1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-27 13:56:24 +00:00
MarlinFirmware/Marlin/stepper.h
2018-05-12 09:29:17 -05:00

385 lines
12 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Derived from Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef STEPPER_H
#define STEPPER_H
#include "planner.h"
#include "speed_lookuptable.h"
#include "stepper_indirection.h"
#include "language.h"
#include "types.h"
class Stepper;
extern Stepper stepper;
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
#define HAL_STEPPER_TIMER_RATE ((F_CPU) * 0.125)
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
A("clr r26") \
A("mul %A1, %B2") \
A("movw %A0, r0") \
A("mul %A1, %A2") \
A("add %A0, r1") \
A("adc %B0, r26") \
A("lsr r0") \
A("adc %A0, r26") \
A("adc %B0, r26") \
A("clr r1") \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
class Stepper {
public:
static block_t* current_block; // A pointer to the block currently being traced
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
static bool abort_on_endstop_hit;
#endif
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
static bool performing_homing;
#endif
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
static uint32_t motor_current_setting[3];
#endif
static int16_t cleaning_buffer_counter;
private:
static uint8_t last_direction_bits; // The next stepping-bits to be output
#if ENABLED(X_DUAL_ENDSTOPS)
static bool locked_x_motor, locked_x2_motor;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
static bool locked_y_motor, locked_y2_motor;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
static bool locked_z_motor, locked_z2_motor;
#endif
// Counter variables for the Bresenham line tracer
static int32_t counter_X, counter_Y, counter_Z, counter_E;
static volatile uint32_t step_events_completed; // The number of step events executed in the current block
#if ENABLED(BEZIER_JERK_CONTROL)
static int32_t bezier_A, // A coefficient in Bézier speed curve
bezier_B, // B coefficient in Bézier speed curve
bezier_C; // C coefficient in Bézier speed curve
static uint32_t bezier_F, // F coefficient in Bézier speed curve
bezier_AV; // AV coefficient in Bézier speed curve
static bool A_negative, // If A coefficient was negative
bezier_2nd_half; // If Bézier curve has been initialized or not
#endif
#if ENABLED(LIN_ADVANCE)
static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static uint16_t nextMainISR, nextAdvanceISR, eISR_Rate, current_adv_steps,
final_adv_steps, max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
#define _NEXT_ISR(T) nextMainISR = T
static int8_t e_steps;
static bool use_advance_lead;
#if E_STEPPERS > 1
static int8_t LA_active_extruder; // Copy from current executed block. Needed because current_block is set to NULL "too early".
#else
static constexpr int8_t LA_active_extruder = 0;
#endif
#else // !LIN_ADVANCE
#define _NEXT_ISR(T) OCR1A = T
#endif // !LIN_ADVANCE
static int32_t acceleration_time, deceleration_time;
static uint8_t step_loops, step_loops_nominal;
static uint16_t OCR1A_nominal;
#if DISABLED(BEZIER_JERK_CONTROL)
static uint16_t acc_step_rate; // needed for deceleration start point
#endif
static volatile int32_t endstops_trigsteps[XYZ];
static volatile int32_t endstops_stepsTotal, endstops_stepsDone;
//
// Positions of stepper motors, in step units
//
static volatile int32_t count_position[NUM_AXIS];
//
// Current direction of stepper motors (+1 or -1)
//
static volatile signed char count_direction[NUM_AXIS];
//
// Mixing extruder mix counters
//
#if ENABLED(MIXING_EXTRUDER)
static int32_t counter_m[MIXING_STEPPERS];
#define MIXING_STEPPERS_LOOP(VAR) \
for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) \
if (current_block->mix_event_count[VAR])
#endif
public:
//
// Constructor / initializer
//
Stepper() { };
//
// Initialize stepper hardware
//
static void init();
//
// Interrupt Service Routines
//
static void isr();
#if ENABLED(LIN_ADVANCE)
static void advance_isr();
static void advance_isr_scheduler();
#endif
//
// Set the current position in steps
//
static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
FORCE_INLINE static void _set_position(const AxisEnum a, const int32_t &v) { count_position[a] = v; }
FORCE_INLINE static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
planner.synchronize();
CRITICAL_SECTION_START;
_set_position(a, b, c, e);
CRITICAL_SECTION_END;
}
static void set_position(const AxisEnum a, const int32_t &v) {
planner.synchronize();
CRITICAL_SECTION_START;
count_position[a] = v;
CRITICAL_SECTION_END;
}
FORCE_INLINE static void _set_e_position(const int32_t &e) { count_position[E_AXIS] = e; }
static void set_e_position(const int32_t &e) {
planner.synchronize();
CRITICAL_SECTION_START;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
//
// Set direction bits for all steppers
//
static void set_directions();
//
// Get the position of a stepper, in steps
//
static int32_t position(const AxisEnum axis);
//
// Report the positions of the steppers, in steps
//
static void report_positions();
//
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
//
static void wake_up();
//
// Wait for moves to finish and disable all steppers
//
static void finish_and_disable();
//
// Quickly stop all steppers and clear the blocks queue
//
static void quick_stop();
//
// The direction of a single motor
//
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digitalPotWrite(const int16_t address, const int16_t value);
static void digipot_current(const uint8_t driver, const int16_t current);
#endif
#if HAS_MICROSTEPS
static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2);
static void microstep_mode(const uint8_t driver, const uint8_t stepping);
static void microstep_readings();
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
FORCE_INLINE static void set_homing_flag_x(const bool state) { performing_homing = state; }
FORCE_INLINE static void set_x_lock(const bool state) { locked_x_motor = state; }
FORCE_INLINE static void set_x2_lock(const bool state) { locked_x2_motor = state; }
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
FORCE_INLINE static void set_homing_flag_y(const bool state) { performing_homing = state; }
FORCE_INLINE static void set_y_lock(const bool state) { locked_y_motor = state; }
FORCE_INLINE static void set_y2_lock(const bool state) { locked_y2_motor = state; }
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
FORCE_INLINE static void set_homing_flag_z(const bool state) { performing_homing = state; }
FORCE_INLINE static void set_z_lock(const bool state) { locked_z_motor = state; }
FORCE_INLINE static void set_z2_lock(const bool state) { locked_z2_motor = state; }
#endif
#if ENABLED(BABYSTEPPING)
static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
static inline void kill_current_block() {
step_events_completed = current_block->step_event_count;
}
//
// Handle a triggered endstop
//
static void endstop_triggered(const AxisEnum axis);
//
// Triggered position of an axis in mm (not core-savvy)
//
FORCE_INLINE static float triggered_position_mm(const AxisEnum axis) {
return endstops_trigsteps[axis] * planner.steps_to_mm[axis];
}
#if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power();
#endif
private:
FORCE_INLINE static uint16_t calc_timer_interval(uint16_t step_rate) {
uint16_t timer;
NOMORE(step_rate, MAX_STEP_FREQUENCY);
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate >>= 2;
step_loops = 4;
}
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate >>= 1;
step_loops = 2;
}
else {
step_loops = 1;
}
NOLESS(step_rate, F_CPU / 500000);
step_rate -= F_CPU / 500000; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00FF);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xFFFC;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
}
if (timer < 100) { // (20kHz - this should never happen)
timer = 100;
SERIAL_PROTOCOL(MSG_STEPPER_TOO_HIGH);
SERIAL_PROTOCOLLN(step_rate);
}
return timer;
}
#if ENABLED(BEZIER_JERK_CONTROL)
static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
static int32_t _eval_bezier_curve(const uint32_t curr_step);
#endif
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digipot_init();
#endif
#if HAS_MICROSTEPS
static void microstep_init();
#endif
};
#endif // STEPPER_H