/** * Marlin 3D Printer Firmware * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * Fast I/O Routines for AVR * Use direct port manipulation to save scads of processor time. * Contributed by Triffid_Hunter and modified by Kliment, thinkyhead, Bob-the-Kuhn, et.al. */ #include "../../core/macros.h" #include #define AVR_AT90USB1286_FAMILY (defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1286P__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB646P__) || defined(__AVR_AT90USB647__)) #define AVR_ATmega1284_FAMILY (defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__)) #define AVR_ATmega2560_FAMILY (defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)) #define AVR_ATmega2561_FAMILY (defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)) #define AVR_ATmega328_FAMILY (defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__)) /** * Include Ports and Functions */ #if AVR_ATmega328_FAMILY #include "fastio_168.h" #elif AVR_ATmega1284_FAMILY #include "fastio_644.h" #elif AVR_ATmega2560_FAMILY #include "fastio_1280.h" #elif AVR_AT90USB1286_FAMILY #include "fastio_AT90USB.h" #elif AVR_ATmega2561_FAMILY #include "fastio_1281.h" #else #error "No FastIO definition for the selected AVR Board." #endif /** * Magic I/O routines * * Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW); * * Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html */ #define _READ(IO) TEST(DIO ## IO ## _RPORT, DIO ## IO ## _PIN) #define _WRITE_NC(IO,V) do{ \ if (V) SBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \ else CBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \ }while(0) #define _WRITE_C(IO,V) do{ \ uint8_t port_bits = DIO ## IO ## _WPORT; /* Get a mask from the current port bits */ \ if (V) port_bits = ~port_bits; /* For setting bits, invert the mask */ \ DIO ## IO ## _RPORT = port_bits & _BV(DIO ## IO ## _PIN); /* Atomically toggle the output port bits */ \ }while(0) #define _WRITE(IO,V) do{ if (&(DIO ## IO ## _RPORT) < (uint8_t*)0x100) _WRITE_NC(IO,V); else _WRITE_C(IO,V); }while(0) #define _TOGGLE(IO) (DIO ## IO ## _RPORT = _BV(DIO ## IO ## _PIN)) #define _SET_INPUT(IO) CBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN) #define _SET_OUTPUT(IO) SBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN) #define _IS_INPUT(IO) !TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN) #define _IS_OUTPUT(IO) TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN) // digitalRead/Write wrappers #ifdef FASTIO_EXT_START void extDigitalWrite(const int8_t pin, const uint8_t state); uint8_t extDigitalRead(const int8_t pin); #else #define extDigitalWrite(IO,V) digitalWrite(IO,V) #define extDigitalRead(IO) digitalRead(IO) #endif #define READ(IO) _READ(IO) #define WRITE(IO,V) _WRITE(IO,V) #define TOGGLE(IO) _TOGGLE(IO) #define SET_INPUT(IO) _SET_INPUT(IO) #define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _WRITE(IO, HIGH); }while(0) #define SET_OUTPUT(IO) _SET_OUTPUT(IO) #define SET_PWM(IO) SET_OUTPUT(IO) #define IS_INPUT(IO) _IS_INPUT(IO) #define IS_OUTPUT(IO) _IS_OUTPUT(IO) #define OUT_WRITE(IO,V) do{ SET_OUTPUT(IO); WRITE(IO,V); }while(0) /** * Timer and Interrupt Control */ // Waveform Generation Modes enum WaveGenMode : char { WGM_NORMAL, // 0 WGM_PWM_PC_8, // 1 WGM_PWM_PC_9, // 2 WGM_PWM_PC_10, // 3 WGM_CTC_OCRnA, // 4 COM OCnx WGM_FAST_PWM_8, // 5 WGM_FAST_PWM_9, // 6 WGM_FAST_PWM_10, // 7 WGM_PWM_PC_FC_ICRn, // 8 WGM_PWM_PC_FC_OCRnA, // 9 COM OCnA WGM_PWM_PC_ICRn, // 10 WGM_PWM_PC_OCRnA, // 11 COM OCnA WGM_CTC_ICRn, // 12 COM OCnx WGM_reserved, // 13 WGM_FAST_PWM_ICRn, // 14 COM OCnA WGM_FAST_PWM_OCRnA // 15 COM OCnA }; // Wavefore Generation Modes (Timer 2 only) enum WaveGenMode2 : char { WGM2_NORMAL, // 0 WGM2_PWM_PC, // 1 WGM2_CTC_OCR2A, // 2 WGM2_FAST_PWM, // 3 WGM2_reserved_1, // 4 WGM2_PWM_PC_OCR2A, // 5 WGM2_reserved_2, // 6 WGM2_FAST_PWM_OCR2A, // 7 }; // Compare Modes enum CompareMode : char { COM_NORMAL, // 0 COM_TOGGLE, // 1 Non-PWM: OCnx ... Both PWM (WGM 9,11,14,15): OCnA only ... else NORMAL COM_CLEAR_SET, // 2 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down COM_SET_CLEAR // 3 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down }; // Clock Sources enum ClockSource : char { CS_NONE, // 0 CS_PRESCALER_1, // 1 CS_PRESCALER_8, // 2 CS_PRESCALER_64, // 3 CS_PRESCALER_256, // 4 CS_PRESCALER_1024, // 5 CS_EXT_FALLING, // 6 CS_EXT_RISING // 7 }; // Clock Sources (Timer 2 only) enum ClockSource2 : char { CS2_NONE, // 0 CS2_PRESCALER_1, // 1 CS2_PRESCALER_8, // 2 CS2_PRESCALER_32, // 3 CS2_PRESCALER_64, // 4 CS2_PRESCALER_128, // 5 CS2_PRESCALER_256, // 6 CS2_PRESCALER_1024 // 7 }; // Get interrupt bits in an orderly way // Ex: cs = GET_CS(0); coma1 = GET_COM(A,1); #define GET_WGM(T) (((TCCR##T##A >> WGM##T##0) & 0x3) | ((TCCR##T##B >> WGM##T##2 << 2) & 0xC)) #define GET_CS(T) ((TCCR##T##B >> CS##T##0) & 0x7) #define GET_COM(T,Q) ((TCCR##T##Q >> COM##T##Q##0) & 0x3) #define GET_COMA(T) GET_COM(T,A) #define GET_COMB(T) GET_COM(T,B) #define GET_COMC(T) GET_COM(T,C) #define GET_ICNC(T) (!!(TCCR##T##B & _BV(ICNC##T))) #define GET_ICES(T) (!!(TCCR##T##B & _BV(ICES##T))) #define GET_FOC(T,Q) (!!(TCCR##T##C & _BV(FOC##T##Q))) #define GET_FOCA(T) GET_FOC(T,A) #define GET_FOCB(T) GET_FOC(T,B) #define GET_FOCC(T) GET_FOC(T,C) // Set Wave Generation Mode bits // Ex: SET_WGM(5,CTC_ICRn); #define _SET_WGM(T,V) do{ \ TCCR##T##A = (TCCR##T##A & ~(0x3 << WGM##T##0)) | (( int(V) & 0x3) << WGM##T##0); \ TCCR##T##B = (TCCR##T##B & ~(0x3 << WGM##T##2)) | (((int(V) >> 2) & 0x3) << WGM##T##2); \ }while(0) #define SET_WGM(T,V) _SET_WGM(T,WGM_##V) // Runtime (see set_pwm_frequency): #define _SET_WGMnQ(TCCRnQ, V) do{ \ *(TCCRnQ)[0] = (*(TCCRnQ)[0] & ~(0x3 << 0)) | (( int(V) & 0x3) << 0); \ *(TCCRnQ)[1] = (*(TCCRnQ)[1] & ~(0x3 << 3)) | (((int(V) >> 2) & 0x3) << 3); \ }while(0) // Set Clock Select bits // Ex: SET_CS3(PRESCALER_64); #define _SET_CS(T,V) (TCCR##T##B = (TCCR##T##B & ~(0x7 << CS##T##0)) | ((int(V) & 0x7) << CS##T##0)) #define _SET_CS0(V) _SET_CS(0,V) #define _SET_CS1(V) _SET_CS(1,V) #ifdef TCCR2 #define _SET_CS2(V) (TCCR2 = (TCCR2 & ~(0x7 << CS20)) | (int(V) << CS20)) #else #define _SET_CS2(V) _SET_CS(2,V) #endif #define _SET_CS3(V) _SET_CS(3,V) #define _SET_CS4(V) _SET_CS(4,V) #define _SET_CS5(V) _SET_CS(5,V) #define SET_CS0(V) _SET_CS0(CS_##V) #define SET_CS1(V) _SET_CS1(CS_##V) #ifdef TCCR2 #define SET_CS2(V) _SET_CS2(CS2_##V) #else #define SET_CS2(V) _SET_CS2(CS_##V) #endif #define SET_CS3(V) _SET_CS3(CS_##V) #define SET_CS4(V) _SET_CS4(CS_##V) #define SET_CS5(V) _SET_CS5(CS_##V) #define SET_CS(T,V) SET_CS##T(V) // Runtime (see set_pwm_frequency) #define _SET_CSn(TCCRnQ, V) do{ \ (*(TCCRnQ)[1] = (*(TCCRnQ[1]) & ~(0x7 << 0)) | ((int(V) & 0x7) << 0)); \ }while(0) // Set Compare Mode bits // Ex: SET_COMS(4,CLEAR_SET,CLEAR_SET,CLEAR_SET); #define _SET_COM(T,Q,V) (TCCR##T##Q = (TCCR##T##Q & ~(0x3 << COM##T##Q##0)) | (int(V) << COM##T##Q##0)) #define SET_COM(T,Q,V) _SET_COM(T,Q,COM_##V) #define SET_COMA(T,V) SET_COM(T,A,V) #define SET_COMB(T,V) SET_COM(T,B,V) #define SET_COMC(T,V) SET_COM(T,C,V) #define SET_COMS(T,V1,V2,V3) do{ SET_COMA(T,V1); SET_COMB(T,V2); SET_COMC(T,V3); }while(0) // Runtime (see set_pwm_duty) #define _SET_COMnQ(TCCRnQ, Q, V) do{ \ (*(TCCRnQ)[0] = (*(TCCRnQ)[0] & ~(0x3 << (6-2*(Q)))) | (int(V) << (6-2*(Q)))); \ }while(0) // Set OCRnQ register // Runtime (see set_pwm_duty): #define _SET_OCRnQ(OCRnQ, Q, V) do{ \ (*(OCRnQ)[(Q)] = (0x0000) | (int(V) & 0xFFFF)); \ }while(0) // Set ICRn register (one per timer) // Runtime (see set_pwm_frequency) #define _SET_ICRn(ICRn, V) do{ \ (*(ICRn) = (0x0000) | (int(V) & 0xFFFF)); \ }while(0) // Set Noise Canceler bit // Ex: SET_ICNC(2,1) #define SET_ICNC(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICNC##T) : TCCR##T##B & ~_BV(ICNC##T)) // Set Input Capture Edge Select bit // Ex: SET_ICES(5,0) #define SET_ICES(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICES##T) : TCCR##T##B & ~_BV(ICES##T)) // Set Force Output Compare bit // Ex: SET_FOC(3,A,1) #define SET_FOC(T,Q,V) (TCCR##T##C = (V) ? TCCR##T##C | _BV(FOC##T##Q) : TCCR##T##C & ~_BV(FOC##T##Q)) #define SET_FOCA(T,V) SET_FOC(T,A,V) #define SET_FOCB(T,V) SET_FOC(T,B,V) #define SET_FOCC(T,V) SET_FOC(T,C,V) /** * PWM availability macros */ // Determine which harware PWMs are already in use #if PIN_EXISTS(CONTROLLER_FAN) #define PWM_CHK_FAN_B(P) (P == CONTROLLER_FAN_PIN || P == E0_AUTO_FAN_PIN || P == E1_AUTO_FAN_PIN || P == E2_AUTO_FAN_PIN || P == E3_AUTO_FAN_PIN || P == E4_AUTO_FAN_PIN || P == E5_AUTO_FAN_PIN || P == CHAMBER_AUTO_FAN_PIN) #else #define PWM_CHK_FAN_B(P) (P == E0_AUTO_FAN_PIN || P == E1_AUTO_FAN_PIN || P == E2_AUTO_FAN_PIN || P == E3_AUTO_FAN_PIN || P == E4_AUTO_FAN_PIN || P == E5_AUTO_FAN_PIN || P == CHAMBER_AUTO_FAN_PIN) #endif #if ANY_PIN(FAN, FAN1, FAN2) #if PIN_EXISTS(FAN2) #define PWM_CHK_FAN_A(P) (P == FAN_PIN || P == FAN1_PIN || P == FAN2_PIN) #elif PIN_EXISTS(FAN1) #define PWM_CHK_FAN_A(P) (P == FAN_PIN || P == FAN1_PIN) #else #define PWM_CHK_FAN_A(P) (P == FAN_PIN) #endif #else #define PWM_CHK_FAN_A(P) false #endif #if HAS_MOTOR_CURRENT_PWM #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) #define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E || P == MOTOR_CURRENT_PWM_Z || P == MOTOR_CURRENT_PWM_XY) #elif PIN_EXISTS(MOTOR_CURRENT_PWM_Z) #define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E || P == MOTOR_CURRENT_PWM_Z) #else #define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E) #endif #else #define PWM_CHK_MOTOR_CURRENT(P) false #endif #ifdef NUM_SERVOS #if AVR_ATmega2560_FAMILY #define PWM_CHK_SERVO(P) (P == 5 || (NUM_SERVOS > 12 && P == 6) || (NUM_SERVOS > 24 && P == 46)) // PWMS 3A, 4A & 5A #elif AVR_ATmega2561_FAMILY #define PWM_CHK_SERVO(P) (P == 5) // PWM3A #elif AVR_ATmega1284_FAMILY #define PWM_CHK_SERVO(P) false #elif AVR_AT90USB1286_FAMILY #define PWM_CHK_SERVO(P) (P == 16) // PWM3A #elif AVR_ATmega328_FAMILY #define PWM_CHK_SERVO(P) false #endif #else #define PWM_CHK_SERVO(P) false #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 && HAS_HEATER_2 #define PWM_CHK_HEATER(P) (P == HEATER_1_PIN || P == HEATER_2_PIN) #elif HAS_HEATER_1 #define PWM_CHK_HEATER(P) (P == HEATER_1_PIN) #endif #else #define PWM_CHK_HEATER(P) false #endif #define PWM_CHK(P) (PWM_CHK_HEATER(P) || PWM_CHK_SERVO(P) || PWM_CHK_MOTOR_CURRENT(P) || PWM_CHK_FAN_A(P) || PWM_CHK_FAN_B(P)) // define which hardware PWMs are available for the current CPU // all timer 1 PWMS deleted from this list because they are never available #if AVR_ATmega2560_FAMILY #define PWM_PIN(P) ((P >= 2 && P <= 10) || P == 13 || P == 44 || P == 45 || P == 46) #elif AVR_ATmega2561_FAMILY #define PWM_PIN(P) ((P >= 2 && P <= 6) || P == 9) #elif AVR_ATmega1284_FAMILY #define PWM_PIN(P) (P == 3 || P == 4 || P == 14 || P == 15) #elif AVR_AT90USB1286_FAMILY #define PWM_PIN(P) (P == 0 || P == 1 || P == 14 || P == 15 || P == 16 || P == 24) #elif AVR_ATmega328_FAMILY #define PWM_PIN(P) (P == 3 || P == 5 || P == 6 || P == 11) #else #error "unknown CPU" #endif