/**
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

/**
 * planner.h
 *
 * Buffer movement commands and manage the acceleration profile plan
 *
 * Derived from Grbl
 * Copyright (c) 2009-2011 Simen Svale Skogsrud
 */

#ifndef PLANNER_H
#define PLANNER_H

#include "types.h"
#include "enum.h"
#include "Marlin.h"

#if ABL_PLANAR
  #include "vector_3.h"
#endif

enum BlockFlagBit : char {
  // Recalculate trapezoids on entry junction. For optimization.
  BLOCK_BIT_RECALCULATE,

  // Nominal speed always reached.
  // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  // from a safe speed (in consideration of jerking from zero speed).
  BLOCK_BIT_NOMINAL_LENGTH,

  // The block is busy, being interpreted by the stepper ISR
  BLOCK_BIT_BUSY,

  // The block is segment 2+ of a longer move
  BLOCK_BIT_CONTINUED,

  // Sync the stepper counts from the block
  BLOCK_BIT_SYNC_POSITION
};

enum BlockFlag : char {
  BLOCK_FLAG_RECALCULATE          = _BV(BLOCK_BIT_RECALCULATE),
  BLOCK_FLAG_NOMINAL_LENGTH       = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  BLOCK_FLAG_BUSY                 = _BV(BLOCK_BIT_BUSY),
  BLOCK_FLAG_CONTINUED            = _BV(BLOCK_BIT_CONTINUED),
  BLOCK_FLAG_SYNC_POSITION        = _BV(BLOCK_BIT_SYNC_POSITION)
};

/**
 * struct block_t
 *
 * A single entry in the planner buffer.
 * Tracks linear movement over multiple axes.
 *
 * The "nominal" values are as-specified by gcode, and
 * may never actually be reached due to acceleration limits.
 */
typedef struct {

  uint8_t flag;                             // Block flags (See BlockFlag enum above)

  // Fields used by the motion planner to manage acceleration
  float nominal_speed_sqr,                  // The nominal speed for this block in (mm/sec)^2
        entry_speed_sqr,                    // Entry speed at previous-current junction in (mm/sec)^2
        max_entry_speed_sqr,                // Maximum allowable junction entry speed in (mm/sec)^2
        millimeters,                        // The total travel of this block in mm
        acceleration;                       // acceleration mm/sec^2

  union {
    // Data used by all move blocks
    struct {
      // Fields used by the Bresenham algorithm for tracing the line
      uint32_t steps[NUM_AXIS];             // Step count along each axis
    };
    // Data used by all sync blocks
    struct {
      int32_t position[NUM_AXIS];           // New position to force when this sync block is executed
    };
  };
  uint32_t step_event_count;                // The number of step events required to complete this block

  uint8_t active_extruder;                  // The extruder to move (if E move)

  #if ENABLED(MIXING_EXTRUDER)
    uint32_t mix_steps[MIXING_STEPPERS];    // Scaled steps[E_AXIS] for the mixing steppers
  #endif

  // Settings for the trapezoid generator
  uint32_t accelerate_until,                // The index of the step event on which to stop acceleration
           decelerate_after;                // The index of the step event on which to start decelerating

  #if ENABLED(S_CURVE_ACCELERATION)
    uint32_t cruise_rate,                   // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
             acceleration_time,             // Acceleration time and deceleration time in STEP timer counts
             deceleration_time,
             acceleration_time_inverse,     // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
             deceleration_time_inverse;
  #else
    uint32_t acceleration_rate;             // The acceleration rate used for acceleration calculation
  #endif

  uint8_t direction_bits;                   // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)

  // Advance extrusion
  #if ENABLED(LIN_ADVANCE)
    bool use_advance_lead;
    uint16_t advance_speed,                 // STEP timer value for extruder speed offset ISR
             max_adv_steps,                 // max. advance steps to get cruising speed pressure (not always nominal_speed!)
             final_adv_steps;               // advance steps due to exit speed
    float e_D_ratio;
  #endif

  uint32_t nominal_rate,                    // The nominal step rate for this block in step_events/sec
           initial_rate,                    // The jerk-adjusted step rate at start of block
           final_rate,                      // The minimal rate at exit
           acceleration_steps_per_s2;       // acceleration steps/sec^2

  #if FAN_COUNT > 0
    uint16_t fan_speed[FAN_COUNT];
  #endif

  #if ENABLED(BARICUDA)
    uint8_t valve_pressure, e_to_p_pressure;
  #endif

  uint32_t segment_time_us;

} block_t;

#define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || ENABLED(SCARA_FEEDRATE_SCALING))

#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))

class Planner {
  public:

    /**
     * The move buffer, calculated in stepper steps
     *
     * block_buffer is a ring buffer...
     *
     *             head,tail : indexes for write,read
     *            head==tail : the buffer is empty
     *            head!=tail : blocks are in the buffer
     *   head==(tail-1)%size : the buffer is full
     *
     *  Writer of head is Planner::buffer_segment().
     *  Reader of tail is Stepper::isr(). Always consider tail busy / read-only
     */
    static block_t block_buffer[BLOCK_BUFFER_SIZE];
    static volatile uint8_t block_buffer_head,      // Index of the next block to be pushed
                            block_buffer_tail;      // Index of the busy block, if any
    static uint16_t cleaning_buffer_counter;        // A counter to disable queuing of blocks
    static uint8_t delay_before_delivering,         // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
                   block_buffer_planned;            // Index of the optimally planned block

    #if ENABLED(DISTINCT_E_FACTORS)
      static uint8_t last_extruder;                 // Respond to extruder change
    #endif

    static int16_t flow_percentage[EXTRUDERS];      // Extrusion factor for each extruder

    static float e_factor[EXTRUDERS];               // The flow percentage and volumetric multiplier combine to scale E movement

    #if DISABLED(NO_VOLUMETRICS)
      static float filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
                   volumetric_area_nominal,           // Nominal cross-sectional area
                   volumetric_multiplier[EXTRUDERS];  // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
                                                      // May be auto-adjusted by a filament width sensor
    #endif

    static uint32_t max_acceleration_mm_per_s2[XYZE_N],    // (mm/s^2) M201 XYZE
                    max_acceleration_steps_per_s2[XYZE_N], // (steps/s^2) Derived from mm_per_s2
                    min_segment_time_us;                   // (µs) M205 B
    static float max_feedrate_mm_s[XYZE_N],     // (mm/s) M203 XYZE - Max speeds
                 axis_steps_per_mm[XYZE_N],     // (steps) M92 XYZE - Steps per millimeter
                 steps_to_mm[XYZE_N],           // (mm) Millimeters per step
                 min_feedrate_mm_s,             // (mm/s) M205 S - Minimum linear feedrate
                 acceleration,                  // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
                 retract_acceleration,          // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
                 travel_acceleration,           // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
                 min_travel_feedrate_mm_s;      // (mm/s) M205 T - Minimum travel feedrate

    #if ENABLED(JUNCTION_DEVIATION)
      static float junction_deviation_mm;       // (mm) M205 J
      #if ENABLED(LIN_ADVANCE)
        #if ENABLED(DISTINCT_E_FACTORS)
          static float max_e_jerk[EXTRUDERS];   // Calculated from junction_deviation_mm
        #else
          static float max_e_jerk;
        #endif
      #endif
    #else
      static float max_jerk[XYZE];              // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
    #endif

    #if HAS_LEVELING
      static bool leveling_active;          // Flag that bed leveling is enabled
      #if ABL_PLANAR
        static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
      #endif
      #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
        static float z_fade_height, inverse_z_fade_height;
      #endif
    #else
      static constexpr bool leveling_active = false;
    #endif

    #if ENABLED(LIN_ADVANCE)
      static float extruder_advance_K;
    #endif

    #if HAS_POSITION_FLOAT
      static float position_float[XYZE];
    #endif

    #if ENABLED(SKEW_CORRECTION)
      #if ENABLED(SKEW_CORRECTION_GCODE)
        static float xy_skew_factor;
      #else
        static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
      #endif
      #if ENABLED(SKEW_CORRECTION_FOR_Z)
        #if ENABLED(SKEW_CORRECTION_GCODE)
          static float xz_skew_factor, yz_skew_factor;
        #else
          static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
        #endif
      #else
        static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
      #endif
    #endif

    #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
      static bool abort_on_endstop_hit;
    #endif

  private:

    /**
     * The current position of the tool in absolute steps
     * Recalculated if any axis_steps_per_mm are changed by gcode
     */
    static int32_t position[NUM_AXIS];

    /**
     * Speed of previous path line segment
     */
    static float previous_speed[NUM_AXIS];

    /**
     * Nominal speed of previous path line segment (mm/s)^2
     */
    static float previous_nominal_speed_sqr;

    /**
     * Limit where 64bit math is necessary for acceleration calculation
     */
    static uint32_t cutoff_long;

    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
      static float last_fade_z;
    #endif

    #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
      /**
       * Counters to manage disabling inactive extruders
       */
      static uint8_t g_uc_extruder_last_move[EXTRUDERS];
    #endif // DISABLE_INACTIVE_EXTRUDER

    #ifdef XY_FREQUENCY_LIMIT
      // Used for the frequency limit
      #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
      // Old direction bits. Used for speed calculations
      static unsigned char old_direction_bits;
      // Segment times (in µs). Used for speed calculations
      static uint32_t axis_segment_time_us[2][3];
    #endif

    #if ENABLED(ULTRA_LCD)
      volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
    #endif

  public:

    /**
     * Instance Methods
     */

    Planner();

    void init();

    /**
     * Static (class) Methods
     */

    static void reset_acceleration_rates();
    static void refresh_positioning();

    FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
      e_factor[e] = (flow_percentage[e] * 0.01
        #if DISABLED(NO_VOLUMETRICS)
          * volumetric_multiplier[e]
        #endif
      );
    }

    // Manage fans, paste pressure, etc.
    static void check_axes_activity();

    // Update multipliers based on new diameter measurements
    static void calculate_volumetric_multipliers();

    #if ENABLED(FILAMENT_WIDTH_SENSOR)
      void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
    #endif

    #if DISABLED(NO_VOLUMETRICS)

      FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
        filament_size[e] = v;
        // make sure all extruders have some sane value for the filament size
        for (uint8_t i = 0; i < COUNT(filament_size); i++)
          if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
      }

    #endif

    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)

      /**
       * Get the Z leveling fade factor based on the given Z height,
       * re-calculating only when needed.
       *
       *  Returns 1.0 if planner.z_fade_height is 0.0.
       *  Returns 0.0 if Z is past the specified 'Fade Height'.
       */
      inline static float fade_scaling_factor_for_z(const float &rz) {
        static float z_fade_factor = 1.0;
        if (z_fade_height) {
          if (rz >= z_fade_height) return 0.0;
          if (last_fade_z != rz) {
            last_fade_z = rz;
            z_fade_factor = 1.0 - rz * inverse_z_fade_height;
          }
          return z_fade_factor;
        }
        return 1.0;
      }

      FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }

      FORCE_INLINE static void set_z_fade_height(const float &zfh) {
        z_fade_height = zfh > 0 ? zfh : 0;
        inverse_z_fade_height = RECIPROCAL(z_fade_height);
        force_fade_recalc();
      }

      FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
        return !z_fade_height || rz < z_fade_height;
      }

    #else

      FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
        UNUSED(rz);
        return 1.0;
      }

      FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }

    #endif

    #if ENABLED(SKEW_CORRECTION)

      FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
        if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
          const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
                      sy = cy - cz * yz_skew_factor;
          if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
            cx = sx; cy = sy;
          }
        }
      }

      FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
        if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
          const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
                      sy = cy + cz * yz_skew_factor;
          if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
            cx = sx; cy = sy;
          }
        }
      }

    #endif // SKEW_CORRECTION

    #if PLANNER_LEVELING || HAS_UBL_AND_CURVES
      /**
       * Apply leveling to transform a cartesian position
       * as it will be given to the planner and steppers.
       */
      static void apply_leveling(float &rx, float &ry, float &rz);
      FORCE_INLINE static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
    #endif

    #if PLANNER_LEVELING
      #define ARG_X float rx
      #define ARG_Y float ry
      #define ARG_Z float rz
      static void unapply_leveling(float raw[XYZ]);
    #else
      #define ARG_X const float &rx
      #define ARG_Y const float &ry
      #define ARG_Z const float &rz
    #endif

    // Number of moves currently in the planner
    FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }

    // Remove all blocks from the buffer
    FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; }

    // Check if movement queue is full
    FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }

    // Get count of movement slots free
    FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }

    /**
     * Planner::get_next_free_block
     *
     * - Get the next head indices (passed by reference)
     * - Wait for the number of spaces to open up in the planner
     * - Return the first head block
     */
    FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {

      // Wait until there are enough slots free
      while (moves_free() < count) { idle(); }

      // Return the first available block
      next_buffer_head = next_block_index(block_buffer_head);
      return &block_buffer[block_buffer_head];
    }

    /**
     * Planner::_buffer_steps
     *
     * Add a new linear movement to the buffer (in terms of steps).
     *
     *  target      - target position in steps units
     *  fr_mm_s     - (target) speed of the move
     *  extruder    - target extruder
     *  millimeters - the length of the movement, if known
     *
     * Returns true if movement was buffered, false otherwise
     */
    static bool _buffer_steps(const int32_t (&target)[XYZE]
      #if HAS_POSITION_FLOAT
        , const float (&target_float)[XYZE]
      #endif
      , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
    );

    /**
     * Planner::_populate_block
     *
     * Fills a new linear movement in the block (in terms of steps).
     *
     *  target      - target position in steps units
     *  fr_mm_s     - (target) speed of the move
     *  extruder    - target extruder
     *  millimeters - the length of the movement, if known
     *
     * Returns true is movement is acceptable, false otherwise
     */
    static bool _populate_block(block_t * const block, bool split_move,
        const int32_t (&target)[XYZE]
      #if HAS_POSITION_FLOAT
        , const float (&target_float)[XYZE]
      #endif
      , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
    );

    /**
     * Planner::buffer_sync_block
     * Add a block to the buffer that just updates the position
     */
    static void buffer_sync_block();

    /**
     * Planner::buffer_segment
     *
     * Add a new linear movement to the buffer in axis units.
     *
     * Leveling and kinematics should be applied ahead of calling this.
     *
     *  a,b,c,e     - target positions in mm and/or degrees
     *  fr_mm_s     - (target) speed of the move
     *  extruder    - target extruder
     *  millimeters - the length of the movement, if known
     */
    static bool buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0);

    static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);

    /**
     * Add a new linear movement to the buffer.
     * The target is NOT translated to delta/scara
     *
     * Leveling will be applied to input on cartesians.
     * Kinematic machines should call buffer_line_kinematic (for leveled moves).
     * (Cartesians may also call buffer_line_kinematic.)
     *
     *  rx,ry,rz,e   - target position in mm or degrees
     *  fr_mm_s      - (target) speed of the move (mm/s)
     *  extruder     - target extruder
     *  millimeters  - the length of the movement, if known
     */
    FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
      #if PLANNER_LEVELING && IS_CARTESIAN
        apply_leveling(rx, ry, rz);
      #endif
      return buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters);
    }

    /**
     * Add a new linear movement to the buffer.
     * The target is cartesian, it's translated to delta/scara if
     * needed.
     *
     *  cart         - x,y,z,e CARTESIAN target in mm
     *  fr_mm_s      - (target) speed of the move (mm/s)
     *  extruder     - target extruder
     *  millimeters  - the length of the movement, if known
     */
    FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
      #if PLANNER_LEVELING
        float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
        apply_leveling(raw);
      #else
        const float (&raw)[XYZE] = cart;
      #endif
      #if IS_KINEMATIC
        inverse_kinematics(raw);
        return buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
      #else
        return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
      #endif
    }

    /**
     * Set the planner.position and individual stepper positions.
     * Used by G92, G28, G29, and other procedures.
     *
     * Multiplies by axis_steps_per_mm[] and does necessary conversion
     * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
     *
     * Clears previous speed values.
     */
    FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
      #if PLANNER_LEVELING && IS_CARTESIAN
        apply_leveling(rx, ry, rz);
      #endif
      _set_position_mm(rx, ry, rz, e);
    }
    static void set_position_mm_kinematic(const float (&cart)[XYZE]);
    static void set_position_mm(const AxisEnum axis, const float &v);
    FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
    FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); }

    /**
     * Get an axis position according to stepper position(s)
     * For CORE machines apply translation from ABC to XYZ.
     */
    static float get_axis_position_mm(const AxisEnum axis);

    // SCARA AB axes are in degrees, not mm
    #if IS_SCARA
      FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
    #endif

    // Called to force a quick stop of the machine (for example, when an emergency
    // stop is required, or when endstops are hit)
    static void quick_stop();

    // Called when an endstop is triggered. Causes the machine to stop inmediately
    static void endstop_triggered(const AxisEnum axis);

    // Triggered position of an axis in mm (not core-savvy)
    static float triggered_position_mm(const AxisEnum axis);

    // Block until all buffered steps are executed / cleaned
    static void synchronize();

    // Wait for moves to finish and disable all steppers
    static void finish_and_disable();

    // Periodic tick to handle cleaning timeouts
    // Called from the Temperature ISR at ~1kHz
    static void tick() {
      if (cleaning_buffer_counter) {
        --cleaning_buffer_counter;
        #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
          if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
        #endif
      }
    }

    /**
     * Does the buffer have any blocks queued?
     */
    FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }

    /**
     * The current block. NULL if the buffer is empty.
     * This also marks the block as busy.
     * WARNING: Called from Stepper ISR context!
     */
    static block_t* get_current_block() {

      // Get the number of moves in the planner queue so far
      uint8_t nr_moves = movesplanned();

      // If there are any moves queued ...
      if (nr_moves) {

        // If there is still delay of delivery of blocks running, decrement it
        if (delay_before_delivering) {
          --delay_before_delivering;
          // If the number of movements queued is less than 3, and there is still time
          //  to wait, do not deliver anything
          if (nr_moves < 3 && delay_before_delivering) return NULL;
          delay_before_delivering = 0;
        }

        // If we are here, there is no excuse to deliver the block
        block_t * const block = &block_buffer[block_buffer_tail];

        // No trapezoid calculated? Don't execute yet.
        if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return NULL;

        #if ENABLED(ULTRA_LCD)
          block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
        #endif

        // Mark the block as busy, so the planner does not attempt to replan it
        SBI(block->flag, BLOCK_BIT_BUSY);
        return block;
      }

      // The queue became empty
      #if ENABLED(ULTRA_LCD)
        clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
      #endif

      return NULL;
    }

    /**
     * "Discard" the block and "release" the memory.
     * Called when the current block is no longer needed.
     * NB: There MUST be a current block to call this function!!
     */
    FORCE_INLINE static void discard_current_block() {
      if (has_blocks_queued()) { // Discard non-empty buffer.
        uint8_t block_index = next_block_index(block_buffer_tail);

        // Push block_buffer_planned pointer, if encountered.
        if (!has_blocks_queued()) block_buffer_planned = block_index;

        block_buffer_tail = block_index;
      }
    }

    #if ENABLED(ULTRA_LCD)

      static uint16_t block_buffer_runtime() {
        // Protect the access to the variable. Only required for AVR, as
        //  any 32bit CPU offers atomic access to 32bit variables
        bool was_enabled = STEPPER_ISR_ENABLED();
        if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();

        millis_t bbru = block_buffer_runtime_us;

        // Reenable Stepper ISR
        if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();

        // To translate µs to ms a division by 1000 would be required.
        // We introduce 2.4% error here by dividing by 1024.
        // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
        bbru >>= 10;
        // limit to about a minute.
        NOMORE(bbru, 0xFFFFul);
        return bbru;
      }

      static void clear_block_buffer_runtime() {
        // Protect the access to the variable. Only required for AVR, as
        //  any 32bit CPU offers atomic access to 32bit variables
        bool was_enabled = STEPPER_ISR_ENABLED();
        if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();

        block_buffer_runtime_us = 0;

        // Reenable Stepper ISR
        if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
      }

    #endif

    #if ENABLED(AUTOTEMP)
      static float autotemp_min, autotemp_max, autotemp_factor;
      static bool autotemp_enabled;
      static void getHighESpeed();
      static void autotemp_M104_M109();
    #endif

    #if ENABLED(JUNCTION_DEVIATION)
      FORCE_INLINE static void recalculate_max_e_jerk() {
        #define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
        #if ENABLED(LIN_ADVANCE)
          #if ENABLED(DISTINCT_E_FACTORS)
            for (uint8_t i = 0; i < EXTRUDERS; i++)
              max_e_jerk[i] = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS + i]);
          #else
            max_e_jerk = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS]);
          #endif
        #endif
      }
    #endif

  private:

    /**
     * Get the index of the next / previous block in the ring buffer
     */
    static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
    static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }

    /**
     * Calculate the distance (not time) it takes to accelerate
     * from initial_rate to target_rate using the given acceleration:
     */
    static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
      if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
      return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
    }

    /**
     * Return the point at which you must start braking (at the rate of -'accel') if
     * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
     * 'final_rate' after traveling 'distance'.
     *
     * This is used to compute the intersection point between acceleration and deceleration
     * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
     */
    static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
      if (accel == 0) return 0; // accel was 0, set intersection distance to 0
      return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
    }

    /**
     * Calculate the maximum allowable speed squared at this point, in order
     * to reach 'target_velocity_sqr' using 'acceleration' within a given
     * 'distance'.
     */
    static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
      return target_velocity_sqr - 2 * accel * distance;
    }

    #if ENABLED(S_CURVE_ACCELERATION)
      /**
       * Calculate the speed reached given initial speed, acceleration and distance
       */
      static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
        return SQRT(sq(initial_velocity) + 2 * accel * distance);
      }
    #endif

    static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);

    static void reverse_pass_kernel(block_t* const current, const block_t * const next);
    static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);

    static void reverse_pass();
    static void forward_pass();

    static void recalculate_trapezoids();

    static void recalculate();

    #if ENABLED(JUNCTION_DEVIATION)

      #if ENABLED(JUNCTION_DEVIATION_INCLUDE_E)
        #define JD_AXES XYZE
      #else
        #define JD_AXES XYZ
      #endif

      FORCE_INLINE static void normalize_junction_vector(float (&vector)[JD_AXES]) {
        float magnitude_sq = 0.0;
        for (uint8_t idx = 0; idx < JD_AXES; idx++) if (vector[idx]) magnitude_sq += sq(vector[idx]);
        const float inv_magnitude = 1.0 / SQRT(magnitude_sq);
        for (uint8_t idx = 0; idx < JD_AXES; idx++) vector[idx] *= inv_magnitude;
      }

      FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, float (&unit_vec)[JD_AXES]) {
        float limit_value = max_value;
        for (uint8_t idx = 0; idx < JD_AXES; idx++) if (unit_vec[idx]) // Avoid divide by zero
          NOMORE(limit_value, ABS(max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
        return limit_value;
      }

    #endif // JUNCTION_DEVIATION
};

#define PLANNER_XY_FEEDRATE() (MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))

extern Planner planner;

#endif // PLANNER_H