buzz(duration, freq);
#elif PIN_EXISTS(BEEPER)
buzzer.tone(duration, freq);
#endif
}
#endif
void lcd_quick_feedback(const bool clear_buttons/*=true*/) {
#if HAS_LCD_MENU
lcd_refresh();
if (clear_buttons) buttons = 0;
next_button_update_ms = millis() + 500;
#else
UNUSED(clear_buttons);
#endif
// Buzz and wait. The delay is needed for buttons to settle!
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#if HAS_LCD_MENU
#if ENABLED(LCD_USE_I2C_BUZZER)
delay(10);
#elif PIN_EXISTS(BEEPER)
for (int8_t i = 5; i--;) { buzzer.tick(); delay(2); }
#endif
#endif
}
#if HAS_LCD_MENU
extern bool no_reentry; // Flag to prevent recursion into menu handlers
int8_t manual_move_axis = (int8_t)NO_AXIS;
millis_t manual_move_start_time = 0;
#if IS_KINEMATIC
bool processing_manual_move = false;
float manual_move_offset = 0;
#endif
#if !IS_KINEMATIC || (IS_KINEMATIC && EXTRUDERS > 1)
int8_t manual_move_e_index = 0;
#else
constexpr int8_t manual_move_e_index = 0;
#endif
/**
* If the most recent manual move hasn't been fed to the planner yet,
* and the planner can accept one, send a move immediately.
*/
void manage_manual_move() {
if (processing_manual_move) return;
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
#if IS_KINEMATIC
const float old_feedrate = feedrate_mm_s;
feedrate_mm_s = MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]);
#if EXTRUDERS > 1
const int8_t old_extruder = active_extruder;
if (manual_move_axis == E_AXIS) active_extruder = manual_move_e_index;
#endif
// Set movement on a single axis
set_destination_from_current();
destination[manual_move_axis] += manual_move_offset;
// Reset for the next move
manual_move_offset = 0;
manual_move_axis = (int8_t)NO_AXIS;
// DELTA and SCARA machines use segmented moves, which could fill the planner during the call to
// move_to_destination. This will cause idle() to be called, which can then call this function while the
// previous invocation is being blocked. Modifications to manual_move_offset shouldn't be made while
// processing_manual_move is true or the planner will get out of sync.
processing_manual_move = true;
prepare_move_to_destination(); // will call set_current_from_destination()
processing_manual_move = false;
feedrate_mm_s = old_feedrate;
#if EXTRUDERS > 1
active_extruder = old_extruder;
#endif
#else
planner.buffer_line(current_position, MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_axis == E_AXIS ? manual_move_e_index : active_extruder);
manual_move_axis = (int8_t)NO_AXIS;
#endif
}
}
#endif // HAS_LCD_MENU
/**
* Update the LCD, read encoder buttons, etc.
* - Read button states
* - Check the SD Card slot state
* - Act on RepRap World keypad input
* - Update the encoder position
* - Apply acceleration to the encoder position
* - Set lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NOW on controller events
* - Reset the Info Screen timeout if there's any input
* - Update status indicators, if any
*
* Run the current LCD menu handler callback function:
* - Call the handler only if lcdDrawUpdate != LCDVIEW_NONE
* - Before calling the handler, LCDVIEW_CALL_NO_REDRAW => LCDVIEW_NONE
* - Call the menu handler. Menu handlers should do the following:
* - If a value changes, set lcdDrawUpdate to LCDVIEW_REDRAW_NOW and draw the value
* (Encoder events automatically set lcdDrawUpdate for you.)
* - if (lcdDrawUpdate) { redraw }
* - Before exiting the handler set lcdDrawUpdate to:
* - LCDVIEW_CLEAR_CALL_REDRAW to clear screen and set LCDVIEW_CALL_REDRAW_NEXT.
* - LCDVIEW_REDRAW_NOW to draw now (including remaining stripes).
* - LCDVIEW_CALL_REDRAW_NEXT to draw now and get LCDVIEW_REDRAW_NOW on the next loop.
* - LCDVIEW_CALL_NO_REDRAW to draw now and get LCDVIEW_NONE on the next loop.
* - NOTE: For graphical displays menu handlers may be called 2 or more times per loop,
* so don't change lcdDrawUpdate without considering this.
*
* After the menu handler callback runs (or not):
* - Clear the LCD if lcdDrawUpdate == LCDVIEW_CLEAR_CALL_REDRAW
* - Update lcdDrawUpdate for the next loop (i.e., move one state down, usually)
*
* This function is only called from the main thread.
*/
LCDViewAction lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION)
bool lcd_external_control; // = false
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
volatile uint8_t slow_buttons;
#endif
bool lcd_detected() {
return
#if (ENABLED(LCD_I2C_TYPE_MCP23017) || ENABLED(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE)
lcd.LcdDetected() == 1
#else
true
#endif
;
}
void lcd_update() {
static uint16_t max_display_update_time = 0;
static millis_t next_lcd_update_ms;
#if HAS_LCD_MENU
#if LCD_TIMEOUT_TO_STATUS
static millis_t return_to_status_ms = 0;
#endif
// Handle any queued Move Axis motion
manage_manual_move();
// Update button states for LCD_CLICKED(), etc.
// After state changes the next button update
// may be delayed 300-500ms.
lcd_buttons_update();
#if ENABLED(AUTO_BED_LEVELING_UBL)
// Don't run the debouncer if UBL owns the display
#define UBL_CONDITION !lcd_external_control
#else
#define UBL_CONDITION true
#endif
// If the action button is pressed...
if (UBL_CONDITION && LCD_CLICKED()) {
if (!wait_for_unclick) { // If not waiting for a debounce release:
wait_for_unclick = true; // Set debounce flag to ignore continous clicks
lcd_clicked = !wait_for_user && !no_reentry; // Keep the click if not waiting for a user-click
wait_for_user = false; // Any click clears wait for user
lcd_quick_feedback(); // Always make a click sound
}
}
else wait_for_unclick = false;
#if BUTTON_EXISTS(BACK)
if (LCD_BACK_CLICKED) {
lcd_quick_feedback();
lcd_goto_previous_menu();
}
#endif
#endif // HAS_LCD_MENU
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
const uint8_t sd_status = (uint8_t)IS_SD_INSERTED();
if (sd_status != lcd_sd_status && lcd_detected()) {
uint8_t old_sd_status = lcd_sd_status; // prevent re-entry to this block!
lcd_sd_status = sd_status;
if (sd_status) {
safe_delay(500); // Some boards need a delay to get settled
card.initsd();
if (old_sd_status == 2)
card.beginautostart(); // Initial boot
else
LCD_MESSAGEPGM(MSG_SD_INSERTED);
}
else {
card.release();
if (old_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_REMOVED);
}
lcd_refresh();
lcd_implementation_init(); // May revive the LCD if static electricity killed it
}
#endif // SDSUPPORT && SD_DETECT_PIN
#if ENABLED(POWER_LOSS_RECOVERY)
if (job_recovery_commands_count && job_recovery_phase == JOB_RECOVERY_IDLE) {
lcd_goto_screen(menu_job_recovery);
job_recovery_phase = JOB_RECOVERY_MAYBE; // Waiting for a response
}
#endif
const millis_t ms = millis();
if (ELAPSED(ms, next_lcd_update_ms)
#if HAS_GRAPHICAL_LCD
|| drawing_screen
#endif
) {
next_lcd_update_ms = ms + LCD_UPDATE_INTERVAL;
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
lcd_implementation_update_indicators();
#endif
#if HAS_LCD_MENU
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#endif // HAS_LCD_MENU
#if HAS_ENCODER_ACTION
#if ENABLED(ADC_KEYPAD)
if (handle_adc_keypad()) {
#if HAS_LCD_MENU && LCD_TIMEOUT_TO_STATUS
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
#endif
}
#elif ENABLED(REPRAPWORLD_KEYPAD)
handle_reprapworld_keypad();
#endif
const bool encoderPastThreshold = (ABS(encoderDiff) >= ENCODER_PULSES_PER_STEP);
if (encoderPastThreshold || lcd_clicked) {
if (encoderPastThreshold) {
#if HAS_LCD_MENU && ENABLED(ENCODER_RATE_MULTIPLIER)
int32_t encoderMultiplier = 1;
if (encoderRateMultiplierEnabled) {
int32_t encoderMovementSteps = ABS(encoderDiff) / ENCODER_PULSES_PER_STEP;
if (lastEncoderMovementMillis) {
// Note that the rate is always calculated between two passes through the
// loop and that the abs of the encoderDiff value is tracked.
float encoderStepRate = float(encoderMovementSteps) / float(ms - lastEncoderMovementMillis) * 1000;
if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100;
else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10;
#if ENABLED(ENCODER_RATE_MULTIPLIER_DEBUG)
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("Enc Step Rate: ", encoderStepRate);
SERIAL_ECHOPAIR(" Multiplier: ", encoderMultiplier);
SERIAL_ECHOPAIR(" ENCODER_10X_STEPS_PER_SEC: ", ENCODER_10X_STEPS_PER_SEC);
SERIAL_ECHOPAIR(" ENCODER_100X_STEPS_PER_SEC: ", ENCODER_100X_STEPS_PER_SEC);
SERIAL_EOL();
#endif
}
lastEncoderMovementMillis = ms;
} // encoderRateMultiplierEnabled
#else
constexpr int32_t encoderMultiplier = 1;
#endif // ENCODER_RATE_MULTIPLIER
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
}
#if HAS_LCD_MENU && LCD_TIMEOUT_TO_STATUS
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
#endif
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
#endif
// This runs every ~100ms when idling often enough.
// Instead of tracking changes just redraw the Status Screen once per second.
if (
#if HAS_LCD_MENU
currentScreen == lcd_status_screen &&
#endif
!lcd_status_update_delay--
) {
lcd_status_update_delay = 9
#if HAS_GRAPHICAL_LCD
+ 3
#endif
;
max_display_update_time--;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
#if HAS_LCD_MENU && ENABLED(SCROLL_LONG_FILENAMES)
// If scrolling of long file names is enabled and we are in the sd card menu,
// cause a refresh to occur until all the text has scrolled into view.
if (currentScreen == menu_sdcard && filename_scroll_pos < filename_scroll_max && !lcd_status_update_delay--) {
lcd_status_update_delay = 6;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
filename_scroll_pos++;
#if LCD_TIMEOUT_TO_STATUS
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
#endif
}
#endif
// then we want to use 1/2 of the time only.
uint16_t bbr2 = planner.block_buffer_runtime() >> 1;
#if HAS_GRAPHICAL_LCD
const bool &is_drawing = drawing_screen;
#else
constexpr bool is_drawing = false;
#endif
if ((lcdDrawUpdate || is_drawing) && (!bbr2 || bbr2 > max_display_update_time)) {
// Change state of drawing flag between screen updates
if (!is_drawing) switch (lcdDrawUpdate) {
case LCDVIEW_CALL_NO_REDRAW:
lcdDrawUpdate = LCDVIEW_NONE;
break;
case LCDVIEW_CLEAR_CALL_REDRAW:
case LCDVIEW_CALL_REDRAW_NEXT:
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
case LCDVIEW_REDRAW_NOW: // set above, or by a handler through LCDVIEW_CALL_REDRAW_NEXT
case LCDVIEW_NONE:
break;
} // switch
#if ENABLED(ADC_KEYPAD)
buttons_reprapworld_keypad = 0;
#endif
#if HAS_LCD_MENU
#define CURRENTSCREEN() (*currentScreen)()
#else
#define CURRENTSCREEN() lcd_status_screen()
#endif
#if HAS_GRAPHICAL_LCD
#if ENABLED(LIGHTWEIGHT_UI)
#if HAS_LCD_MENU
const bool in_status = currentScreen == lcd_status_screen;
#else
constexpr bool in_status = true;
#endif
const bool do_u8g_loop = !in_status;
lcd_in_status(in_status);
if (in_status) lcd_status_screen();
#else
constexpr bool do_u8g_loop = true;
#endif
if (do_u8g_loop) {
if (!drawing_screen) { // If not already drawing pages
u8g.firstPage(); // Start the first page
drawing_screen = first_page = true; // Flag as drawing pages
}
lcd_setFont(FONT_MENU); // Setup font for every page draw
u8g.setColorIndex(1); // And reset the color
CURRENTSCREEN(); // Draw and process the current screen
first_page = false;
// The screen handler can clear drawing_screen for an action that changes the screen.
// If still drawing and there's another page, update max-time and return now.
// The nextPage will already be set up on the next call.
if (drawing_screen && (drawing_screen = u8g.nextPage())) {
NOLESS(max_display_update_time, millis() - ms);
return;
}
}
#else
CURRENTSCREEN();
#endif
#if HAS_LCD_MENU
lcd_clicked = false;
#endif
// Keeping track of the longest time for an individual LCD update.
// Used to do screen throttling when the planner starts to fill up.
NOLESS(max_display_update_time, millis() - ms);
}
#if HAS_LCD_MENU && LCD_TIMEOUT_TO_STATUS
// Return to Status Screen after a timeout
if (currentScreen == lcd_status_screen || defer_return_to_status)
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
else if (ELAPSED(ms, return_to_status_ms))
lcd_return_to_status();
#endif
// Change state of drawing flag between screen updates
if (!is_drawing) switch (lcdDrawUpdate) {
case LCDVIEW_CLEAR_CALL_REDRAW:
lcd_implementation_clear(); break;
case LCDVIEW_REDRAW_NOW:
lcdDrawUpdate = LCDVIEW_NONE;
case LCDVIEW_NONE:
case LCDVIEW_CALL_REDRAW_NEXT:
case LCDVIEW_CALL_NO_REDRAW:
default: break;
} // switch
} // ELAPSED(ms, next_lcd_update_ms)
}
void lcd_finishstatus(const bool persist=false) {
#if !(ENABLED(LCD_PROGRESS_BAR) && (PROGRESS_MSG_EXPIRE > 0))
UNUSED(persist);
#endif
#if ENABLED(LCD_PROGRESS_BAR)
progress_bar_ms = millis();
#if PROGRESS_MSG_EXPIRE > 0
expire_status_ms = persist ? 0 : progress_bar_ms + PROGRESS_MSG_EXPIRE;
#endif
#endif
lcd_refresh();
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
previous_lcd_status_ms = millis(); //get status message to show up for a while
#endif
#if ENABLED(STATUS_MESSAGE_SCROLLING)
status_scroll_offset = 0;
#endif
}
bool lcd_hasstatus() { return (lcd_status_message[0] != '\0'); }
void lcd_setstatus(const char * const message, const bool persist) {
if (lcd_status_message_level > 0) return;
// Here we have a problem. The message is encoded in UTF8, so
// arbitrarily cutting it will be a problem. We MUST be sure
// that there is no cutting in the middle of a multibyte character!
// Get a pointer to the null terminator
const char* pend = message + strlen(message);
// If length of supplied UTF8 string is greater than
// our buffer size, start cutting whole UTF8 chars
while ((pend - message) > MAX_MESSAGE_LENGTH) {
--pend;
while (!START_OF_UTF8_CHAR(*pend)) --pend;
};
// At this point, we have the proper cut point. Use it
uint8_t maxLen = pend - message;
strncpy(lcd_status_message, message, maxLen);
lcd_status_message[maxLen] = '\0';
lcd_finishstatus(persist);
}
void lcd_setstatusPGM(PGM_P const message, int8_t level) {
if (level < 0) level = lcd_status_message_level = 0;
if (level < lcd_status_message_level) return;
lcd_status_message_level = level;
// Here we have a problem. The message is encoded in UTF8, so
// arbitrarily cutting it will be a problem. We MUST be sure
// that there is no cutting in the middle of a multibyte character!
// Get a pointer to the null terminator
PGM_P pend = message + strlen_P(message);
// If length of supplied UTF8 string is greater than
// our buffer size, start cutting whole UTF8 chars
while ((pend - message) > MAX_MESSAGE_LENGTH) {
--pend;
while (!START_OF_UTF8_CHAR(pgm_read_byte(pend))) --pend;
};
// At this point, we have the proper cut point. Use it
uint8_t maxLen = pend - message;
strncpy_P(lcd_status_message, message, maxLen);
lcd_status_message[maxLen] = '\0';
lcd_finishstatus(level > 0);
}
void lcd_status_printf_P(const uint8_t level, PGM_P const fmt, ...) {
if (level < lcd_status_message_level) return;
lcd_status_message_level = level;
va_list args;
va_start(args, fmt);
vsnprintf_P(lcd_status_message, MAX_MESSAGE_LENGTH, fmt, args);
va_end(args);
lcd_finishstatus(level > 0);
}
void lcd_setalertstatusPGM(PGM_P const message) {
lcd_setstatusPGM(message, 1);
#if HAS_LCD_MENU
lcd_return_to_status();
#endif
}
void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#if ENABLED(ADC_KEYPAD)
typedef struct {
uint16_t ADCKeyValueMin, ADCKeyValueMax;
uint8_t ADCKeyNo;
} _stADCKeypadTable_;
static const _stADCKeypadTable_ stADCKeyTable[] PROGMEM = {
// VALUE_MIN, VALUE_MAX, KEY
{ 4000, 4096, 1 + BLEN_REPRAPWORLD_KEYPAD_F1 }, // F1
{ 4000, 4096, 1 + BLEN_REPRAPWORLD_KEYPAD_F2 }, // F2
{ 4000, 4096, 1 + BLEN_REPRAPWORLD_KEYPAD_F3 }, // F3
{ 300, 500, 1 + BLEN_REPRAPWORLD_KEYPAD_LEFT }, // LEFT
{ 1900, 2200, 1 + BLEN_REPRAPWORLD_KEYPAD_RIGHT }, // RIGHT
{ 570, 870, 1 + BLEN_REPRAPWORLD_KEYPAD_UP }, // UP
{ 2670, 2870, 1 + BLEN_REPRAPWORLD_KEYPAD_DOWN }, // DOWN
{ 1150, 1450, 1 + BLEN_REPRAPWORLD_KEYPAD_MIDDLE }, // ENTER
};
uint8_t get_ADC_keyValue(void) {
if (thermalManager.ADCKey_count >= 16) {
const uint16_t currentkpADCValue = thermalManager.current_ADCKey_raw >> 2;
thermalManager.current_ADCKey_raw = 0;
thermalManager.ADCKey_count = 0;
if (currentkpADCValue < 4000)
for (uint8_t i = 0; i < ADC_KEY_NUM; i++) {
const uint16_t lo = pgm_read_word(&stADCKeyTable[i].ADCKeyValueMin),
hi = pgm_read_word(&stADCKeyTable[i].ADCKeyValueMax);
if (WITHIN(currentkpADCValue, lo, hi)) return pgm_read_byte(&stADCKeyTable[i].ADCKeyNo);
}
}
return 0;
}
#endif
#if HAS_LCD_MENU
/**
* Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
* These values are independent of which pins are used for EN_A and EN_B indications
* The rotary encoder part is also independent to the chipset used for the LCD
*/
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
#define GET_SHIFT_BUTTON_STATES(DST) \
uint8_t new_##DST = 0; \
WRITE(SHIFT_LD, LOW); \
WRITE(SHIFT_LD, HIGH); \
for (int8_t i = 0; i < 8; i++) { \
new_##DST >>= 1; \
if (READ(SHIFT_OUT)) SBI(new_##DST, 7); \
WRITE(SHIFT_CLK, HIGH); \
WRITE(SHIFT_CLK, LOW); \
} \
DST = ~new_##DST; //invert it, because a pressed switch produces a logical 0
#if ENABLED(G26_MESH_VALIDATION)
void lcd_chirp() {
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
}
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION)
bool is_lcd_clicked() { return LCD_CLICKED(); }
void wait_for_release() {
while (is_lcd_clicked()) safe_delay(50);
safe_delay(50);
}
#endif
/**
* Read encoder buttons from the hardware registers
* Warning: This function is called from interrupt context!
*/
void lcd_buttons_update() {
static uint8_t lastEncoderBits;
const millis_t now = millis();
if (ELAPSED(now, next_button_update_ms)) {
#if ENABLED(NEWPANEL)
uint8_t newbutton = 0;
#if BUTTON_EXISTS(EN1)
if (BUTTON_PRESSED(EN1)) newbutton |= EN_A;
#endif
#if BUTTON_EXISTS(EN2)
if (BUTTON_PRESSED(EN2)) newbutton |= EN_B;
#endif
#if BUTTON_EXISTS(ENC)
if (BUTTON_PRESSED(ENC)) newbutton |= EN_C;
#endif
#if BUTTON_EXISTS(BACK)
if (BUTTON_PRESSED(BACK)) newbutton |= EN_D;
#endif
//
// Directional buttons
//
#if LCD_HAS_DIRECTIONAL_BUTTONS
#if ENABLED(REVERSE_MENU_DIRECTION)
#define _ENCODER_UD_STEPS (ENCODER_STEPS_PER_MENU_ITEM * encoderDirection)
#else
#define _ENCODER_UD_STEPS ENCODER_STEPS_PER_MENU_ITEM
#endif
#if ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_UD_STEPS _ENCODER_UD_STEPS
#define ENCODER_LR_PULSES ENCODER_PULSES_PER_STEP
#else
#define ENCODER_UD_STEPS -(_ENCODER_UD_STEPS)
#define ENCODER_LR_PULSES -(ENCODER_PULSES_PER_STEP)
#endif
if (false) {
// for the else-ifs below
}
#if BUTTON_EXISTS(UP)
else if (BUTTON_PRESSED(UP)) {
encoderDiff = -(ENCODER_UD_STEPS);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(DWN)
else if (BUTTON_PRESSED(DWN)) {
encoderDiff = ENCODER_UD_STEPS;
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(LFT)
else if (BUTTON_PRESSED(LFT)) {
encoderDiff = -(ENCODER_LR_PULSES);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(RT)
else if (BUTTON_PRESSED(RT)) {
encoderDiff = ENCODER_LR_PULSES;
next_button_update_ms = now + 300;
}
#endif
#endif // LCD_HAS_DIRECTIONAL_BUTTONS
buttons = newbutton;
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
buttons |= slow_buttons;
#endif
#if ENABLED(ADC_KEYPAD)
uint8_t newbutton_reprapworld_keypad = 0;
buttons = 0;
if (buttons_reprapworld_keypad == 0) {
newbutton_reprapworld_keypad = get_ADC_keyValue();
if (WITHIN(newbutton_reprapworld_keypad, 1, 8))
buttons_reprapworld_keypad = _BV(newbutton_reprapworld_keypad - 1);
}
#elif ENABLED(REPRAPWORLD_KEYPAD)
GET_SHIFT_BUTTON_STATES(buttons_reprapworld_keypad);
#endif
#else // !NEWPANEL
GET_SHIFT_BUTTON_STATES(buttons);
#endif
} // next_button_update_ms
// Manage encoder rotation
#if ENABLED(REVERSE_MENU_DIRECTION) && ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff -= encoderDirection)
#define ENCODER_DIFF_CCW (encoderDiff += encoderDirection)
#elif ENABLED(REVERSE_MENU_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff += encoderDirection)
#define ENCODER_DIFF_CCW (encoderDiff -= encoderDirection)
#elif ENABLED(REVERSE_ENCODER_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff--)
#define ENCODER_DIFF_CCW (encoderDiff++)
#else
#define ENCODER_DIFF_CW (encoderDiff++)
#define ENCODER_DIFF_CCW (encoderDiff--)
#endif
#define ENCODER_SPIN(_E1, _E2) switch (lastEncoderBits) { case _E1: ENCODER_DIFF_CW; break; case _E2: ENCODER_DIFF_CCW; }
uint8_t enc = 0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if (enc != lastEncoderBits) {
switch (enc) {
case encrot0: ENCODER_SPIN(encrot3, encrot1); break;
case encrot1: ENCODER_SPIN(encrot0, encrot2); break;
case encrot2: ENCODER_SPIN(encrot1, encrot3); break;
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (lcd_external_control) {
ubl.encoder_diff = encoderDiff; // Make encoder rotation available to UBL G29 mesh editing.
encoderDiff = 0; // Hide the encoder event from the current screen handler.
}
#endif
lastEncoderBits = enc;
}
}
#endif // HAS_LCD_MENU
#endif // ULTRA_LCD