/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * configuration_store.cpp * * Settings and EEPROM storage * * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM * in the functions below, also increment the version number. This makes sure that * the default values are used whenever there is a change to the data, to prevent * wrong data being written to the variables. * * ALSO: Variables in the Store and Retrieve sections must be in the same order. * If a feature is disabled, some data must still be written that, when read, * either sets a Sane Default, or results in No Change to the existing value. * */ // Change EEPROM version if the structure changes #define EEPROM_VERSION "V49" #define EEPROM_OFFSET 100 // Check the integrity of data offsets. // Can be disabled for production build. //#define DEBUG_EEPROM_READWRITE #include "configuration_store.h" #include "Marlin.h" #include "language.h" #include "endstops.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "stepper.h" #include "gcode.h" #include "vector_3.h" #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif #if HAS_TRINAMIC #include "stepper_indirection.h" #endif #if ENABLED(AUTO_BED_LEVELING_UBL) #include "ubl.h" #endif #if ENABLED(FWRETRACT) #include "fwretract.h" #endif typedef struct PID { float Kp, Ki, Kd; } PID; typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC; /** * Current EEPROM Layout * * Keep this data structure up to date so * EEPROM size is known at compile time! */ typedef struct SettingsDataStruct { char version[4]; // Vnn\0 uint16_t crc; // Data Checksum // // DISTINCT_E_FACTORS // uint8_t esteppers; // XYZE_N - XYZ float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N] planner_max_feedrate_mm_s[XYZE_N]; // M203 XYZE planner.max_feedrate_mm_s[XYZE_N] uint32_t planner_max_acceleration_mm_per_s2[XYZE_N]; // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N] float planner_acceleration, // M204 P planner.acceleration planner_retract_acceleration, // M204 R planner.retract_acceleration planner_travel_acceleration, // M204 T planner.travel_acceleration planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s planner_min_travel_feedrate_mm_s; // M205 T planner.min_travel_feedrate_mm_s uint32_t planner_min_segment_time_us; // M205 B planner.min_segment_time_us float planner_max_jerk[XYZE]; // M205 XYZE planner.max_jerk[XYZE] float home_offset[XYZ]; // M206 XYZ #if HOTENDS > 1 float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ #endif // // ENABLE_LEVELING_FADE_HEIGHT // float planner_z_fade_height; // M420 Zn planner.z_fade_height // // MESH_BED_LEVELING // float mbl_z_offset; // mbl.z_offset uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y #if ENABLED(MESH_BED_LEVELING) float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values #else float mbl_z_values[3][3]; #endif // // HAS_BED_PROBE // float zprobe_zoffset; // M851 Z // // ABL_PLANAR // matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix // // AUTO_BED_LEVELING_BILINEAR // uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y int bilinear_grid_spacing[2], bilinear_start[2]; // G29 L F #if ENABLED(AUTO_BED_LEVELING_BILINEAR) float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29 #else float z_values[3][3]; #endif // // AUTO_BED_LEVELING_UBL // bool planner_leveling_active; // M420 S planner.leveling_active int8_t ubl_storage_slot; // ubl.storage_slot // // DELTA / [XYZ]_DUAL_ENDSTOPS // #if ENABLED(DELTA) float delta_height, // M666 H delta_endstop_adj[ABC], // M666 XYZ delta_radius, // M665 R delta_diagonal_rod, // M665 L delta_segments_per_second, // M665 S delta_calibration_radius, // M665 B delta_tower_angle_trim[ABC]; // M665 XYZ #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) float x_endstop_adj, // M666 X y_endstop_adj, // M666 Y z_endstop_adj; // M666 Z float xyz_dual_reserved[8]; #else float xyz_dual_placeholder[11]; #endif // // ULTIPANEL // int lcd_preheat_hotend_temp[2], // M145 S0 H lcd_preheat_bed_temp[2], // M145 S0 B lcd_preheat_fan_speed[2]; // M145 S0 F // // PIDTEMP // PIDC hotendPID[MAX_EXTRUDERS]; // M301 En PIDC / M303 En U int lpq_len; // M301 L // // PIDTEMPBED // PID bedPID; // M304 PID / M303 E-1 U // // HAS_LCD_CONTRAST // uint16_t lcd_contrast; // M250 C // // FWRETRACT // bool autoretract_enabled; // M209 S float retract_length, // M207 S retract_feedrate_mm_s, // M207 F retract_zlift, // M207 Z retract_recover_length, // M208 S retract_recover_feedrate_mm_s, // M208 F swap_retract_length, // M207 W swap_retract_recover_length, // M208 W swap_retract_recover_feedrate_mm_s; // M208 R // // !NO_VOLUMETRIC // bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled float planner_filament_size[MAX_EXTRUDERS]; // M200 T D planner.filament_size[] // // HAS_TRINAMIC // uint16_t tmc_stepper_current[11]; // M906 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4 int16_t tmc_sgt[2]; // M914 X Y // // LIN_ADVANCE // float planner_extruder_advance_k, // M900 K planner.extruder_advance_k planner_advance_ed_ratio; // M900 WHD planner.advance_ed_ratio // // HAS_MOTOR_CURRENT_PWM // uint32_t motor_current_setting[XYZ]; // M907 X Z E // // CNC_COORDINATE_SYSTEMS // float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3 // // SKEW_CORRECTION // float planner_xy_skew_factor, // M852 I planner.xy_skew_factor planner_xz_skew_factor, // M852 J planner.xz_skew_factor planner_yz_skew_factor; // M852 K planner.yz_skew_factor // // ADVANCED_PAUSE_FEATURE // float filament_change_unload_length[MAX_EXTRUDERS], // M603 T U filament_change_load_length[MAX_EXTRUDERS]; // M603 T L } SettingsData; MarlinSettings settings; #if ENABLED(AUTO_BED_LEVELING_BILINEAR) extern void refresh_bed_level(); #endif uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); } /** * Post-process after Retrieve or Reset */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float new_z_fade_height; #endif void MarlinSettings::postprocess() { const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] }; // steps per s2 needs to be updated to agree with units per s2 planner.reset_acceleration_rates(); // Make sure delta kinematics are updated before refreshing the // planner position so the stepper counts will be set correctly. #if ENABLED(DELTA) recalc_delta_settings(); #endif #if ENABLED(PIDTEMP) thermalManager.updatePID(); #endif #if DISABLED(NO_VOLUMETRICS) planner.calculate_volumetric_multipliers(); #else for (uint8_t i = COUNT(planner.e_factor); i--;) planner.refresh_e_factor(i); #endif #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE) // Software endstops depend on home_offset LOOP_XYZ(i) update_software_endstops((AxisEnum)i); #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) set_z_fade_height(new_z_fade_height, false); // false = no report #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) refresh_bed_level(); //set_bed_leveling_enabled(leveling_is_on); #endif #if HAS_MOTOR_CURRENT_PWM stepper.refresh_motor_power(); #endif // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm // and init stepper.count[], planner.position[] with current_position planner.refresh_positioning(); // Various factors can change the current position if (memcmp(oldpos, current_position, sizeof(oldpos))) report_current_position(); } #if ENABLED(EEPROM_SETTINGS) #define DUMMY_PID_VALUE 3000.0f #define EEPROM_START() int eeprom_index = EEPROM_OFFSET #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR) #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc) #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc) #define EEPROM_READ_ALWAYS(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, true) #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_error = true; }while(0) #if ENABLED(DEBUG_EEPROM_READWRITE) #define _FIELD_TEST(FIELD) \ EEPROM_ASSERT( \ eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \ "Field " STRINGIFY(FIELD) " mismatch." \ ) #else #define _FIELD_TEST(FIELD) NOOP #endif const char version[4] = EEPROM_VERSION; bool MarlinSettings::eeprom_error, MarlinSettings::validating; void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) { if (eeprom_error) { pos += size; return; } while (size--) { uint8_t * const p = (uint8_t * const)pos; uint8_t v = *value; // EEPROM has only ~100,000 write cycles, // so only write bytes that have changed! if (v != eeprom_read_byte(p)) { eeprom_write_byte(p, v); if (eeprom_read_byte(p) != v) { SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE); eeprom_error = true; return; } } crc16(crc, &v, 1); pos++; value++; }; } void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool force/*=false*/) { if (eeprom_error) { pos += size; return; } do { uint8_t c = eeprom_read_byte((unsigned char*)pos); if (!validating || force) *value = c; crc16(crc, &c, 1); pos++; value++; } while (--size); } bool MarlinSettings::size_error(const uint16_t size) { if (size != datasize()) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("EEPROM datasize error."); return true; } return false; } /** * M500 - Store Configuration */ bool MarlinSettings::save() { float dummy = 0.0f; char ver[4] = "ERR"; uint16_t working_crc = 0; EEPROM_START(); eeprom_error = false; EEPROM_WRITE(ver); // invalidate data first EEPROM_SKIP(working_crc); // Skip the checksum slot working_crc = 0; // clear before first "real data" _FIELD_TEST(esteppers); const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ; EEPROM_WRITE(esteppers); EEPROM_WRITE(planner.axis_steps_per_mm); EEPROM_WRITE(planner.max_feedrate_mm_s); EEPROM_WRITE(planner.max_acceleration_mm_per_s2); EEPROM_WRITE(planner.acceleration); EEPROM_WRITE(planner.retract_acceleration); EEPROM_WRITE(planner.travel_acceleration); EEPROM_WRITE(planner.min_feedrate_mm_s); EEPROM_WRITE(planner.min_travel_feedrate_mm_s); EEPROM_WRITE(planner.min_segment_time_us); EEPROM_WRITE(planner.max_jerk); _FIELD_TEST(home_offset); #if !HAS_HOME_OFFSET const float home_offset[XYZ] = { 0 }; #endif EEPROM_WRITE(home_offset); #if HOTENDS > 1 // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]); #endif // // Global Leveling // #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float zfh = planner.z_fade_height; #else const float zfh = 10.0; #endif EEPROM_WRITE(zfh); // // Mesh Bed Leveling // #if ENABLED(MESH_BED_LEVELING) // Compile time test that sizeof(mbl.z_values) is as expected static_assert( sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]), "MBL Z array is the wrong size." ); const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y; EEPROM_WRITE(mbl.z_offset); EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); EEPROM_WRITE(mbl.z_values); #else // For disabled MBL write a default mesh dummy = 0.0f; const uint8_t mesh_num_x = 3, mesh_num_y = 3; EEPROM_WRITE(dummy); // z_offset EEPROM_WRITE(mesh_num_x); EEPROM_WRITE(mesh_num_y); for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy); #endif // MESH_BED_LEVELING _FIELD_TEST(zprobe_zoffset); #if !HAS_BED_PROBE const float zprobe_zoffset = 0; #endif EEPROM_WRITE(zprobe_zoffset); // // Planar Bed Leveling matrix // #if ABL_PLANAR EEPROM_WRITE(planner.bed_level_matrix); #else dummy = 0.0; for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy); #endif // // Bilinear Auto Bed Leveling // #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Compile time test that sizeof(z_values) is as expected static_assert( sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]), "Bilinear Z array is the wrong size." ); const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y; EEPROM_WRITE(grid_max_x); // 1 byte EEPROM_WRITE(grid_max_y); // 1 byte EEPROM_WRITE(bilinear_grid_spacing); // 2 ints EEPROM_WRITE(bilinear_start); // 2 ints EEPROM_WRITE(z_values); // 9-256 floats #else // For disabled Bilinear Grid write an empty 3x3 grid const uint8_t grid_max_x = 3, grid_max_y = 3; const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 }; dummy = 0.0f; EEPROM_WRITE(grid_max_x); EEPROM_WRITE(grid_max_y); EEPROM_WRITE(bilinear_grid_spacing); EEPROM_WRITE(bilinear_start); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy); #endif // AUTO_BED_LEVELING_BILINEAR _FIELD_TEST(planner_leveling_active); #if ENABLED(AUTO_BED_LEVELING_UBL) EEPROM_WRITE(planner.leveling_active); EEPROM_WRITE(ubl.storage_slot); #else const bool ubl_active = false; const int8_t storage_slot = -1; EEPROM_WRITE(ubl_active); EEPROM_WRITE(storage_slot); #endif // AUTO_BED_LEVELING_UBL // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS #if ENABLED(DELTA) _FIELD_TEST(delta_height); EEPROM_WRITE(delta_height); // 1 float EEPROM_WRITE(delta_endstop_adj); // 3 floats EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_calibration_radius); // 1 float EEPROM_WRITE(delta_tower_angle_trim); // 3 floats #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) _FIELD_TEST(x_endstop_adj); // Write dual endstops in X, Y, Z order. Unused = 0.0 dummy = 0.0f; #if ENABLED(X_DUAL_ENDSTOPS) EEPROM_WRITE(x_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if ENABLED(Y_DUAL_ENDSTOPS) EEPROM_WRITE(y_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif #if ENABLED(Z_DUAL_ENDSTOPS) EEPROM_WRITE(z_endstop_adj); // 1 float #else EEPROM_WRITE(dummy); #endif for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy); #else dummy = 0.0f; for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy); #endif _FIELD_TEST(lcd_preheat_hotend_temp); #if DISABLED(ULTIPANEL) constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND }, lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED }, lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED }; #endif EEPROM_WRITE(lcd_preheat_hotend_temp); EEPROM_WRITE(lcd_preheat_bed_temp); EEPROM_WRITE(lcd_preheat_fan_speed); for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { #if ENABLED(PIDTEMP) if (e < HOTENDS) { EEPROM_WRITE(PID_PARAM(Kp, e)); EEPROM_WRITE(PID_PARAM(Ki, e)); EEPROM_WRITE(PID_PARAM(Kd, e)); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_WRITE(PID_PARAM(Kc, e)); #else dummy = 1.0f; // 1.0 = default kc EEPROM_WRITE(dummy); #endif } else #endif // !PIDTEMP { dummy = DUMMY_PID_VALUE; // When read, will not change the existing value EEPROM_WRITE(dummy); // Kp dummy = 0.0f; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc } } // Hotends Loop #if DISABLED(PID_EXTRUSION_SCALING) int lpq_len = 20; #endif EEPROM_WRITE(lpq_len); #if DISABLED(PIDTEMPBED) dummy = DUMMY_PID_VALUE; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); #else EEPROM_WRITE(thermalManager.bedKp); EEPROM_WRITE(thermalManager.bedKi); EEPROM_WRITE(thermalManager.bedKd); #endif _FIELD_TEST(lcd_contrast); #if !HAS_LCD_CONTRAST const uint16_t lcd_contrast = 32; #endif EEPROM_WRITE(lcd_contrast); #if DISABLED(FWRETRACT) const bool autoretract_enabled = false; const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 }; EEPROM_WRITE(autoretract_enabled); EEPROM_WRITE(autoretract_defaults); #else EEPROM_WRITE(fwretract.autoretract_enabled); EEPROM_WRITE(fwretract.retract_length); EEPROM_WRITE(fwretract.retract_feedrate_mm_s); EEPROM_WRITE(fwretract.retract_zlift); EEPROM_WRITE(fwretract.retract_recover_length); EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s); EEPROM_WRITE(fwretract.swap_retract_length); EEPROM_WRITE(fwretract.swap_retract_recover_length); EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s); #endif // // Volumetric & Filament Size // _FIELD_TEST(parser_volumetric_enabled); #if DISABLED(NO_VOLUMETRICS) EEPROM_WRITE(parser.volumetric_enabled); // Save filament sizes for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q]; EEPROM_WRITE(dummy); } #else const bool volumetric_enabled = false; dummy = DEFAULT_NOMINAL_FILAMENT_DIA; EEPROM_WRITE(volumetric_enabled); for (uint8_t q = MAX_EXTRUDERS; q--;) EEPROM_WRITE(dummy); #endif // // Save TMC2130 or TMC2208 Configuration, and placeholder values // _FIELD_TEST(tmc_stepper_current); uint16_t currents[11] = { #if HAS_TRINAMIC #if X_IS_TRINAMIC stepperX.getCurrent(), #else 0, #endif #if Y_IS_TRINAMIC stepperY.getCurrent(), #else 0, #endif #if Z_IS_TRINAMIC stepperZ.getCurrent(), #else 0, #endif #if X2_IS_TRINAMIC stepperX2.getCurrent(), #else 0, #endif #if Y2_IS_TRINAMIC stepperY2.getCurrent(), #else 0, #endif #if Z2_IS_TRINAMIC stepperZ2.getCurrent(), #else 0, #endif #if E0_IS_TRINAMIC stepperE0.getCurrent(), #else 0, #endif #if E1_IS_TRINAMIC stepperE1.getCurrent(), #else 0, #endif #if E2_IS_TRINAMIC stepperE2.getCurrent(), #else 0, #endif #if E3_IS_TRINAMIC stepperE3.getCurrent(), #else 0, #endif #if E4_IS_TRINAMIC stepperE4.getCurrent() #else 0 #endif #else 0 #endif }; EEPROM_WRITE(currents); // // TMC2130 Sensorless homing threshold // int16_t thrs; #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) thrs = stepperX.sgt(); #else thrs = 0; #endif EEPROM_WRITE(thrs); #if ENABLED(Y_IS_TMC2130) thrs = stepperY.sgt(); #else thrs = 0; #endif EEPROM_WRITE(thrs); #else thrs = 0; for (uint8_t q = 2; q--;) EEPROM_WRITE(thrs); #endif // // Linear Advance // _FIELD_TEST(planner_extruder_advance_k); #if ENABLED(LIN_ADVANCE) EEPROM_WRITE(planner.extruder_advance_k); EEPROM_WRITE(planner.advance_ed_ratio); #else dummy = 0.0f; EEPROM_WRITE(dummy); EEPROM_WRITE(dummy); #endif #if HAS_MOTOR_CURRENT_PWM for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]); #else const uint32_t dummyui32 = 0; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32); #endif // // CNC Coordinate Systems // _FIELD_TEST(coordinate_system); #if ENABLED(CNC_COORDINATE_SYSTEMS) EEPROM_WRITE(coordinate_system); // 27 floats #else dummy = 0.0f; for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy); #endif // // Skew correction factors // _FIELD_TEST(planner_xy_skew_factor); #if ENABLED(SKEW_CORRECTION) EEPROM_WRITE(planner.xy_skew_factor); EEPROM_WRITE(planner.xz_skew_factor); EEPROM_WRITE(planner.yz_skew_factor); #else dummy = 0.0f; for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); #endif // // Advanced Pause filament load & unload lengths // _FIELD_TEST(filament_change_unload_length); #if ENABLED(ADVANCED_PAUSE_FEATURE) for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q]; EEPROM_WRITE(dummy); } for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { if (q < COUNT(filament_change_load_length)) dummy = filament_change_load_length[q]; EEPROM_WRITE(dummy); } #else dummy = 0.0f; for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy); #endif // // Validate CRC and Data Size // if (!eeprom_error) { const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET), final_crc = working_crc; // Write the EEPROM header eeprom_index = EEPROM_OFFSET; EEPROM_WRITE(version); EEPROM_WRITE(final_crc); // Report storage size #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START(); SERIAL_ECHOPAIR("Settings Stored (", eeprom_size); SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc); SERIAL_ECHOLNPGM(")"); #endif eeprom_error |= size_error(eeprom_size); } // // UBL Mesh // #if ENABLED(UBL_SAVE_ACTIVE_ON_M500) if (ubl.storage_slot >= 0) store_mesh(ubl.storage_slot); #endif return !eeprom_error; } /** * M501 - Retrieve Configuration */ bool MarlinSettings::_load() { uint16_t working_crc = 0; EEPROM_START(); char stored_ver[4]; EEPROM_READ_ALWAYS(stored_ver); uint16_t stored_crc; EEPROM_READ_ALWAYS(stored_crc); // Version has to match or defaults are used if (strncmp(version, stored_ver, 3) != 0) { if (stored_ver[3] != '\0') { stored_ver[0] = '?'; stored_ver[1] = '\0'; } #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START(); SERIAL_ECHOPGM("EEPROM version mismatch "); SERIAL_ECHOPAIR("(EEPROM=", stored_ver); SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")"); #endif if (!validating) reset(); eeprom_error = true; } else { float dummy = 0; #if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) bool dummyb; #endif working_crc = 0; // Init to 0. Accumulated by EEPROM_READ // Number of esteppers may change uint8_t esteppers; EEPROM_READ_ALWAYS(esteppers); // // Planner Motion // // Get only the number of E stepper parameters previously stored // Any steppers added later are set to their defaults const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE; const uint32_t def3[] = DEFAULT_MAX_ACCELERATION; float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers]; uint32_t tmp3[XYZ + esteppers]; EEPROM_READ(tmp1); EEPROM_READ(tmp2); EEPROM_READ(tmp3); if (!validating) LOOP_XYZE_N(i) { planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1]; planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1]; planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1]; } EEPROM_READ(planner.acceleration); EEPROM_READ(planner.retract_acceleration); EEPROM_READ(planner.travel_acceleration); EEPROM_READ(planner.min_feedrate_mm_s); EEPROM_READ(planner.min_travel_feedrate_mm_s); EEPROM_READ(planner.min_segment_time_us); EEPROM_READ(planner.max_jerk); // // Home Offset (M206) // #if !HAS_HOME_OFFSET float home_offset[XYZ]; #endif EEPROM_READ(home_offset); // // Hotend Offsets, if any // #if HOTENDS > 1 // Skip hotend 0 which must be 0 for (uint8_t e = 1; e < HOTENDS; e++) LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]); #endif // // Global Leveling // #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) EEPROM_READ(new_z_fade_height); #else EEPROM_READ(dummy); #endif // // Mesh (Manual) Bed Leveling // bool leveling_is_on; uint8_t mesh_num_x, mesh_num_y; EEPROM_READ_ALWAYS(leveling_is_on); EEPROM_READ(dummy); EEPROM_READ_ALWAYS(mesh_num_x); EEPROM_READ_ALWAYS(mesh_num_y); #if ENABLED(MESH_BED_LEVELING) if (!validating) mbl.z_offset = dummy; if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { // EEPROM data fits the current mesh EEPROM_READ(mbl.z_values); } else { // EEPROM data is stale if (!validating) mbl.reset(); for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); } #else // MBL is disabled - skip the stored data for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); #endif // MESH_BED_LEVELING #if !HAS_BED_PROBE float zprobe_zoffset; #endif EEPROM_READ(zprobe_zoffset); // // Planar Bed Leveling matrix // #if ABL_PLANAR EEPROM_READ(planner.bed_level_matrix); #else for (uint8_t q = 9; q--;) EEPROM_READ(dummy); #endif // // Bilinear Auto Bed Leveling // uint8_t grid_max_x, grid_max_y; EEPROM_READ_ALWAYS(grid_max_x); // 1 byte EEPROM_READ_ALWAYS(grid_max_y); // 1 byte #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { if (!validating) set_bed_leveling_enabled(false); EEPROM_READ(bilinear_grid_spacing); // 2 ints EEPROM_READ(bilinear_start); // 2 ints EEPROM_READ(z_values); // 9 to 256 floats } else // EEPROM data is stale #endif // AUTO_BED_LEVELING_BILINEAR { // Skip past disabled (or stale) Bilinear Grid data int bgs[2], bs[2]; EEPROM_READ(bgs); EEPROM_READ(bs); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy); } // // Unified Bed Leveling active state // #if ENABLED(AUTO_BED_LEVELING_UBL) EEPROM_READ(planner.leveling_active); EEPROM_READ(ubl.storage_slot); #else uint8_t dummyui8; EEPROM_READ(dummyb); EEPROM_READ(dummyui8); #endif // AUTO_BED_LEVELING_UBL // // DELTA Geometry or Dual Endstops offsets // #if ENABLED(DELTA) EEPROM_READ(delta_height); // 1 float EEPROM_READ(delta_endstop_adj); // 3 floats EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_READ(delta_calibration_radius); // 1 float EEPROM_READ(delta_tower_angle_trim); // 3 floats #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(X_DUAL_ENDSTOPS) EEPROM_READ(x_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if ENABLED(Y_DUAL_ENDSTOPS) EEPROM_READ(y_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif #if ENABLED(Z_DUAL_ENDSTOPS) EEPROM_READ(z_endstop_adj); // 1 float #else EEPROM_READ(dummy); #endif for (uint8_t q=8; q--;) EEPROM_READ(dummy); #else for (uint8_t q=11; q--;) EEPROM_READ(dummy); #endif // // LCD Preheat settings // #if DISABLED(ULTIPANEL) int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2]; #endif EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats EEPROM_READ(lcd_preheat_bed_temp); // 2 floats EEPROM_READ(lcd_preheat_fan_speed); // 2 floats //EEPROM_ASSERT( // WITHIN(lcd_preheat_fan_speed, 0, 255), // "lcd_preheat_fan_speed out of range" //); // // Hotend PID // #if ENABLED(PIDTEMP) for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) { EEPROM_READ(dummy); // Kp if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { // do not need to scale PID values as the values in EEPROM are already scaled if (!validating) PID_PARAM(Kp, e) = dummy; EEPROM_READ(PID_PARAM(Ki, e)); EEPROM_READ(PID_PARAM(Kd, e)); #if ENABLED(PID_EXTRUSION_SCALING) EEPROM_READ(PID_PARAM(Kc, e)); #else EEPROM_READ(dummy); #endif } else { for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc } } #else // !PIDTEMP // 4 x 4 = 16 slots for PID parameters for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc #endif // !PIDTEMP // // PID Extrusion Scaling // #if DISABLED(PID_EXTRUSION_SCALING) int lpq_len; #endif EEPROM_READ(lpq_len); // // Heated Bed PID // #if ENABLED(PIDTEMPBED) EEPROM_READ(dummy); // bedKp if (dummy != DUMMY_PID_VALUE) { if (!validating) thermalManager.bedKp = dummy; EEPROM_READ(thermalManager.bedKi); EEPROM_READ(thermalManager.bedKd); } #else for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd #endif // // LCD Contrast // #if !HAS_LCD_CONTRAST uint16_t lcd_contrast; #endif EEPROM_READ(lcd_contrast); // // Firmware Retraction // #if ENABLED(FWRETRACT) EEPROM_READ(fwretract.autoretract_enabled); EEPROM_READ(fwretract.retract_length); EEPROM_READ(fwretract.retract_feedrate_mm_s); EEPROM_READ(fwretract.retract_zlift); EEPROM_READ(fwretract.retract_recover_length); EEPROM_READ(fwretract.retract_recover_feedrate_mm_s); EEPROM_READ(fwretract.swap_retract_length); EEPROM_READ(fwretract.swap_retract_recover_length); EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s); #else EEPROM_READ(dummyb); for (uint8_t q=8; q--;) EEPROM_READ(dummy); #endif // // Volumetric & Filament Size // #if DISABLED(NO_VOLUMETRICS) EEPROM_READ(parser.volumetric_enabled); for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { EEPROM_READ(dummy); if (!validating && q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy; } #else EEPROM_READ(dummyb); for (uint8_t q=MAX_EXTRUDERS; q--;) EEPROM_READ(dummy); #endif // // TMC2130 Stepper Current // #if HAS_TRINAMIC #define SET_CURR(N,Q) stepper##Q.setCurrent(val[N], R_SENSE, HOLD_MULTIPLIER) uint16_t val[11]; EEPROM_READ(val); if (!validating) { #if X_IS_TRINAMIC SET_CURR(0, X); #endif #if Y_IS_TRINAMIC SET_CURR(1, Y); #endif #if Z_IS_TRINAMIC SET_CURR(2, Z); #endif #if X2_IS_TRINAMIC SET_CURR(3, X2); #endif #if Y2_IS_TRINAMIC SET_CURR(4, Y2); #endif #if Z2_IS_TRINAMIC SET_CURR(5, Z2); #endif #if E0_IS_TRINAMIC SET_CURR(6, E0); #endif #if E1_IS_TRINAMIC SET_CURR(7, E1); #endif #if E2_IS_TRINAMIC SET_CURR(8, E2); #endif #if E3_IS_TRINAMIC SET_CURR(9, E3); #endif #if E4_IS_TRINAMIC SET_CURR(10, E4); #endif } #else uint16_t val; for (uint8_t q=11; q--;) EEPROM_READ(val); #endif /* * TMC2130 Sensorless homing threshold. * X and X2 use the same value * Y and Y2 use the same value */ int16_t thrs; #if ENABLED(SENSORLESS_HOMING) EEPROM_READ(thrs); if (!validating) { #if ENABLED(X_IS_TMC2130) stepperX.sgt(thrs); #endif #if ENABLED(X2_IS_TMC2130) stepperX2.sgt(thrs); #endif } EEPROM_READ(thrs); if (!validating) { #if ENABLED(Y_IS_TMC2130) stepperY.sgt(thrs); #endif #if ENABLED(Y2_IS_TMC2130) stepperY2.sgt(thrs); #endif } #else for (uint8_t q = 0; q < 2; q++) EEPROM_READ(thrs); #endif // // Linear Advance // #if ENABLED(LIN_ADVANCE) EEPROM_READ(planner.extruder_advance_k); EEPROM_READ(planner.advance_ed_ratio); #else EEPROM_READ(dummy); EEPROM_READ(dummy); #endif // // Motor Current PWM // #if HAS_MOTOR_CURRENT_PWM for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]); #else uint32_t dummyui32; for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32); #endif // // CNC Coordinate System // #if ENABLED(CNC_COORDINATE_SYSTEMS) if (!validating) (void)select_coordinate_system(-1); // Go back to machine space EEPROM_READ(coordinate_system); // 27 floats #else for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy); #endif // // Skew correction factors // #if ENABLED(SKEW_CORRECTION_GCODE) EEPROM_READ(planner.xy_skew_factor); #if ENABLED(SKEW_CORRECTION_FOR_Z) EEPROM_READ(planner.xz_skew_factor); EEPROM_READ(planner.yz_skew_factor); #else EEPROM_READ(dummy); EEPROM_READ(dummy); #endif #else for (uint8_t q = 3; q--;) EEPROM_READ(dummy); #endif // // Advanced Pause filament load & unload lengths // #if ENABLED(ADVANCED_PAUSE_FEATURE) for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { EEPROM_READ(dummy); if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy; } for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { EEPROM_READ(dummy); if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy; } #else for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy); #endif eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET)); if (eeprom_error) { SERIAL_ECHO_START(); SERIAL_ECHOPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET))); SERIAL_ECHOLNPAIR(" Size: ", datasize()); } else if (working_crc != stored_crc) { eeprom_error = true; #if ENABLED(EEPROM_CHITCHAT) SERIAL_ERROR_START(); SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) "); SERIAL_ERROR(stored_crc); SERIAL_ERRORPGM(" != "); SERIAL_ERROR(working_crc); SERIAL_ERRORLNPGM(" (calculated)!"); #endif } else if (!validating) { #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START(); SERIAL_ECHO(version); SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET)); SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc); SERIAL_ECHOLNPGM(")"); #endif } if (!validating) { if (eeprom_error) reset(); else postprocess(); } #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.report_state(); if (!validating) { if (!ubl.sanity_check()) { SERIAL_EOL(); #if ENABLED(EEPROM_CHITCHAT) ubl.echo_name(); SERIAL_ECHOLNPGM(" initialized.\n"); #endif } else { eeprom_error = true; #if ENABLED(EEPROM_CHITCHAT) SERIAL_PROTOCOLPGM("?Can't enable "); ubl.echo_name(); SERIAL_PROTOCOLLNPGM("."); #endif ubl.reset(); } if (ubl.storage_slot >= 0) { load_mesh(ubl.storage_slot); #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot); SERIAL_ECHOLNPGM(" loaded from storage."); #endif } else { ubl.reset(); #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHOLNPGM("UBL System reset()"); #endif } } #endif } #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503) if (!validating) report(); #endif return !eeprom_error; } bool MarlinSettings::validate() { validating = true; const bool success = _load(); validating = false; return success; } bool MarlinSettings::load() { if (validate()) return _load(); reset(); return true; } #if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(EEPROM_CHITCHAT) void ubl_invalid_slot(const int s) { SERIAL_PROTOCOLLNPGM("?Invalid slot."); SERIAL_PROTOCOL(s); SERIAL_PROTOCOLLNPGM(" mesh slots available."); } #endif int16_t MarlinSettings::meshes_start_index() { return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up // or down a little bit without disrupting the mesh data } uint16_t MarlinSettings::calc_num_meshes() { return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values); } void MarlinSettings::store_mesh(const int8_t slot) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { #if ENABLED(EEPROM_CHITCHAT) ubl_invalid_slot(a); SERIAL_PROTOCOLPAIR("E2END=", E2END); SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end); SERIAL_PROTOCOLLNPAIR(" slot=", slot); SERIAL_EOL(); #endif return; } uint16_t crc = 0; int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values); write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc); // Write crc to MAT along with other data, or just tack on to the beginning or end #if ENABLED(EEPROM_CHITCHAT) SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot); #endif #else // Other mesh types #endif } void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) { #if ENABLED(AUTO_BED_LEVELING_UBL) const int16_t a = settings.calc_num_meshes(); if (!WITHIN(slot, 0, a - 1)) { #if ENABLED(EEPROM_CHITCHAT) ubl_invalid_slot(a); #endif return; } uint16_t crc = 0; int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values); uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values; read_data(pos, dest, sizeof(ubl.z_values), &crc); // Compare crc with crc from MAT, or read from end #if ENABLED(EEPROM_CHITCHAT) SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot); #endif #else // Other mesh types #endif } //void MarlinSettings::delete_mesh() { return; } //void MarlinSettings::defrag_meshes() { return; } #endif // AUTO_BED_LEVELING_UBL #else // !EEPROM_SETTINGS bool MarlinSettings::save() { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("EEPROM disabled"); return false; } #endif // !EEPROM_SETTINGS /** * M502 - Reset Configuration */ void MarlinSettings::reset() { static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE; static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION; LOOP_XYZE_N(i) { planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]); planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]); planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]); } planner.acceleration = DEFAULT_ACCELERATION; planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE; planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE; planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME; planner.max_jerk[X_AXIS] = DEFAULT_XJERK; planner.max_jerk[Y_AXIS] = DEFAULT_YJERK; planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK; planner.max_jerk[E_AXIS] = DEFAULT_EJERK; #if HAS_HOME_OFFSET ZERO(home_offset); #endif #if HOTENDS > 1 constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y #ifdef HOTEND_OFFSET_Z , HOTEND_OFFSET_Z #else , { 0 } #endif }; static_assert( tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0, "Offsets for the first hotend must be 0.0." ); LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e]; #endif // // Global Leveling // #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) new_z_fade_height = 0.0; #endif #if HAS_LEVELING reset_bed_level(); #endif #if HAS_BED_PROBE zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #if ENABLED(DELTA) const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM; delta_height = DELTA_HEIGHT; COPY(delta_endstop_adj, adj); delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_calibration_radius = DELTA_CALIBRATION_RADIUS; COPY(delta_tower_angle_trim, dta); #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(X_DUAL_ENDSTOPS) x_endstop_adj = ( #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT X_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #endif #if ENABLED(Y_DUAL_ENDSTOPS) y_endstop_adj = ( #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT Y_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #endif #if ENABLED(Z_DUAL_ENDSTOPS) z_endstop_adj = ( #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT Z_DUAL_ENDSTOPS_ADJUSTMENT #else 0 #endif ); #endif #endif #if ENABLED(ULTIPANEL) lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND; lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND; lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED; lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED; lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED; lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED; #endif #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1 HOTEND_LOOP() #endif { PID_PARAM(Kp, e) = DEFAULT_Kp; PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd); #if ENABLED(PID_EXTRUSION_SCALING) PID_PARAM(Kc, e) = DEFAULT_Kc; #endif } #if ENABLED(PID_EXTRUSION_SCALING) lpq_len = 20; // default last-position-queue size #endif #endif // PIDTEMP #if ENABLED(PIDTEMPBED) thermalManager.bedKp = DEFAULT_bedKp; thermalManager.bedKi = scalePID_i(DEFAULT_bedKi); thermalManager.bedKd = scalePID_d(DEFAULT_bedKd); #endif #if HAS_LCD_CONTRAST lcd_contrast = DEFAULT_LCD_CONTRAST; #endif #if ENABLED(FWRETRACT) fwretract.reset(); #endif #if DISABLED(NO_VOLUMETRICS) parser.volumetric_enabled = #if ENABLED(VOLUMETRIC_DEFAULT_ON) true #else false #endif ; for (uint8_t q = 0; q < COUNT(planner.filament_size); q++) planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; #endif endstops.enable_globally( #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) true #else false #endif ); #if X_IS_TRINAMIC stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if Y_IS_TRINAMIC stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if Z_IS_TRINAMIC stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if X2_IS_TRINAMIC stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if Y2_IS_TRINAMIC stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if Z2_IS_TRINAMIC stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if E0_IS_TRINAMIC stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if E1_IS_TRINAMIC stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if E2_IS_TRINAMIC stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if E3_IS_TRINAMIC stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if E4_IS_TRINAMIC stepperE4.setCurrent(E4_CURRENT, R_SENSE, HOLD_MULTIPLIER); #endif #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) stepperX.sgt(X_HOMING_SENSITIVITY); #endif #if ENABLED(X2_IS_TMC2130) stepperX2.sgt(X_HOMING_SENSITIVITY); #endif #if ENABLED(Y_IS_TMC2130) stepperY.sgt(Y_HOMING_SENSITIVITY); #endif #if ENABLED(Y2_IS_TMC2130) stepperY2.sgt(Y_HOMING_SENSITIVITY); #endif #endif #if ENABLED(LIN_ADVANCE) planner.extruder_advance_k = LIN_ADVANCE_K; planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO; #endif #if HAS_MOTOR_CURRENT_PWM uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT; for (uint8_t q = 3; q--;) stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q])); #endif #if ENABLED(SKEW_CORRECTION_GCODE) planner.xy_skew_factor = XY_SKEW_FACTOR; #if ENABLED(SKEW_CORRECTION_FOR_Z) planner.xz_skew_factor = XZ_SKEW_FACTOR; planner.yz_skew_factor = YZ_SKEW_FACTOR; #endif #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) for (uint8_t e = 0; e < E_STEPPERS; e++) { filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH; filament_change_load_length[e] = FILAMENT_CHANGE_LOAD_LENGTH; } #endif postprocess(); #if ENABLED(EEPROM_CHITCHAT) SERIAL_ECHO_START(); SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); #endif } #if DISABLED(DISABLE_M503) #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0) /** * M503 - Report current settings in RAM * * Unless specifically disabled, M503 is available even without EEPROM */ void MarlinSettings::report(const bool forReplay) { /** * Announce current units, in case inches are being displayed */ CONFIG_ECHO_START; #if ENABLED(INCH_MODE_SUPPORT) #define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor) #define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor)) SERIAL_ECHOPGM(" G2"); SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0'); SERIAL_ECHOPGM(" ; Units in "); serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n")); #else #define LINEAR_UNIT(N) (N) #define VOLUMETRIC_UNIT(N) (N) SERIAL_ECHOLNPGM(" G21 ; Units in mm"); #endif #if ENABLED(ULTIPANEL) // Temperature units - for Ultipanel temperature options CONFIG_ECHO_START; #if ENABLED(TEMPERATURE_UNITS_SUPPORT) #define TEMP_UNIT(N) parser.to_temp_units(N) SERIAL_ECHOPGM(" M149 "); SERIAL_CHAR(parser.temp_units_code()); SERIAL_ECHOPGM(" ; Units in "); serialprintPGM(parser.temp_units_name()); #else #define TEMP_UNIT(N) (N) SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius"); #endif #endif SERIAL_EOL(); #if DISABLED(NO_VOLUMETRICS) /** * Volumetric extrusion M200 */ if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOPGM("Filament settings:"); if (parser.volumetric_enabled) SERIAL_EOL(); else SERIAL_ECHOLNPGM(" Disabled"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0])); SERIAL_EOL(); #if EXTRUDERS > 1 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1])); SERIAL_EOL(); #if EXTRUDERS > 2 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2])); SERIAL_EOL(); #if EXTRUDERS > 3 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3])); SERIAL_EOL(); #if EXTRUDERS > 4 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4])); SERIAL_EOL(); #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 if (!parser.volumetric_enabled) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM(" M200 D0"); } #endif // !NO_VOLUMETRICS if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Steps per unit:"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS])); SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS])); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS])); #endif SERIAL_EOL(); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START; for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR(" M92 T", (int)i); SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i])); } #endif if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Maximum feedrates (units/s):"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS])); SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS])); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS])); #endif SERIAL_EOL(); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START; for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR(" M203 T", (int)i); SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i])); } #endif if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS])); SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS])); #if DISABLED(DISTINCT_E_FACTORS) SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS])); #endif SERIAL_EOL(); #if ENABLED(DISTINCT_E_FACTORS) CONFIG_ECHO_START; for (uint8_t i = 0; i < E_STEPPERS; i++) { SERIAL_ECHOPAIR(" M201 T", (int)i); SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i])); } #endif if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Acceleration (units/s2): P R T"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration)); SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration)); SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration)); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Advanced: S T B X Z E"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s)); SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s)); SERIAL_ECHOPAIR(" B", planner.min_segment_time_us); SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS])); SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS])); SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS])); #if HAS_M206_COMMAND if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Home offset:"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS])); SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS])); #endif #if HOTENDS > 1 if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Hotend offsets:"); } CONFIG_ECHO_START; for (uint8_t e = 1; e < HOTENDS; e++) { SERIAL_ECHOPAIR(" M218 T", (int)e); SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e])); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER) SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e])); #endif SERIAL_EOL(); } #endif /** * Bed Leveling */ #if HAS_LEVELING #if ENABLED(MESH_BED_LEVELING) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Mesh Bed Leveling:"); } #elif ENABLED(AUTO_BED_LEVELING_UBL) if (!forReplay) { CONFIG_ECHO_START; ubl.echo_name(); SERIAL_ECHOLNPGM(":"); } #elif HAS_ABL if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Auto Bed Leveling:"); } #endif CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height)); #endif SERIAL_EOL(); #if ENABLED(MESH_BED_LEVELING) for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) { for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1); SERIAL_ECHOPAIR(" Y", (int)py + 1); SERIAL_ECHOPGM(" Z"); SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5); SERIAL_EOL(); } } #elif ENABLED(AUTO_BED_LEVELING_UBL) if (!forReplay) { SERIAL_EOL(); ubl.report_state(); SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot); SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes()); SERIAL_ECHOLNPGM(" meshes.\n"); } #endif #endif // HAS_LEVELING #if ENABLED(DELTA) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Endstop adjustment:"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS])); SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS])); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Delta settings: L R H S B XYZ"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod)); SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius)); SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height)); SERIAL_ECHOPAIR(" S", delta_segments_per_second); SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius)); SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])); SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])); SERIAL_EOL(); #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Endstop adjustment:"); } CONFIG_ECHO_START; SERIAL_ECHOPGM(" M666"); #if ENABLED(X_DUAL_ENDSTOPS) SERIAL_ECHOPAIR(" X", LINEAR_UNIT(x_endstop_adj)); #endif #if ENABLED(Y_DUAL_ENDSTOPS) SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(y_endstop_adj)); #endif #if ENABLED(Z_DUAL_ENDSTOPS) SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(z_endstop_adj)); #endif SERIAL_EOL(); #endif // DELTA #if ENABLED(ULTIPANEL) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Material heatup parameters:"); } for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M145 S", (int)i); SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i])); SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i])); SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]); } #endif // ULTIPANEL #if HAS_PID_HEATING if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("PID settings:"); } #if ENABLED(PIDTEMP) #if HOTENDS > 1 if (forReplay) { HOTEND_LOOP() { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M301 E", e); SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e)); SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e))); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e)); if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len); #endif SERIAL_EOL(); } } else #endif // HOTENDS > 1 // !forReplay || HOTENDS == 1 { CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0 SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0))); SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0))); #if ENABLED(PID_EXTRUSION_SCALING) SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0)); SERIAL_ECHOPAIR(" L", lpq_len); #endif SERIAL_EOL(); } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp); SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi)); SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd)); SERIAL_EOL(); #endif #endif // PIDTEMP || PIDTEMPBED #if HAS_LCD_CONTRAST if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("LCD Contrast:"); } CONFIG_ECHO_START; SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast); #endif #if ENABLED(FWRETRACT) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Retract: S F Z"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(fwretract.retract_length)); SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_length)); SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s))); SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(fwretract.retract_zlift)); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Recover: S F"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(fwretract.retract_recover_length)); SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_recover_length)); SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s))); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover"); } CONFIG_ECHO_START; SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0); #endif // FWRETRACT /** * Probe Offset */ #if HAS_BED_PROBE if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Z-Probe Offset (mm):"); } CONFIG_ECHO_START; SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset)); #endif /** * Bed Skew Correction */ #if ENABLED(SKEW_CORRECTION_GCODE) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Skew Factor: "); } CONFIG_ECHO_START; #if ENABLED(SKEW_CORRECTION_FOR_Z) SERIAL_ECHO(" M852 I"); SERIAL_ECHO_F(LINEAR_UNIT(planner.xy_skew_factor), 6); SERIAL_ECHOPAIR(" J", LINEAR_UNIT(planner.xz_skew_factor)); SERIAL_ECHOLNPAIR(" K", LINEAR_UNIT(planner.yz_skew_factor)); #else SERIAL_ECHO(" M852 S"); SERIAL_ECHO_F(LINEAR_UNIT(planner.xy_skew_factor), 6); SERIAL_EOL(); #endif #endif /** * TMC2130 stepper driver current */ #if HAS_TRINAMIC if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Stepper driver current:"); } CONFIG_ECHO_START; SERIAL_ECHO(" M906"); #if ENABLED(X_IS_TMC2130) || ENABLED(X_IS_TMC2208) SERIAL_ECHOPAIR(" X ", stepperX.getCurrent()); #endif #if ENABLED(Y_IS_TMC2130) || ENABLED(Y_IS_TMC2208) SERIAL_ECHOPAIR(" Y ", stepperY.getCurrent()); #endif #if ENABLED(Z_IS_TMC2130) || ENABLED(Z_IS_TMC2208) SERIAL_ECHOPAIR(" Z ", stepperZ.getCurrent()); #endif #if ENABLED(X2_IS_TMC2130) || ENABLED(X2_IS_TMC2208) SERIAL_ECHOPAIR(" X2 ", stepperX2.getCurrent()); #endif #if ENABLED(Y2_IS_TMC2130) || ENABLED(Y2_IS_TMC2208) SERIAL_ECHOPAIR(" Y2 ", stepperY2.getCurrent()); #endif #if ENABLED(Z2_IS_TMC2130) || ENABLED(Z2_IS_TMC2208) SERIAL_ECHOPAIR(" Z2 ", stepperZ2.getCurrent()); #endif #if ENABLED(E0_IS_TMC2130) || ENABLED(E0_IS_TMC2208) SERIAL_ECHOPAIR(" E0 ", stepperE0.getCurrent()); #endif #if ENABLED(E1_IS_TMC2130) || ENABLED(E1_IS_TMC2208) SERIAL_ECHOPAIR(" E1 ", stepperE1.getCurrent()); #endif #if ENABLED(E2_IS_TMC2130) || ENABLED(E2_IS_TMC2208) SERIAL_ECHOPAIR(" E2 ", stepperE2.getCurrent()); #endif #if ENABLED(E3_IS_TMC2130) || ENABLED(E3_IS_TMC2208) SERIAL_ECHOPAIR(" E3 ", stepperE3.getCurrent()); #endif #if ENABLED(E4_IS_TMC2130) || ENABLED(E4_IS_TMC2208) SERIAL_ECHOPAIR(" E4 ", stepperE4.getCurrent()); #endif SERIAL_EOL(); #endif /** * TMC2130 Sensorless homing thresholds */ #if ENABLED(SENSORLESS_HOMING) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Sensorless homing threshold:"); } CONFIG_ECHO_START; SERIAL_ECHO(" M914"); #if ENABLED(X_IS_TMC2130) SERIAL_ECHOPAIR(" X", stepperX.sgt()); #endif #if ENABLED(X2_IS_TMC2130) SERIAL_ECHOPAIR(" X2 ", stepperX2.sgt()); #endif #if ENABLED(Y_IS_TMC2130) SERIAL_ECHOPAIR(" Y", stepperY.sgt()); #endif #if ENABLED(X2_IS_TMC2130) SERIAL_ECHOPAIR(" Y2 ", stepperY2.sgt()); #endif SERIAL_EOL(); #endif /** * Linear Advance */ #if ENABLED(LIN_ADVANCE) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Linear Advance:"); } CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k); SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio); #endif #if HAS_MOTOR_CURRENT_PWM CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Stepper motor currents:"); CONFIG_ECHO_START; } SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]); SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]); SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]); SERIAL_EOL(); #endif /** * Advanced Pause filament load & unload lengths */ #if ENABLED(ADVANCED_PAUSE_FEATURE) if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Filament load/unload lengths:"); } CONFIG_ECHO_START; #if EXTRUDERS == 1 SERIAL_ECHOPAIR(" M603 L", LINEAR_UNIT(filament_change_load_length[0])); SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[0])); #else SERIAL_ECHOPAIR(" M603 T0 L", LINEAR_UNIT(filament_change_load_length[0])); SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[0])); CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M603 T1 L", LINEAR_UNIT(filament_change_load_length[1])); SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[1])); #if EXTRUDERS > 2 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M603 T2 L", LINEAR_UNIT(filament_change_load_length[2])); SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[2])); #if EXTRUDERS > 3 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M603 T3 L", LINEAR_UNIT(filament_change_load_length[3])); SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[3])); #if EXTRUDERS > 4 CONFIG_ECHO_START; SERIAL_ECHOPAIR(" M603 T4 L", LINEAR_UNIT(filament_change_load_length[4])); SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[4])); #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS == 1 #endif // ADVANCED_PAUSE_FEATURE } #endif // !DISABLE_M503