0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-18 23:49:49 +00:00
MarlinFirmware/Marlin/fastio.h
Lenbok 0aa833fe6c Chamber temperature monitoring and auto fan control.
This is an initial cut for feedback.

Chamber temperature is currently reported along with hot end and bed
temperatures to serial. The format is just like that used for hot end
and bed temperatures, but using 'C' prefix. As there is no heater,
target is always 0. Is this appropriate, is there a better way to report
chamber temperatures?

Chamber temperatures are not reported on the LCD in any way.

When auto chamber fan is enabled, it currently just uses the same
temperature threshold as the other auto controlled fans.

As the chamber temperature is not connected to any heater, it doesn't
undergo mintemp/maxtemp monitoring. This would need to change in the
future if chamber heating became a feature.
2018-04-06 23:09:44 -05:00

320 lines
12 KiB
C

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Fast I/O Routines
* Use direct port manipulation to save scads of processor time.
* Contributed by Triffid_Hunter. Modified by Kliment and the Marlin team.
*/
#ifndef _FASTIO_ARDUINO_H
#define _FASTIO_ARDUINO_H
#include <stdint.h>
typedef int8_t pin_t;
#include <avr/io.h>
#define AVR_AT90USB1286_FAMILY (defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1286P__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB646P__) || defined(__AVR_AT90USB647__))
#define AVR_ATmega1284_FAMILY (defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__))
#define AVR_ATmega2560_FAMILY (defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__))
#define AVR_ATmega2561_FAMILY (defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__))
#define AVR_ATmega328_FAMILY (defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328p__))
/**
* Include Ports and Functions
*/
#if AVR_ATmega328_FAMILY
#include "fastio_168.h"
#elif AVR_ATmega1284_FAMILY
#include "fastio_644.h"
#elif AVR_ATmega2560_FAMILY
#include "fastio_1280.h"
#elif AVR_AT90USB1286_FAMILY
#include "fastio_AT90USB.h"
#elif AVR_ATmega2561_FAMILY
#include "fastio_1281.h"
#else
#error "Pins for this chip not defined in Arduino.h! If you have a working pins definition, please contribute!"
#endif
#include "macros.h"
/**
* Magic I/O routines
*
* Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW);
*
* Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
*/
#define _READ(IO) ((bool)(DIO ## IO ## _RPORT & _BV(DIO ## IO ## _PIN)))
// On some boards pins > 0x100 are used. These are not converted to atomic actions. A critical section is needed.
#define _WRITE_NC(IO, v) do { if (v) {DIO ## IO ## _WPORT |= _BV(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~_BV(DIO ## IO ## _PIN); }; } while (0)
#define _WRITE_C(IO, v) do { if (v) { \
CRITICAL_SECTION_START; \
{DIO ## IO ## _WPORT |= _BV(DIO ## IO ## _PIN); } \
CRITICAL_SECTION_END; \
} \
else { \
CRITICAL_SECTION_START; \
{DIO ## IO ## _WPORT &= ~_BV(DIO ## IO ## _PIN); } \
CRITICAL_SECTION_END; \
} \
} \
while (0)
#define _WRITE(IO, v) do { if (&(DIO ## IO ## _RPORT) >= (uint8_t *)0x100) {_WRITE_C(IO, v); } else {_WRITE_NC(IO, v); }; } while (0)
#define _TOGGLE(IO) do {DIO ## IO ## _RPORT ^= _BV(DIO ## IO ## _PIN); } while (0)
#define _SET_INPUT(IO) do {DIO ## IO ## _DDR &= ~_BV(DIO ## IO ## _PIN); } while (0)
#define _SET_OUTPUT(IO) do {DIO ## IO ## _DDR |= _BV(DIO ## IO ## _PIN); } while (0)
#define _GET_INPUT(IO) ((DIO ## IO ## _DDR & _BV(DIO ## IO ## _PIN)) == 0)
#define _GET_OUTPUT(IO) ((DIO ## IO ## _DDR & _BV(DIO ## IO ## _PIN)) != 0)
#define _GET_TIMER(IO) (DIO ## IO ## _PWM)
#define READ(IO) _READ(IO)
#define WRITE(IO,V) _WRITE(IO,V)
#define TOGGLE(IO) _TOGGLE(IO)
#define SET_INPUT(IO) _SET_INPUT(IO)
#define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _WRITE(IO, HIGH); }while(0)
#define SET_OUTPUT(IO) _SET_OUTPUT(IO)
#define GET_INPUT(IO) _GET_INPUT(IO)
#define GET_OUTPUT(IO) _GET_OUTPUT(IO)
#define GET_TIMER(IO) _GET_TIMER(IO)
#define OUT_WRITE(IO, v) do{ SET_OUTPUT(IO); WRITE(IO, v); }while(0)
/**
* Timer and Interrupt Control
*/
// Waveform Generation Modes
enum WaveGenMode : char {
WGM_NORMAL, // 0
WGM_PWM_PC_8, // 1
WGM_PWM_PC_9, // 2
WGM_PWM_PC_10, // 3
WGM_CTC_OCRnA, // 4 COM OCnx
WGM_FAST_PWM_8, // 5
WGM_FAST_PWM_9, // 6
WGM_FAST_PWM_10, // 7
WGM_PWM_PC_FC_ICRn, // 8
WGM_PWM_PC_FC_OCRnA, // 9 COM OCnA
WGM_PWM_PC_ICRn, // 10
WGM_PWM_PC_OCRnA, // 11 COM OCnA
WGM_CTC_ICRn, // 12 COM OCnx
WGM_reserved, // 13
WGM_FAST_PWM_ICRn, // 14 COM OCnA
WGM_FAST_PWM_OCRnA // 15 COM OCnA
};
// Compare Modes
enum CompareMode : char {
COM_NORMAL, // 0
COM_TOGGLE, // 1 Non-PWM: OCnx ... Both PWM (WGM 9,11,14,15): OCnA only ... else NORMAL
COM_CLEAR_SET, // 2 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down
COM_SET_CLEAR // 3 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down
};
// Clock Sources
enum ClockSource : char {
CS_NONE, // 0
CS_PRESCALER_1, // 1
CS_PRESCALER_8, // 2
CS_PRESCALER_64, // 3
CS_PRESCALER_256, // 4
CS_PRESCALER_1024, // 5
CS_EXT_FALLING, // 6
CS_EXT_RISING // 7
};
// Clock Sources (Timer 2 only)
enum ClockSource2 : char {
CS2_NONE, // 0
CS2_PRESCALER_1, // 1
CS2_PRESCALER_8, // 2
CS2_PRESCALER_32, // 3
CS2_PRESCALER_64, // 4
CS2_PRESCALER_128, // 5
CS2_PRESCALER_256, // 6
CS2_PRESCALER_1024 // 7
};
// Get interrupt bits in an orderly way
#define GET_WGM(T) (((TCCR##T##A >> WGM##T##0) & 0x3) | ((TCCR##T##B >> WGM##T##2 << 2) & 0xC))
#define GET_CS(T) ((TCCR##T##B >> CS##T##0) & 0x7)
#define GET_COM(T,Q) ((TCCR##T##Q >> COM##T##Q##0) & 0x3)
#define GET_COMA(T) GET_COM(T,A)
#define GET_COMB(T) GET_COM(T,B)
#define GET_COMC(T) GET_COM(T,C)
#define GET_ICNC(T) (!!(TCCR##T##B & _BV(ICNC##T)))
#define GET_ICES(T) (!!(TCCR##T##B & _BV(ICES##T)))
#define GET_FOC(T,Q) (!!(TCCR##T##C & _BV(FOC##T##Q)))
#define GET_FOCA(T) GET_FOC(T,A)
#define GET_FOCB(T) GET_FOC(T,B)
#define GET_FOCC(T) GET_FOC(T,C)
// Set Wave Generation Mode bits
#define _SET_WGM(T,V) do{ \
TCCR##T##A = (TCCR##T##A & ~(0x3 << WGM##T##0)) | (( int(V) & 0x3) << WGM##T##0); \
TCCR##T##B = (TCCR##T##B & ~(0x3 << WGM##T##2)) | (((int(V) >> 2) & 0x3) << WGM##T##2); \
}while(0)
#define SET_WGM(T,V) _SET_WGM(T,WGM_##V)
// Set Clock Select bits
#define _SET_CS(T,V) (TCCR##T##B = (TCCR##T##B & ~(0x7 << CS##T##0)) | ((int(V) & 0x7) << CS##T##0))
#define _SET_CS0(V) _SET_CS(0,V)
#define _SET_CS1(V) _SET_CS(1,V)
#ifdef TCCR2
#define _SET_CS2(V) (TCCR2 = (TCCR2 & ~(0x7 << CS20)) | (int(V) << CS20))
#else
#define _SET_CS2(V) _SET_CS(2,V)
#endif
#define _SET_CS3(V) _SET_CS(3,V)
#define _SET_CS4(V) _SET_CS(4,V)
#define _SET_CS5(V) _SET_CS(5,V)
#define SET_CS0(V) _SET_CS0(CS_##V)
#define SET_CS1(V) _SET_CS1(CS_##V)
#ifdef TCCR2
#define SET_CS2(V) _SET_CS2(CS2_##V)
#else
#define SET_CS2(V) _SET_CS2(CS_##V)
#endif
#define SET_CS3(V) _SET_CS3(CS_##V)
#define SET_CS4(V) _SET_CS4(CS_##V)
#define SET_CS5(V) _SET_CS5(CS_##V)
#define SET_CS(T,V) SET_CS##T(V)
// Set Compare Mode bits
#define _SET_COM(T,Q,V) (TCCR##T##Q = (TCCR##T##Q & ~(0x3 << COM##T##Q##0)) | (int(V) << COM##T##Q##0))
#define SET_COM(T,Q,V) _SET_COM(T,Q,COM_##V)
#define SET_COMA(T,V) SET_COM(T,A,V)
#define SET_COMB(T,V) SET_COM(T,B,V)
#define SET_COMC(T,V) SET_COM(T,C,V)
#define SET_COMS(T,V1,V2,V3) do{ SET_COMA(T,V1); SET_COMB(T,V2); SET_COMC(T,V3); }while(0)
// Set Noise Canceler bit
#define SET_ICNC(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICNC##T) : TCCR##T##B & ~_BV(ICNC##T))
// Set Input Capture Edge Select bit
#define SET_ICES(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICES##T) : TCCR##T##B & ~_BV(ICES##T))
// Set Force Output Compare bit
#define SET_FOC(T,Q,V) (TCCR##T##C = (V) ? TCCR##T##C | _BV(FOC##T##Q) : TCCR##T##C & ~_BV(FOC##T##Q))
#define SET_FOCA(T,V) SET_FOC(T,A,V)
#define SET_FOCB(T,V) SET_FOC(T,B,V)
#define SET_FOCC(T,V) SET_FOC(T,C,V)
/**
* PWM availability macros
*/
// Determine which harware PWMs are already in use
#if PIN_EXISTS(CONTROLLER_FAN)
#define PWM_CHK_FAN_B(p) (p == CONTROLLER_FAN_PIN || p == E0_AUTO_FAN_PIN || p == E1_AUTO_FAN_PIN || p == E2_AUTO_FAN_PIN || p == E3_AUTO_FAN_PIN || p == E4_AUTO_FAN_PIN || p == CHAMBER_AUTO_FAN_PIN)
#else
#define PWM_CHK_FAN_B(p) (p == E0_AUTO_FAN_PIN || p == E1_AUTO_FAN_PIN || p == E2_AUTO_FAN_PIN || p == E3_AUTO_FAN_PIN || p == E4_AUTO_FAN_PIN || p == CHAMBER_AUTO_FAN_PIN)
#endif
#if PIN_EXISTS(FAN) || PIN_EXISTS(FAN1) || PIN_EXISTS(FAN2)
#if PIN_EXISTS(FAN2)
#define PWM_CHK_FAN_A(p) (p == FAN_PIN || p == FAN1_PIN || p == FAN2_PIN)
#elif PIN_EXISTS(FAN1)
#define PWM_CHK_FAN_A(p) (p == FAN_PIN || p == FAN1_PIN)
#else
#define PWM_CHK_FAN_A(p) p == FAN_PIN
#endif
#else
#define PWM_CHK_FAN_A(p) false
#endif
#if HAS_MOTOR_CURRENT_PWM
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
#define PWM_CHK_MOTOR_CURRENT(p) (p == MOTOR_CURRENT_PWM_E || p == MOTOR_CURRENT_PWM_Z || p == MOTOR_CURRENT_PWM_XY)
#elif PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
#define PWM_CHK_MOTOR_CURRENT(p) (p == MOTOR_CURRENT_PWM_E || p == MOTOR_CURRENT_PWM_Z)
#else
#define PWM_CHK_MOTOR_CURRENT(p) (p == MOTOR_CURRENT_PWM_E)
#endif
#else
#define PWM_CHK_MOTOR_CURRENT(p) false
#endif
#if defined(NUM_SERVOS)
#if AVR_ATmega2560_FAMILY
#define PWM_CHK_SERVO(p) ( p == 5 || NUM_SERVOS > 12 && p == 6 || NUM_SERVOS > 24 && p == 46) //PWMS 3A, 4A & 5A
#elif AVR_ATmega2561_FAMILY
#define PWM_CHK_SERVO(p) p == 5 //PWM3A
#elif AVR_ATmega1284_FAMILY
#define PWM_CHK_SERVO(p) false
#elif AVR_AT90USB1286_FAMILY
#define PWM_CHK_SERVO(p) p == 16 //PWM3A
#elif AVR_ATmega328_FAMILY
#define PWM_CHK_SERVO(p) false
#endif
#else
#define PWM_CHK_SERVO(p) false
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1 && HAS_HEATER_2
#define PWM_CHK_HEATER(p) (p == HEATER_1_PIN || p == HEATER_2_PIN)
#elif HAS_HEATER_1
#define PWM_CHK_HEATER(p) (p == HEATER_1_PIN)
#endif
#else
#define PWM_CHK_HEATER(p) false
#endif
#define PWM_CHK(p) (PWM_CHK_HEATER(p) || PWM_CHK_SERVO(p) || PWM_CHK_MOTOR_CURRENT(p)\
|| PWM_CHK_FAN_A(p) || PWM_CHK_FAN_B(p))
// define which hardware PWMs are available for the current CPU
// all timer 1 PWMS deleted from this list because they are never available
#if AVR_ATmega2560_FAMILY
#define PWM_PINS(p) ((p >= 2 && p <= 10 ) || p == 13 || p == 44 || p == 45 || p == 46 )
#elif AVR_ATmega2561_FAMILY
#define PWM_PINS(p) ((p >= 2 && p <= 6 ) || p == 9)
#elif AVR_ATmega1284_FAMILY
#define PWM_PINS(p) (p == 3 || p == 4 || p == 14 || p == 15)
#elif AVR_AT90USB1286_FAMILY
#define PWM_PINS(p) (p == 0 || p == 1 || p == 14 || p == 15 || p == 16 || p == 24)
#elif AVR_ATmega328_FAMILY
#define PWM_PINS(p) (p == 3 || p == 5 || p == 6 || p == 11)
#else
#error "unknown CPU"
#endif
// finally - the macro that tells us if a pin is an available hardware PWM
#define USEABLE_HARDWARE_PWM(p) (PWM_PINS(p) && !PWM_CHK(p))
#endif // _FASTIO_ARDUINO_H