0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-10 03:38:34 +00:00
MarlinFirmware/Marlin/src/HAL/HAL_LPC1768/HAL.cpp
Scott Lahteine d5bf9e74c4
Merge pull request #8996 from p3p/pr_bf2_more_adc_filter
[2.0.x] PID control fix and more LPC1768 ADC filtering
2018-01-15 05:14:25 -06:00

280 lines
10 KiB
C++

/* **************************************************************************
Marlin 3D Printer Firmware
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
HalSerial usb_serial;
// U8glib required functions
extern "C" void u8g_xMicroDelay(uint16_t val) {
delayMicroseconds(val);
}
extern "C" void u8g_MicroDelay(void) {
u8g_xMicroDelay(1);
}
extern "C" void u8g_10MicroDelay(void) {
u8g_xMicroDelay(10);
}
extern "C" void u8g_Delay(uint16_t val) {
delay(val);
}
//************************//
// return free heap space
int freeMemory() {
char stack_end;
void *heap_start = malloc(sizeof(uint32_t));
if (heap_start == 0) return 0;
uint32_t result = (uint32_t)&stack_end - (uint32_t)heap_start;
free(heap_start);
return result;
}
// --------------------------------------------------------------------------
// ADC
// --------------------------------------------------------------------------
#define ADC_DONE 0x80000000
#define ADC_OVERRUN 0x40000000
void HAL_adc_init(void) {
LPC_SC->PCONP |= (1 << 12); // Enable CLOCK for internal ADC controller
LPC_SC->PCLKSEL0 &= ~(0x3 << 24);
LPC_SC->PCLKSEL0 |= (0x1 << 24); // 0: 25MHz, 1: 100MHz, 2: 50MHz, 3: 12.5MHZ to ADC clock divider
LPC_ADC->ADCR = (0 << 0) // SEL: 0 = no channels selected
| (0xFF << 8) // select slowest clock for A/D conversion 150 - 190 uS for a complete conversion
| (0 << 16) // BURST: 0 = software control
| (0 << 17) // CLKS: not applicable
| (1 << 21) // PDN: 1 = operational
| (0 << 24) // START: 0 = no start
| (0 << 27); // EDGE: not applicable
}
// externals need to make the call to KILL compile
#include "../../core/language.h"
extern void kill(const char*);
extern const char errormagic[];
void HAL_adc_enable_channel(int ch) {
pin_t pin = analogInputToDigitalPin(ch);
if (pin == -1) {
SERIAL_PRINTF("%sINVALID ANALOG PORT:%d\n", errormagic, ch);
kill(MSG_KILLED);
}
int8_t pin_port = LPC1768_PIN_PORT(pin),
pin_port_pin = LPC1768_PIN_PIN(pin),
pinsel_start_bit = pin_port_pin > 15 ? 2 * (pin_port_pin - 16) : 2 * pin_port_pin;
uint8_t pin_sel_register = (pin_port == 0 && pin_port_pin <= 15) ? 0 :
pin_port == 0 ? 1 :
pin_port == 1 ? 3 : 10;
switch (pin_sel_register) {
case 1:
LPC_PINCON->PINSEL1 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL1 |= (0x1 << pinsel_start_bit);
break;
case 3:
LPC_PINCON->PINSEL3 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL3 |= (0x3 << pinsel_start_bit);
break;
case 0:
LPC_PINCON->PINSEL0 &= ~(0x3 << pinsel_start_bit);
LPC_PINCON->PINSEL0 |= (0x2 << pinsel_start_bit);
break;
};
}
void HAL_adc_start_conversion(const uint8_t ch) {
if (analogInputToDigitalPin(ch) == -1) {
SERIAL_PRINTF("HAL: HAL_adc_start_conversion: invalid channel %d\n", ch);
return;
}
LPC_ADC->ADCR &= ~0xFF; // Reset
SBI(LPC_ADC->ADCR, ch); // Select Channel
SBI(LPC_ADC->ADCR, 24); // Start conversion
}
bool HAL_adc_finished(void) {
return LPC_ADC->ADGDR & ADC_DONE;
}
// possible config options if something similar is extended to more platforms.
#define ADC_USE_MEDIAN_FILTER // Filter out erroneous readings
#define ADC_MEDIAN_FILTER_SIZE (23) // Higher values increase step delay (phase shift),
// (ADC_MEDIAN_FILTER_SIZE + 1) / 2 sample step delay (12 samples @ 500Hz: 24ms phase shift)
// Memory usage per ADC channel (bytes): (6 * ADC_MEDIAN_FILTER_SIZE) + 16
// 8 * ((6 * 23) + 16 ) = 1232 Bytes for 8 channels
#define ADC_USE_LOWPASS_FILTER // Filter out high frequency noise
#define ADC_LOWPASS_K_VALUE (6) // Higher values increase rise time
// Rise time sample delays for 100% signal convergence on full range step
// (1 : 13, 2 : 32, 3 : 67, 4 : 139, 5 : 281, 6 : 565, 7 : 1135, 8 : 2273)
// K = 6, 565 samples, 500Hz sample rate, 1.13s convergence on full range step
// Memory usage per ADC channel (bytes): 4 (32 Bytes for 8 channels)
// Sourced from https://embeddedgurus.com/stack-overflow/tag/median-filter/
struct MedianFilter {
#define STOPPER 0 // Smaller than any datum
struct Pair {
Pair *point; // Pointers forming list linked in sorted order
uint16_t value; // Values to sort
};
Pair buffer[ADC_MEDIAN_FILTER_SIZE] = {}; // Buffer of nwidth pairs
Pair *datpoint = buffer; // Pointer into circular buffer of data
Pair small = {NULL, STOPPER}; // Chain stopper
Pair big = {&small, 0}; // Pointer to head (largest) of linked list.
uint16_t update(uint16_t datum) {
Pair *successor; // Pointer to successor of replaced data item
Pair *scan; // Pointer used to scan down the sorted list
Pair *scanold; // Previous value of scan
Pair *median; // Pointer to median
uint16_t i;
if (datum == STOPPER) {
datum = STOPPER + 1; // No stoppers allowed.
}
if ( (++datpoint - buffer) >= ADC_MEDIAN_FILTER_SIZE) {
datpoint = buffer; // Increment and wrap data in pointer.
}
datpoint->value = datum; // Copy in new datum
successor = datpoint->point; // Save pointer to old value's successor
median = &big; // Median initially to first in chain
scanold = NULL; // Scanold initially null.
scan = &big; // Points to pointer to first (largest) datum in chain
// Handle chain-out of first item in chain as special case
if (scan->point == datpoint) {
scan->point = successor;
}
scanold = scan; // Save this pointer and
scan = scan->point ; // step down chain
// Loop through the chain, normal loop exit via break.
for (i = 0 ; i < ADC_MEDIAN_FILTER_SIZE; ++i) {
// Handle odd-numbered item in chain
if (scan->point == datpoint) {
scan->point = successor; // Chain out the old datum
}
if (scan->value < datum) { // If datum is larger than scanned value
datpoint->point = scanold->point; // Chain it in here
scanold->point = datpoint; // Mark it chained in
datum = STOPPER;
}
// Step median pointer down chain after doing odd-numbered element
median = median->point; // Step median pointer
if (scan == &small) {
break; // Break at end of chain
}
scanold = scan; // Save this pointer and
scan = scan->point; // step down chain
// Handle even-numbered item in chain.
if (scan->point == datpoint) {
scan->point = successor;
}
if (scan->value < datum) {
datpoint->point = scanold->point;
scanold->point = datpoint;
datum = STOPPER;
}
if (scan == &small) {
break;
}
scanold = scan;
scan = scan->point;
}
return median->value;
}
};
struct LowpassFilter {
uint32_t data_delay = 0;
uint16_t update(uint16_t value) {
data_delay = data_delay - (data_delay >> ADC_LOWPASS_K_VALUE) + value;
return (uint16_t)(data_delay >> ADC_LOWPASS_K_VALUE);
}
};
uint16_t HAL_adc_get_result(void) {
uint32_t adgdr = LPC_ADC->ADGDR;
CBI(LPC_ADC->ADCR, 24); // Stop conversion
if (adgdr & ADC_OVERRUN) return 0;
uint16_t data = (adgdr >> 4) & 0xFFF; // copy the 12bit data value
uint8_t adc_channel = (adgdr >> 24) & 0x7; // copy the 3bit used channel
#ifdef ADC_USE_MEDIAN_FILTER
static MedianFilter median_filter[NUM_ANALOG_INPUTS];
data = median_filter[adc_channel].update(data);
#endif
#ifdef ADC_USE_LOWPASS_FILTER
static LowpassFilter lowpass_filter[NUM_ANALOG_INPUTS];
data = lowpass_filter[adc_channel].update(data);
#endif
return ((data >> 2) & 0x3ff); // return 10bit value as Marlin expects
}
#define SBIT_CNTEN 0
#define SBIT_PWMEN 2
#define SBIT_PWMMR0R 1
#define PWM_1 0 //P2_00 (0-1 Bits of PINSEL4)
#define PWM_2 2 //P2_01 (2-3 Bits of PINSEL4)
#define PWM_3 4 //P2_02 (4-5 Bits of PINSEL4)
#define PWM_4 6 //P2_03 (6-7 Bits of PINSEL4)
#define PWM_5 8 //P2_04 (8-9 Bits of PINSEL4)
#define PWM_6 10 //P2_05 (10-11 Bits of PINSEL4)
void HAL_pwm_init(void) {
LPC_PINCON->PINSEL4 = _BV(PWM_5) | _BV(PWM_6);
LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_PWMEN);
LPC_PWM1->PR = 0x0; // No prescalar
LPC_PWM1->MCR = _BV(SBIT_PWMMR0R); // Reset on PWMMR0, reset TC if it matches MR0
LPC_PWM1->MR0 = 255; // set PWM cycle(Ton+Toff)=255)
LPC_PWM1->MR5 = 0; // Set 50% Duty Cycle for the channels
LPC_PWM1->MR6 = 0;
// Trigger the latch Enable Bits to load the new Match Values MR0, MR5, MR6
LPC_PWM1->LER = _BV(0) | _BV(5) | _BV(6);
// Enable the PWM output pins for PWM_5-PWM_6(P2_04 - P2_05)
LPC_PWM1->PCR = _BV(13) | _BV(14);
}
#endif // TARGET_LPC1768