// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // License: GPL #ifndef MARLIN_H #define MARLIN_H #define FORCE_INLINE __attribute__((always_inline)) inline /** * Compiler warning on unused variable. */ #define UNUSED(x) (void) (x) #include #include #include #include #include #include #include #include #include #include "fastio.h" #include "Configuration.h" #include "pins.h" #ifndef SANITYCHECK_H #error Your Configuration.h and Configuration_adv.h files are outdated! #endif #include "Arduino.h" typedef unsigned long millis_t; // Arduino < 1.0.0 does not define this, so we need to do it ourselves #ifndef analogInputToDigitalPin #define analogInputToDigitalPin(p) ((p) + 0xA0) #endif #ifdef USBCON #include "HardwareSerial.h" #endif #include "MarlinSerial.h" #include "WString.h" #ifdef USBCON #if ENABLED(BLUETOOTH) #define MYSERIAL bluetoothSerial #else #define MYSERIAL Serial #endif // BLUETOOTH #else #define MYSERIAL customizedSerial #endif #define SERIAL_CHAR(x) MYSERIAL.write(x) #define SERIAL_EOL SERIAL_CHAR('\n') #define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x) #define SERIAL_PROTOCOL(x) MYSERIAL.print(x) #define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y) #define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x)) #define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x); SERIAL_EOL; }while(0) #define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x)); SERIAL_EOL; }while(0) extern const char errormagic[] PROGMEM; extern const char echomagic[] PROGMEM; #define SERIAL_ERROR_START serialprintPGM(errormagic) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHO_START serialprintPGM(echomagic) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHOPAIR(name,value) do{ serial_echopair_P(PSTR(name),(value)); }while(0) void serial_echopair_P(const char* s_P, int v); void serial_echopair_P(const char* s_P, long v); void serial_echopair_P(const char* s_P, float v); void serial_echopair_P(const char* s_P, double v); void serial_echopair_P(const char* s_P, unsigned long v); // Things to write to serial from Program memory. Saves 400 to 2k of RAM. FORCE_INLINE void serialprintPGM(const char* str) { char ch; while ((ch = pgm_read_byte(str))) { MYSERIAL.write(ch); str++; } } void get_command(); void idle(); // the standard idle routine calls manage_inactivity(false) void manage_inactivity(bool ignore_stepper_queue = false); #if ENABLED(DUAL_X_CARRIAGE) && HAS_X_ENABLE && HAS_X2_ENABLE #define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0) #define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0) #elif HAS_X_ENABLE #define enable_x() X_ENABLE_WRITE( X_ENABLE_ON) #define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } #else #define enable_x() ; #define disable_x() ; #endif #if HAS_Y_ENABLE #if ENABLED(Y_DUAL_STEPPER_DRIVERS) #define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); } #define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #else #define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON) #define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; } #endif #else #define enable_y() ; #define disable_y() ; #endif #if HAS_Z_ENABLE #if ENABLED(Z_DUAL_STEPPER_DRIVERS) #define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); } #define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #else #define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON) #define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; } #endif #else #define enable_z() ; #define disable_z() ; #endif #if HAS_E0_ENABLE #define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON) #define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e0() /* nothing */ #define disable_e0() /* nothing */ #endif #if (EXTRUDERS > 1) && HAS_E1_ENABLE #define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON) #define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e1() /* nothing */ #define disable_e1() /* nothing */ #endif #if (EXTRUDERS > 2) && HAS_E2_ENABLE #define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON) #define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e2() /* nothing */ #define disable_e2() /* nothing */ #endif #if (EXTRUDERS > 3) && HAS_E3_ENABLE #define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON) #define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e3() /* nothing */ #define disable_e3() /* nothing */ #endif /** * The axis order in all axis related arrays is X, Y, Z, E */ #define NUM_AXIS 4 /** * Axis indices as enumerated constants * * A_AXIS and B_AXIS are used by COREXY printers * X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots. */ enum AxisEnum {X_AXIS = 0, A_AXIS = 0, Y_AXIS = 1, B_AXIS = 1, Z_AXIS = 2, C_AXIS = 2, E_AXIS = 3, X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 5}; enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8}; void enable_all_steppers(); void disable_all_steppers(); void FlushSerialRequestResend(); void ok_to_send(); void reset_bed_level(); void prepare_move(); void kill(const char*); void Stop(); #if ENABLED(FILAMENT_RUNOUT_SENSOR) void filrunout(); #endif /** * Debug flags - not yet widely applied */ enum DebugFlags { DEBUG_ECHO = _BV(0), DEBUG_INFO = _BV(1), DEBUG_ERRORS = _BV(2), DEBUG_DRYRUN = _BV(3), DEBUG_COMMUNICATION = _BV(4), DEBUG_LEVELING = _BV(5) }; extern uint8_t marlin_debug_flags; extern bool Running; inline bool IsRunning() { return Running; } inline bool IsStopped() { return !Running; } bool enqueuecommand(const char* cmd); //put a single ASCII command at the end of the current buffer or return false when it is full void enqueuecommands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash void prepare_arc_move(char isclockwise); void clamp_to_software_endstops(float target[3]); extern millis_t previous_cmd_ms; inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); } #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val); #endif #ifndef CRITICAL_SECTION_START #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli(); #define CRITICAL_SECTION_END SREG = _sreg; #endif extern bool axis_relative_modes[]; extern int feedrate_multiplier; extern bool volumetric_enabled; extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float current_position[NUM_AXIS]; extern float home_offset[3]; // axis[n].home_offset extern float min_pos[3]; // axis[n].min_pos extern float max_pos[3]; // axis[n].max_pos extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_homed[3]; // axis[n].is_homed #if ENABLED(DELTA) extern float delta[3]; extern float endstop_adj[3]; // axis[n].endstop_adj extern float delta_radius; #ifndef DELTA_RADIUS_TRIM_TOWER_1 #define DELTA_RADIUS_TRIM_TOWER_1 0.0 #endif #ifndef DELTA_RADIUS_TRIM_TOWER_2 #define DELTA_RADIUS_TRIM_TOWER_2 0.0 #endif #ifndef DELTA_RADIUS_TRIM_TOWER_3 #define DELTA_RADIUS_TRIM_TOWER_3 0.0 #endif extern float delta_diagonal_rod; #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_1 #define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0 #endif #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_2 #define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 #endif #ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_3 #define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 #endif extern float delta_segments_per_second; void calculate_delta(float cartesian[3]); void recalc_delta_settings(float radius, float diagonal_rod); #if ENABLED(AUTO_BED_LEVELING_FEATURE) extern int delta_grid_spacing[2]; void adjust_delta(float cartesian[3]); #endif #elif ENABLED(SCARA) extern float axis_scaling[3]; // Build size scaling void calculate_delta(float cartesian[3]); void calculate_SCARA_forward_Transform(float f_scara[3]); #endif #if ENABLED(Z_DUAL_ENDSTOPS) extern float z_endstop_adj; #endif #if ENABLED(AUTO_BED_LEVELING_FEATURE) extern float zprobe_zoffset; #endif #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) extern float extrude_min_temp; #endif extern int fanSpeed; #if ENABLED(BARICUDA) extern int ValvePressure; extern int EtoPPressure; #endif #if ENABLED(FAN_SOFT_PWM) extern unsigned char fanSpeedSoftPwm; #endif #if ENABLED(FILAMENT_SENSOR) extern float filament_width_nominal; //holds the theoretical filament diameter i.e., 3.00 or 1.75 extern bool filament_sensor; //indicates that filament sensor readings should control extrusion extern float filament_width_meas; //holds the filament diameter as accurately measured extern signed char measurement_delay[]; //ring buffer to delay measurement extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code extern float delay_dist; //delay distance counter extern int meas_delay_cm; //delay distance #endif #if ENABLED(PID_ADD_EXTRUSION_RATE) extern int lpq_len; #endif #if ENABLED(FWRETRACT) extern bool autoretract_enabled; extern bool retracted[EXTRUDERS]; // extruder[n].retracted extern float retract_length, retract_length_swap, retract_feedrate, retract_zlift; extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate; #endif extern millis_t print_job_start_ms; extern millis_t print_job_stop_ms; // Handling multiple extruders pins extern uint8_t active_extruder; #if ENABLED(DIGIPOT_I2C) extern void digipot_i2c_set_current(int channel, float current); extern void digipot_i2c_init(); #endif #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675) void print_heaterstates(); #endif extern void calculate_volumetric_multipliers(); // Print job timer related functions millis_t print_job_timer(); bool print_job_start(millis_t t = 0); bool print_job_stop(bool force = false); #endif //MARLIN_H