/**
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "Marlin.h"
#include "math.h"

#if ENABLED(AUTO_BED_LEVELING_UBL)

  #include "ubl.h"
  #include "hex_print_routines.h"

  /**
   * These support functions allow the use of large bit arrays of flags that take very
   * little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
   * to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
   * in the future.
   */
  void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
  void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
  bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }

  static void serial_echo_xy(const uint16_t x, const uint16_t y) {
    SERIAL_CHAR('(');
    SERIAL_ECHO(x);
    SERIAL_CHAR(',');
    SERIAL_ECHO(y);
    SERIAL_CHAR(')');
    safe_delay(10);
  }

  static void serial_echo_12x_spaces() {
    for (uint8_t i = GRID_MAX_POINTS_X - 1; --i;) {
      SERIAL_ECHOPGM("            ");
      #if TX_BUFFER_SIZE > 0
        MYSERIAL.flushTX();
      #endif
      safe_delay(10);
    }
  }

  ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;

  float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
        unified_bed_leveling::last_specified_z,
        unified_bed_leveling::mesh_index_to_xpos[GRID_MAX_POINTS_X + 1], // +1 safety margin for now, until determinism prevails
        unified_bed_leveling::mesh_index_to_ypos[GRID_MAX_POINTS_Y + 1];

  bool unified_bed_leveling::g26_debug_flag = false,
       unified_bed_leveling::has_control_of_lcd_panel = false;

  int8_t unified_bed_leveling::eeprom_start = -1;

  volatile int unified_bed_leveling::encoder_diff;

  unified_bed_leveling::unified_bed_leveling() {
    for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
      mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
    for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
      mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
    reset();
  }

  void unified_bed_leveling::store_state() {
    const uint16_t i = UBL_LAST_EEPROM_INDEX;
    eeprom_write_block((void *)&ubl.state, (void *)i, sizeof(state));
  }

  void unified_bed_leveling::load_state() {
    const uint16_t i = UBL_LAST_EEPROM_INDEX;
    eeprom_read_block((void *)&ubl.state, (void *)i, sizeof(state));

    if (sanity_check())
      SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");

    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
      const float recip = ubl.state.g29_correction_fade_height ? 1.0 / ubl.state.g29_correction_fade_height : 1.0;
      if (ubl.state.g29_fade_height_multiplier != recip) {
        ubl.state.g29_fade_height_multiplier = recip;
        store_state();
      }
    #endif
  }

  void unified_bed_leveling::load_mesh(const int16_t m) {
    int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);

    if (m == -1) {
      SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
      reset();
      return;
    }

    if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
      SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
      return;
    }

    j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
    eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));

    SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", m);
    SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
  }

  void unified_bed_leveling::store_mesh(const int16_t m) {
    int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);

    if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
      SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
      SERIAL_PROTOCOL(m);
      SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
      SERIAL_PROTOCOLLNPAIR("E2END     : ", E2END);
      SERIAL_PROTOCOLLNPAIR("k         : ", (int)UBL_LAST_EEPROM_INDEX);
      SERIAL_PROTOCOLLNPAIR("j         : ", j);
      SERIAL_PROTOCOLLNPAIR("m         : ", m);
      SERIAL_EOL;
      return;
    }

    j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
    eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));

    SERIAL_PROTOCOLPAIR("Mesh saved in slot ", m);
    SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
  }

  void unified_bed_leveling::reset() {
    state.active = false;
    state.z_offset = 0;
    state.eeprom_storage_slot = -1;

    ZERO(z_values);

    last_specified_z = -999.9;
  }

  void unified_bed_leveling::invalidate() {
    state.active = false;
    state.z_offset = 0;
    for (int x = 0; x < GRID_MAX_POINTS_X; x++)
      for (int y = 0; y < GRID_MAX_POINTS_Y; y++)
        z_values[x][y] = NAN;
  }

  void unified_bed_leveling::display_map(const int map_type) {

    const bool map0 = map_type == 0;

    if (map0) {
      SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
      serial_echo_xy(0, GRID_MAX_POINTS_Y - 1);
      SERIAL_ECHOPGM("    ");
    }

    if (map0) {
      serial_echo_12x_spaces();
      serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1);
      SERIAL_EOL;
      serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
      serial_echo_12x_spaces();
      serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
      SERIAL_EOL;
    }

    const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
                current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);

    for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
      for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
        const bool is_current = i == current_xi && j == current_yi;

        // is the nozzle here? then mark the number
        if (map0) SERIAL_CHAR(is_current ? '[' : ' ');

        const float f = z_values[i][j];
        if (isnan(f)) {
          serialprintPGM(map0 ? PSTR("   .  ") : PSTR("NAN"));
        }
        else {
          // if we don't do this, the columns won't line up nicely
          if (map0 && f >= 0.0) SERIAL_CHAR(' ');
          SERIAL_PROTOCOL_F(f, 3);
          idle();
        }
        if (!map0 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');

        #if TX_BUFFER_SIZE > 0
          MYSERIAL.flushTX();
        #endif
        safe_delay(15);
        if (map0) {
          SERIAL_CHAR(is_current ? ']' : ' ');
          SERIAL_CHAR(' ');
        }
      }
      SERIAL_EOL;
      if (j && map0) { // we want the (0,0) up tight against the block of numbers
        SERIAL_CHAR(' ');
        SERIAL_EOL;
      }
    }

    if (map0) {
      serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
      SERIAL_ECHOPGM("    ");
      serial_echo_12x_spaces();
      serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
      SERIAL_EOL;
      serial_echo_xy(0, 0);
      SERIAL_ECHOPGM("       ");
      serial_echo_12x_spaces();
      serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
      SERIAL_EOL;
    }
  }

  bool unified_bed_leveling::sanity_check() {
    uint8_t error_flag = 0;

    if (state.n_x != GRID_MAX_POINTS_X) {
      SERIAL_PROTOCOLLNPGM("?GRID_MAX_POINTS_X set wrong\n");
      error_flag++;
    }
    if (state.n_y != GRID_MAX_POINTS_Y) {
      SERIAL_PROTOCOLLNPGM("?GRID_MAX_POINTS_Y set wrong\n");
      error_flag++;
    }
    if (state.mesh_x_min != UBL_MESH_MIN_X) {
      SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
      error_flag++;
    }
    if (state.mesh_y_min != UBL_MESH_MIN_Y) {
      SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
      error_flag++;
    }
    if (state.mesh_x_max != UBL_MESH_MAX_X) {
      SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
      error_flag++;
    }
    if (state.mesh_y_max != UBL_MESH_MAX_Y) {
      SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
      error_flag++;
    }
    if (state.mesh_x_dist != MESH_X_DIST) {
      SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
      error_flag++;
    }
    if (state.mesh_y_dist != MESH_Y_DIST) {
      SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
      error_flag++;
    }

    const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
    if (j < 1) {
      SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
      error_flag++;
    }

    //  SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
    //  SERIAL_PROTOCOL(error_flag);
    //  SERIAL_EOL;

    return !!error_flag;
  }

#endif // AUTO_BED_LEVELING_UBL