/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once #if !defined(__has_include) #define __has_include(...) 1 #endif #define ABCE 4 #define XYZE 4 #define ABC 3 #define XYZ 3 #define XY 2 #define _AXIS(A) (A##_AXIS) #define _XMIN_ 100 #define _YMIN_ 200 #define _ZMIN_ 300 #define _XMAX_ 101 #define _YMAX_ 201 #define _ZMAX_ 301 #define _XDIAG_ 102 #define _YDIAG_ 202 #define _ZDIAG_ 302 #define _E0DIAG_ 400 #define _E1DIAG_ 401 #define _E2DIAG_ 402 #define _E3DIAG_ 403 #define _E4DIAG_ 404 #define _E5DIAG_ 405 #define _E6DIAG_ 406 #define _E7DIAG_ 407 #define _FORCE_INLINE_ __attribute__((__always_inline__)) __inline__ #define FORCE_INLINE __attribute__((always_inline)) inline #define NO_INLINE __attribute__((noinline)) #define _UNUSED __attribute__((unused)) #define _O0 __attribute__((optimize("O0"))) #define _Os __attribute__((optimize("Os"))) #define _O1 __attribute__((optimize("O1"))) #define _O2 __attribute__((optimize("O2"))) #define _O3 __attribute__((optimize("O3"))) #define IS_CONSTEXPR(...) __builtin_constant_p(__VA_ARGS__) // Only valid solution with C++14. Should use std::is_constant_evaluated() in C++20 instead #ifndef UNUSED #define UNUSED(x) ((void)(x)) #endif // Clock speed factors #if !defined(CYCLES_PER_MICROSECOND) && !defined(__STM32F1__) #define CYCLES_PER_MICROSECOND (F_CPU / 1000000UL) // 16 or 20 on AVR #endif // Nanoseconds per cycle #define NANOSECONDS_PER_CYCLE (1000000000.0 / F_CPU) // Macros to make a string from a macro #define STRINGIFY_(M) #M #define STRINGIFY(M) STRINGIFY_(M) #define A(CODE) " " CODE "\n\t" #define L(CODE) CODE ":\n\t" // Macros for bit masks #undef _BV #define _BV(n) (1<<(n)) #define TEST(n,b) (!!((n)&_BV(b))) #define SET_BIT_TO(N,B,TF) do{ if (TF) SBI(N,B); else CBI(N,B); }while(0) #ifndef SBI #define SBI(A,B) (A |= _BV(B)) #endif #ifndef CBI #define CBI(A,B) (A &= ~_BV(B)) #endif #define TBI(N,B) (N ^= _BV(B)) #define _BV32(b) (1UL << (b)) #define TEST32(n,b) !!((n)&_BV32(b)) #define SBI32(n,b) (n |= _BV32(b)) #define CBI32(n,b) (n &= ~_BV32(b)) #define TBI32(N,B) (N ^= _BV32(B)) #define cu(x) ({__typeof__(x) _x = (x); (_x)*(_x)*(_x);}) #define RADIANS(d) ((d)*float(M_PI)/180.0f) #define DEGREES(r) ((r)*180.0f/float(M_PI)) #define HYPOT2(x,y) (sq(x)+sq(y)) #define NORMSQ(x,y,z) (sq(x)+sq(y)+sq(z)) #define CIRCLE_AREA(R) (float(M_PI) * sq(float(R))) #define CIRCLE_CIRC(R) (2 * float(M_PI) * float(R)) #define SIGN(a) ({__typeof__(a) _a = (a); (_a>0)-(_a<0);}) #define IS_POWER_OF_2(x) ((x) && !((x) & ((x) - 1))) // Macros to constrain values #ifdef __cplusplus // C++11 solution that is standards compliant. template static inline constexpr void NOLESS(V& v, const N n) { if (n > v) v = n; } template static inline constexpr void NOMORE(V& v, const N n) { if (n < v) v = n; } template static inline constexpr void LIMIT(V& v, const N1 n1, const N2 n2) { if (n1 > v) v = n1; else if (n2 < v) v = n2; } #else #define NOLESS(v, n) \ do{ \ __typeof__(v) _n = (n); \ if (_n > v) v = _n; \ }while(0) #define NOMORE(v, n) \ do{ \ __typeof__(v) _n = (n); \ if (_n < v) v = _n; \ }while(0) #define LIMIT(v, n1, n2) \ do{ \ __typeof__(v) _n1 = (n1); \ __typeof__(v) _n2 = (n2); \ if (_n1 > v) v = _n1; \ else if (_n2 < v) v = _n2; \ }while(0) #endif // Macros to chain up to 14 conditions #define _DO_1(W,C,A) (_##W##_1(A)) #define _DO_2(W,C,A,B) (_##W##_1(A) C _##W##_1(B)) #define _DO_3(W,C,A,V...) (_##W##_1(A) C _DO_2(W,C,V)) #define _DO_4(W,C,A,V...) (_##W##_1(A) C _DO_3(W,C,V)) #define _DO_5(W,C,A,V...) (_##W##_1(A) C _DO_4(W,C,V)) #define _DO_6(W,C,A,V...) (_##W##_1(A) C _DO_5(W,C,V)) #define _DO_7(W,C,A,V...) (_##W##_1(A) C _DO_6(W,C,V)) #define _DO_8(W,C,A,V...) (_##W##_1(A) C _DO_7(W,C,V)) #define _DO_9(W,C,A,V...) (_##W##_1(A) C _DO_8(W,C,V)) #define _DO_10(W,C,A,V...) (_##W##_1(A) C _DO_9(W,C,V)) #define _DO_11(W,C,A,V...) (_##W##_1(A) C _DO_10(W,C,V)) #define _DO_12(W,C,A,V...) (_##W##_1(A) C _DO_11(W,C,V)) #define _DO_13(W,C,A,V...) (_##W##_1(A) C _DO_12(W,C,V)) #define _DO_14(W,C,A,V...) (_##W##_1(A) C _DO_13(W,C,V)) #define _DO_15(W,C,A,V...) (_##W##_1(A) C _DO_14(W,C,V)) #define __DO_N(W,C,N,V...) _DO_##N(W,C,V) #define _DO_N(W,C,N,V...) __DO_N(W,C,N,V) #define DO(W,C,V...) (_DO_N(W,C,NUM_ARGS(V),V)) // Macros to support option testing #define _CAT(a,V...) a##V #define CAT(a,V...) _CAT(a,V) #define _ISENA_ ~,1 #define _ISENA_1 ~,1 #define _ISENA_0x1 ~,1 #define _ISENA_true ~,1 #define _ISENA(V...) IS_PROBE(V) #define _ENA_1(O) _ISENA(CAT(_IS,CAT(ENA_, O))) #define _DIS_1(O) NOT(_ENA_1(O)) #define ENABLED(V...) DO(ENA,&&,V) #define DISABLED(V...) DO(DIS,&&,V) #define COUNT_ENABLED(V...) DO(ENA,+,V) #define TERN(O,A,B) _TERN(_ENA_1(O),B,A) // OPTION converted to '0' or '1' #define TERN0(O,A) _TERN(_ENA_1(O),0,A) // OPTION converted to A or '0' #define TERN1(O,A) _TERN(_ENA_1(O),1,A) // OPTION converted to A or '1' #define TERN_(O,A) _TERN(_ENA_1(O),,A) // OPTION converted to A or '' #define _TERN(E,V...) __TERN(_CAT(T_,E),V) // Prepend 'T_' to get 'T_0' or 'T_1' #define __TERN(T,V...) ___TERN(_CAT(_NO,T),V) // Prepend '_NO' to get '_NOT_0' or '_NOT_1' #define ___TERN(P,V...) THIRD(P,V) // If first argument has a comma, A. Else B. #define IF_ENABLED TERN_ #define IF_DISABLED(O,A) TERN(O,,A) #define ANY(V...) !DISABLED(V) #define NONE(V...) DISABLED(V) #define ALL(V...) ENABLED(V) #define BOTH(V1,V2) ALL(V1,V2) #define EITHER(V1,V2) ANY(V1,V2) #define MANY(V...) (COUNT_ENABLED(V) > 1) // Macros to support pins/buttons exist testing #define PIN_EXISTS(PN) (defined(PN##_PIN) && PN##_PIN >= 0) #define _PINEX_1 PIN_EXISTS #define PINS_EXIST(V...) DO(PINEX,&&,V) #define ANY_PIN(V...) DO(PINEX,||,V) #define BUTTON_EXISTS(BN) (defined(BTN_##BN) && BTN_##BN >= 0) #define _BTNEX_1 BUTTON_EXISTS #define BUTTONS_EXIST(V...) DO(BTNEX,&&,V) #define ANY_BUTTON(V...) DO(BTNEX,||,V) #define WITHIN(N,L,H) ((N) >= (L) && (N) <= (H)) #define ISEOL(C) ((C) == '\n' || (C) == '\r') #define NUMERIC(a) WITHIN(a, '0', '9') #define DECIMAL(a) (NUMERIC(a) || a == '.') #define HEXCHR(a) (NUMERIC(a) ? (a) - '0' : WITHIN(a, 'a', 'f') ? ((a) - 'a' + 10) : WITHIN(a, 'A', 'F') ? ((a) - 'A' + 10) : -1) #define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-' || (a) == '+') #define DECIMAL_SIGNED(a) (DECIMAL(a) || (a) == '-' || (a) == '+') #define COUNT(a) (sizeof(a)/sizeof(*a)) #define ZERO(a) memset(a,0,sizeof(a)) #define COPY(a,b) do{ \ static_assert(sizeof(a[0]) == sizeof(b[0]), "COPY: '" STRINGIFY(a) "' and '" STRINGIFY(b) "' types (sizes) don't match!"); \ memcpy(&a[0],&b[0],_MIN(sizeof(a),sizeof(b))); \ }while(0) // Macros for initializing arrays #define LIST_16(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P #define LIST_15(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N,O #define LIST_14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N #define LIST_13(A,B,C,D,E,F,G,H,I,J,K,L,M,...) A,B,C,D,E,F,G,H,I,J,K,L,M #define LIST_12(A,B,C,D,E,F,G,H,I,J,K,L,...) A,B,C,D,E,F,G,H,I,J,K,L #define LIST_11(A,B,C,D,E,F,G,H,I,J,K,...) A,B,C,D,E,F,G,H,I,J,K #define LIST_10(A,B,C,D,E,F,G,H,I,J,...) A,B,C,D,E,F,G,H,I,J #define LIST_9( A,B,C,D,E,F,G,H,I,...) A,B,C,D,E,F,G,H,I #define LIST_8( A,B,C,D,E,F,G,H,...) A,B,C,D,E,F,G,H #define LIST_7( A,B,C,D,E,F,G,...) A,B,C,D,E,F,G #define LIST_6( A,B,C,D,E,F,...) A,B,C,D,E,F #define LIST_5( A,B,C,D,E,...) A,B,C,D,E #define LIST_4( A,B,C,D,...) A,B,C,D #define LIST_3( A,B,C,...) A,B,C #define LIST_2( A,B,...) A,B #define LIST_1( A,...) A #define _LIST_N(N,V...) LIST_##N(V) #define LIST_N(N,V...) _LIST_N(N,V) #define ARRAY_N(N,V...) { _LIST_N(N,V) } #define _JOIN_1(O) (O) #define JOIN_N(N,C,V...) (DO(JOIN,C,LIST_N(N,V))) #define LOOP_S_LE_N(VAR, S, N) for (uint8_t VAR=(S); VAR<=(N); VAR++) #define LOOP_S_L_N(VAR, S, N) for (uint8_t VAR=(S); VAR<(N); VAR++) #define LOOP_LE_N(VAR, N) LOOP_S_LE_N(VAR, 0, N) #define LOOP_L_N(VAR, N) LOOP_S_L_N(VAR, 0, N) #define NOOP (void(0)) #define CEILING(x,y) (((x) + (y) - 1) / (y)) #undef ABS #ifdef __cplusplus template static inline constexpr const T ABS(const T v) { return v >= 0 ? v : -v; } #else #define ABS(a) ({__typeof__(a) _a = (a); _a >= 0 ? _a : -_a;}) #endif #define UNEAR_ZERO(x) ((x) < 0.000001f) #define NEAR_ZERO(x) WITHIN(x, -0.000001f, 0.000001f) #define NEAR(x,y) NEAR_ZERO((x)-(y)) #define RECIPROCAL(x) (NEAR_ZERO(x) ? 0 : (1 / float(x))) #define FIXFLOAT(f) ({__typeof__(f) _f = (f); _f + (_f < 0 ? -0.0000005f : 0.0000005f);}) // // Maths macros that can be overridden by HAL // #define ACOS(x) acosf(x) #define ATAN2(y, x) atan2f(y, x) #define POW(x, y) powf(x, y) #define SQRT(x) sqrtf(x) #define RSQRT(x) (1.0f / sqrtf(x)) #define CEIL(x) ceilf(x) #define FLOOR(x) floorf(x) #define TRUNC(x) truncf(x) #define LROUND(x) lroundf(x) #define FMOD(x, y) fmodf(x, y) #define HYPOT(x,y) SQRT(HYPOT2(x,y)) // Use NUM_ARGS(__VA_ARGS__) to get the number of variadic arguments #define _NUM_ARGS(_,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,OUT,...) OUT #define NUM_ARGS(V...) _NUM_ARGS(0,V,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0) #ifdef __cplusplus #ifndef _MINMAX_H_ #define _MINMAX_H_ extern "C++" { // C++11 solution that is standards compliant. Return type is deduced automatically template static inline constexpr auto _MIN(const L lhs, const R rhs) -> decltype(lhs + rhs) { return lhs < rhs ? lhs : rhs; } template static inline constexpr auto _MAX(const L lhs, const R rhs) -> decltype(lhs + rhs) { return lhs > rhs ? lhs : rhs; } template static inline constexpr const T _MIN(T V, Ts... Vs) { return _MIN(V, _MIN(Vs...)); } template static inline constexpr const T _MAX(T V, Ts... Vs) { return _MAX(V, _MAX(Vs...)); } } #endif // C++11 solution that is standard compliant. is not available on all platform namespace Private { template struct enable_if { }; template struct enable_if { typedef _Tp type; }; template struct is_same { enum { value = false }; }; template struct is_same { enum { value = true }; }; template struct first_type_of { typedef T type; }; template struct first_type_of { typedef T type; }; } // C++11 solution using SFINAE to detect the existance of a member in a class at compile time. // It creates a HasMember structure containing 'value' set to true if the member exists #define HAS_MEMBER_IMPL(Member) \ namespace Private { \ template struct HasMember_ ## Member { \ template static Yes& test( decltype(&C::Member) ) ; \ template static No& test(...); \ enum { value = sizeof(test(0)) == sizeof(Yes) }; }; \ } // Call the method if it exists, but do nothing if it does not. The method is detected at compile time. // If the method exists, this is inlined and does not cost anything. Else, an "empty" wrapper is created, returning a default value #define CALL_IF_EXISTS_IMPL(Return, Method, ...) \ HAS_MEMBER_IMPL(Method) \ namespace Private { \ template FORCE_INLINE typename enable_if::value, Return>::type Call_ ## Method(T * t, Args... a) { return static_cast(t->Method(a...)); } \ _UNUSED static Return Call_ ## Method(...) { return __VA_ARGS__; } \ } #define CALL_IF_EXISTS(Return, That, Method, ...) \ static_cast(Private::Call_ ## Method(That, ##__VA_ARGS__)) // Compile-time string manipulation namespace CompileTimeString { // Simple compile-time parser to find the position of the end of a string constexpr const char* findStringEnd(const char *str) { return *str ? findStringEnd(str + 1) : str; } // Check whether a string contains a slash constexpr bool containsSlash(const char *str) { return *str == '/' ? true : (*str ? containsSlash(str + 1) : false); } // Find the last position of the slash constexpr const char* findLastSlashPos(const char* str) { return *str == '/' ? (str + 1) : findLastSlashPos(str - 1); } // Compile-time evaluation of the last part of a file path // Typically used to shorten the path to file in compiled strings // CompileTimeString::baseName(__FILE__) returns "macros.h" and not /path/to/Marlin/src/core/macros.h constexpr const char* baseName(const char* str) { return containsSlash(str) ? findLastSlashPos(findStringEnd(str)) : str; } } #define ONLY_FILENAME CompileTimeString::baseName(__FILE__) #else #define MIN_2(a,b) ((a)<(b)?(a):(b)) #define MIN_3(a,V...) MIN_2(a,MIN_2(V)) #define MIN_4(a,V...) MIN_2(a,MIN_3(V)) #define MIN_5(a,V...) MIN_2(a,MIN_4(V)) #define MIN_6(a,V...) MIN_2(a,MIN_5(V)) #define MIN_7(a,V...) MIN_2(a,MIN_6(V)) #define MIN_8(a,V...) MIN_2(a,MIN_7(V)) #define MIN_9(a,V...) MIN_2(a,MIN_8(V)) #define MIN_10(a,V...) MIN_2(a,MIN_9(V)) #define __MIN_N(N,V...) MIN_##N(V) #define _MIN_N(N,V...) __MIN_N(N,V) #define _MIN(V...) _MIN_N(NUM_ARGS(V), V) #define MAX_2(a,b) ((a)>(b)?(a):(b)) #define MAX_3(a,V...) MAX_2(a,MAX_2(V)) #define MAX_4(a,V...) MAX_2(a,MAX_3(V)) #define MAX_5(a,V...) MAX_2(a,MAX_4(V)) #define MAX_6(a,V...) MAX_2(a,MAX_5(V)) #define MAX_7(a,V...) MAX_2(a,MAX_6(V)) #define MAX_8(a,V...) MAX_2(a,MAX_7(V)) #define MAX_9(a,V...) MAX_2(a,MAX_8(V)) #define MAX_10(a,V...) MAX_2(a,MAX_9(V)) #define __MAX_N(N,V...) MAX_##N(V) #define _MAX_N(N,V...) __MAX_N(N,V) #define _MAX(V...) _MAX_N(NUM_ARGS(V), V) #endif // Macros for adding #define INC_0 1 #define INC_1 2 #define INC_2 3 #define INC_3 4 #define INC_4 5 #define INC_5 6 #define INC_6 7 #define INC_7 8 #define INC_8 9 #define INC_9 10 #define INC_10 11 #define INC_11 12 #define INC_12 13 #define INC_13 14 #define INC_14 15 #define INC_15 16 #define INCREMENT_(n) INC_##n #define INCREMENT(n) INCREMENT_(n) #define ADD0(N) N #define ADD1(N) INCREMENT_(N) #define ADD2(N) ADD1(ADD1(N)) #define ADD3(N) ADD1(ADD2(N)) #define ADD4(N) ADD2(ADD2(N)) #define ADD5(N) ADD2(ADD3(N)) #define ADD6(N) ADD3(ADD3(N)) #define ADD7(N) ADD3(ADD4(N)) #define ADD8(N) ADD4(ADD4(N)) #define ADD9(N) ADD4(ADD5(N)) #define ADD10(N) ADD5(ADD5(N)) // Macros for subtracting #define DEC_0 0 #define DEC_1 0 #define DEC_2 1 #define DEC_3 2 #define DEC_4 3 #define DEC_5 4 #define DEC_6 5 #define DEC_7 6 #define DEC_8 7 #define DEC_9 8 #define DEC_10 9 #define DEC_11 10 #define DEC_12 11 #define DEC_13 12 #define DEC_14 13 #define DEC_15 14 #define DECREMENT_(n) DEC_##n #define DECREMENT(n) DECREMENT_(n) #define SUB0(N) N #define SUB1(N) DECREMENT_(N) #define SUB2(N) SUB1(SUB1(N)) #define SUB3(N) SUB1(SUB2(N)) #define SUB4(N) SUB2(SUB2(N)) #define SUB5(N) SUB2(SUB3(N)) #define SUB6(N) SUB3(SUB3(N)) #define SUB7(N) SUB3(SUB4(N)) #define SUB8(N) SUB4(SUB4(N)) #define SUB9(N) SUB4(SUB5(N)) #define SUB10(N) SUB5(SUB5(N)) // // Primitives supporting precompiler REPEAT // #define FIRST(a,...) a #define SECOND(a,b,...) b #define THIRD(a,b,c,...) c // Defer expansion #define EMPTY() #define DEFER(M) M EMPTY() #define DEFER2(M) M EMPTY EMPTY()() #define DEFER3(M) M EMPTY EMPTY EMPTY()()() #define DEFER4(M) M EMPTY EMPTY EMPTY EMPTY()()()() // Force define expansion #define EVAL(V...) EVAL16(V) #define EVAL1024(V...) EVAL512(EVAL512(V)) #define EVAL512(V...) EVAL256(EVAL256(V)) #define EVAL256(V...) EVAL128(EVAL128(V)) #define EVAL128(V...) EVAL64(EVAL64(V)) #define EVAL64(V...) EVAL32(EVAL32(V)) #define EVAL32(V...) EVAL16(EVAL16(V)) #define EVAL16(V...) EVAL8(EVAL8(V)) #define EVAL8(V...) EVAL4(EVAL4(V)) #define EVAL4(V...) EVAL2(EVAL2(V)) #define EVAL2(V...) EVAL1(EVAL1(V)) #define EVAL1(V...) V #define IS_PROBE(V...) SECOND(V, 0) // Get the second item passed, or 0 #define PROBE() ~, 1 // Second item will be 1 if this is passed #define _NOT_0 PROBE() #define NOT(x) IS_PROBE(_CAT(_NOT_, x)) // NOT('0') gets '1'. Anything else gets '0'. #define _BOOL(x) NOT(NOT(x)) // NOT('0') gets '0'. Anything else gets '1'. #define IF_ELSE(TF) _IF_ELSE(_BOOL(TF)) #define _IF_ELSE(TF) _CAT(_IF_, TF) #define _IF_1(V...) V _IF_1_ELSE #define _IF_0(...) _IF_0_ELSE #define _IF_1_ELSE(...) #define _IF_0_ELSE(V...) V #define HAS_ARGS(V...) _BOOL(FIRST(_END_OF_ARGUMENTS_ V)()) #define _END_OF_ARGUMENTS_() 0 // Simple Inline IF Macros, friendly to use in other macro definitions #define IF(O, A, B) ((O) ? (A) : (B)) #define IF_0(O, A) IF(O, A, 0) #define IF_1(O, A) IF(O, A, 1) // // REPEAT core macros. Recurse N times with ascending I. // // Call OP(I) N times with ascending counter. #define _REPEAT(_RPT_I,_RPT_N,_RPT_OP) \ _RPT_OP(_RPT_I) \ IF_ELSE(SUB1(_RPT_N)) \ ( DEFER2(__REPEAT)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP) ) \ ( /* Do nothing */ ) #define __REPEAT() _REPEAT // Call OP(I, ...) N times with ascending counter. #define _REPEAT2(_RPT_I,_RPT_N,_RPT_OP,V...) \ _RPT_OP(_RPT_I,V) \ IF_ELSE(SUB1(_RPT_N)) \ ( DEFER2(__REPEAT2)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP,V) ) \ ( /* Do nothing */ ) #define __REPEAT2() _REPEAT2 // Repeat a macro passing S...N-1. #define REPEAT_S(S,N,OP) EVAL(_REPEAT(S,SUB##S(N),OP)) #define REPEAT(N,OP) REPEAT_S(0,N,OP) // Repeat a macro passing 0...N-1 plus additional arguments. #define REPEAT2_S(S,N,OP,V...) EVAL(_REPEAT2(S,SUB##S(N),OP,V)) #define REPEAT2(N,OP,V...) REPEAT2_S(0,N,OP,V) // Use RREPEAT macros with REPEAT macros for nesting #define _RREPEAT(_RPT_I,_RPT_N,_RPT_OP) \ _RPT_OP(_RPT_I) \ IF_ELSE(SUB1(_RPT_N)) \ ( DEFER2(__RREPEAT)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP) ) \ ( /* Do nothing */ ) #define __RREPEAT() _RREPEAT #define _RREPEAT2(_RPT_I,_RPT_N,_RPT_OP,V...) \ _RPT_OP(_RPT_I,V) \ IF_ELSE(SUB1(_RPT_N)) \ ( DEFER2(__RREPEAT2)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP,V) ) \ ( /* Do nothing */ ) #define __RREPEAT2() _RREPEAT2 #define RREPEAT_S(S,N,OP) EVAL1024(_RREPEAT(S,SUB##S(N),OP)) #define RREPEAT(N,OP) RREPEAT_S(0,N,OP) #define RREPEAT2_S(S,N,OP,V...) EVAL1024(_RREPEAT2(S,SUB##S(N),OP,V)) #define RREPEAT2(N,OP,V...) RREPEAT2_S(0,N,OP,V) // See https://github.com/swansontec/map-macro #define MAP_OUT #define MAP_END(...) #define MAP_GET_END() 0, MAP_END #define MAP_NEXT0(test, next, ...) next MAP_OUT #define MAP_NEXT1(test, next) MAP_NEXT0 (test, next, 0) #define MAP_NEXT(test, next) MAP_NEXT1 (MAP_GET_END test, next) #define MAP0(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP1) (f, peek, __VA_ARGS__) #define MAP1(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP0) (f, peek, __VA_ARGS__) #define MAP(f, ...) EVAL512 (MAP1 (f, __VA_ARGS__, (), 0))