mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-29 23:07:42 +00:00
0aa100a31e
Some fix-mounted probes need manual stowing. And after probing some may prefer to raise or lower the nozzle. This restores an old option but tailors it to allow raise or lower as preferred.
551 lines
18 KiB
C++
551 lines
18 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
#ifndef MARLIN_H
|
|
#define MARLIN_H
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <util/delay.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "MarlinConfig.h"
|
|
|
|
#ifdef DEBUG_GCODE_PARSER
|
|
#include "gcode.h"
|
|
#endif
|
|
|
|
#include "enum.h"
|
|
#include "types.h"
|
|
#include "fastio.h"
|
|
#include "utility.h"
|
|
#include "serial.h"
|
|
|
|
void idle(
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
|
|
#endif
|
|
);
|
|
|
|
void manage_inactivity(bool ignore_stepper_queue = false);
|
|
|
|
extern const char axis_codes[XYZE];
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
extern bool extruder_duplication_enabled;
|
|
#endif
|
|
|
|
#if HAS_X2_ENABLE
|
|
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
|
|
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
|
|
#elif HAS_X_ENABLE
|
|
#define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
|
|
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
|
|
#else
|
|
#define enable_X() NOOP
|
|
#define disable_X() NOOP
|
|
#endif
|
|
|
|
#if HAS_Y2_ENABLE
|
|
#define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
|
|
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
|
|
#elif HAS_Y_ENABLE
|
|
#define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
|
|
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
|
|
#else
|
|
#define enable_Y() NOOP
|
|
#define disable_Y() NOOP
|
|
#endif
|
|
|
|
#if HAS_Z2_ENABLE
|
|
#define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
|
|
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
|
|
#elif HAS_Z_ENABLE
|
|
#define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
|
|
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
|
|
#else
|
|
#define enable_Z() NOOP
|
|
#define disable_Z() NOOP
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
/**
|
|
* Mixing steppers synchronize their enable (and direction) together
|
|
*/
|
|
#if MIXING_STEPPERS > 3
|
|
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
|
|
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
|
|
#elif MIXING_STEPPERS > 2
|
|
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
|
|
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
|
|
#else
|
|
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
|
|
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
|
|
#endif
|
|
#define enable_E1() NOOP
|
|
#define disable_E1() NOOP
|
|
#define enable_E2() NOOP
|
|
#define disable_E2() NOOP
|
|
#define enable_E3() NOOP
|
|
#define disable_E3() NOOP
|
|
#define enable_E4() NOOP
|
|
#define disable_E4() NOOP
|
|
|
|
#else // !MIXING_EXTRUDER
|
|
|
|
#if HAS_E0_ENABLE
|
|
#define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E0() NOOP
|
|
#define disable_E0() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 1 && HAS_E1_ENABLE
|
|
#define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E1() NOOP
|
|
#define disable_E1() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 2 && HAS_E2_ENABLE
|
|
#define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E2() NOOP
|
|
#define disable_E2() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 3 && HAS_E3_ENABLE
|
|
#define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E3() NOOP
|
|
#define disable_E3() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 4 && HAS_E4_ENABLE
|
|
#define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E4() NOOP
|
|
#define disable_E4() NOOP
|
|
#endif
|
|
|
|
#endif // !MIXING_EXTRUDER
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
|
|
G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
|
|
#endif
|
|
|
|
/**
|
|
* The axis order in all axis related arrays is X, Y, Z, E
|
|
*/
|
|
#define _AXIS(AXIS) AXIS ##_AXIS
|
|
|
|
void enable_all_steppers();
|
|
void disable_e_stepper(const uint8_t e);
|
|
void disable_e_steppers();
|
|
void disable_all_steppers();
|
|
|
|
void sync_plan_position();
|
|
void sync_plan_position_e();
|
|
|
|
#if IS_KINEMATIC
|
|
void sync_plan_position_kinematic();
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
|
#else
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
|
|
#endif
|
|
|
|
void flush_and_request_resend();
|
|
void ok_to_send();
|
|
|
|
void kill(const char*);
|
|
|
|
void quickstop_stepper();
|
|
|
|
extern uint8_t marlin_debug_flags;
|
|
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
|
|
|
|
extern bool Running;
|
|
inline bool IsRunning() { return Running; }
|
|
inline bool IsStopped() { return !Running; }
|
|
|
|
bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure.
|
|
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
|
|
void clear_command_queue();
|
|
|
|
#define HAS_LCD_QUEUE_NOW (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE)))
|
|
#define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW)
|
|
#if HAS_QUEUE_NOW
|
|
// Return only when commands are actually enqueued
|
|
void enqueue_and_echo_command_now(const char* cmd, bool say_ok=false);
|
|
#if HAS_LCD_QUEUE_NOW
|
|
void enqueue_and_echo_commands_P_now(const char * const cmd);
|
|
#endif
|
|
#endif
|
|
|
|
extern millis_t previous_cmd_ms;
|
|
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
|
|
|
|
/**
|
|
* Feedrate scaling and conversion
|
|
*/
|
|
extern float feedrate_mm_s;
|
|
extern int16_t feedrate_percentage;
|
|
|
|
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
|
|
|
|
extern bool axis_relative_modes[];
|
|
extern bool axis_known_position[XYZ];
|
|
extern bool axis_homed[XYZ];
|
|
extern volatile bool wait_for_heatup;
|
|
|
|
#if HAS_RESUME_CONTINUE
|
|
extern volatile bool wait_for_user;
|
|
#endif
|
|
|
|
#if HAS_AUTO_REPORTING
|
|
extern bool suspend_auto_report;
|
|
#endif
|
|
|
|
extern float current_position[XYZE], destination[XYZE];
|
|
|
|
/**
|
|
* Workspace offsets
|
|
*/
|
|
#if HAS_WORKSPACE_OFFSET
|
|
#if HAS_HOME_OFFSET
|
|
extern float home_offset[XYZ];
|
|
#endif
|
|
#if HAS_POSITION_SHIFT
|
|
extern float position_shift[XYZ];
|
|
#endif
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
extern float workspace_offset[XYZ];
|
|
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
|
|
#elif HAS_HOME_OFFSET
|
|
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
|
|
#elif HAS_POSITION_SHIFT
|
|
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
|
|
#endif
|
|
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
|
|
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
|
|
#else
|
|
#define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
|
|
#define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
|
|
#endif
|
|
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
|
|
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
|
|
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
|
|
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
|
|
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
|
|
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
|
|
|
|
// Hotend Offsets
|
|
#if HOTENDS > 1
|
|
extern float hotend_offset[XYZ][HOTENDS];
|
|
#endif
|
|
|
|
// Software Endstops
|
|
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
extern bool soft_endstops_enabled;
|
|
void clamp_to_software_endstops(float target[XYZ]);
|
|
#else
|
|
#define soft_endstops_enabled false
|
|
#define clamp_to_software_endstops(x) NOOP
|
|
#endif
|
|
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
|
void update_software_endstops(const AxisEnum axis);
|
|
#endif
|
|
|
|
#define MAX_COORDINATE_SYSTEMS 9
|
|
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
|
|
bool select_coordinate_system(const int8_t _new);
|
|
#endif
|
|
|
|
void report_current_position();
|
|
|
|
#if IS_KINEMATIC
|
|
extern float delta[ABC];
|
|
void inverse_kinematics(const float raw[XYZ]);
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
extern float delta_height,
|
|
delta_endstop_adj[ABC],
|
|
delta_radius,
|
|
delta_tower_angle_trim[ABC],
|
|
delta_tower[ABC][2],
|
|
delta_diagonal_rod,
|
|
delta_calibration_radius,
|
|
delta_diagonal_rod_2_tower[ABC],
|
|
delta_segments_per_second,
|
|
delta_clip_start_height;
|
|
|
|
void recalc_delta_settings();
|
|
float delta_safe_distance_from_top();
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT)
|
|
float Q_rsqrt(const float number);
|
|
#define _SQRT(n) (1.0f / Q_rsqrt(n))
|
|
#else
|
|
#define _SQRT(n) SQRT(n)
|
|
#endif
|
|
|
|
// Macro to obtain the Z position of an individual tower
|
|
#define DELTA_Z(V,T) V[Z_AXIS] + _SQRT( \
|
|
delta_diagonal_rod_2_tower[T] - HYPOT2( \
|
|
delta_tower[T][X_AXIS] - V[X_AXIS], \
|
|
delta_tower[T][Y_AXIS] - V[Y_AXIS] \
|
|
) \
|
|
)
|
|
|
|
#define DELTA_IK(V) do { \
|
|
delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
|
|
delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
|
|
delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
|
|
}while(0)
|
|
|
|
#elif IS_SCARA
|
|
void forward_kinematics_SCARA(const float &a, const float &b);
|
|
#endif
|
|
|
|
#if ENABLED(G26_MESH_VALIDATION)
|
|
extern bool g26_debug_flag;
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
constexpr bool g26_debug_flag = false;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
#define _GET_MESH_X(I) (bilinear_start[X_AXIS] + (I) * bilinear_grid_spacing[X_AXIS])
|
|
#define _GET_MESH_Y(J) (bilinear_start[Y_AXIS] + (J) * bilinear_grid_spacing[Y_AXIS])
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
|
|
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
|
|
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
extern int bilinear_grid_spacing[2], bilinear_start[2];
|
|
extern float bilinear_grid_factor[2],
|
|
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
float bilinear_z_offset(const float raw[XYZ]);
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
|
|
typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
|
|
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn);
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
typedef struct { double A, B, D; } linear_fit;
|
|
linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int);
|
|
#endif
|
|
|
|
#if HAS_LEVELING
|
|
bool leveling_is_valid();
|
|
void set_bed_leveling_enabled(const bool enable=true);
|
|
void reset_bed_level();
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
void set_z_fade_height(const float zfh, const bool do_report=true);
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
extern float zprobe_zoffset;
|
|
bool set_probe_deployed(const bool deploy);
|
|
#ifdef Z_AFTER_PROBING
|
|
void move_z_after_probing();
|
|
#else
|
|
inline void move_z_after_probing() {}
|
|
#endif
|
|
#define DEPLOY_PROBE() set_probe_deployed(true)
|
|
#define STOW_PROBE() set_probe_deployed(false)
|
|
#else
|
|
#define DEPLOY_PROBE()
|
|
#define STOW_PROBE()
|
|
#endif
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
extern MarlinBusyState busy_state;
|
|
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
|
|
#else
|
|
#define KEEPALIVE_STATE(n) NOOP
|
|
#endif
|
|
|
|
#if FAN_COUNT > 0
|
|
extern int16_t fanSpeeds[FAN_COUNT];
|
|
#if ENABLED(EXTRA_FAN_SPEED)
|
|
extern int16_t old_fanSpeeds[FAN_COUNT],
|
|
new_fanSpeeds[FAN_COUNT];
|
|
#endif
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
extern bool fans_paused;
|
|
extern int16_t paused_fanSpeeds[FAN_COUNT];
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
extern int controllerFanSpeed;
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
extern bool filament_sensor; // Flag that filament sensor readings should control extrusion
|
|
extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
|
|
filament_width_meas; // Measured filament diameter
|
|
extern uint8_t meas_delay_cm; // Delay distance
|
|
extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delay measurement
|
|
filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
extern int8_t did_pause_print;
|
|
extern AdvancedPauseMenuResponse advanced_pause_menu_response;
|
|
extern float filament_change_unload_length[EXTRUDERS],
|
|
filament_change_load_length[EXTRUDERS];
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
extern int lpq_len;
|
|
#endif
|
|
|
|
#if HAS_POWER_SWITCH
|
|
extern bool powersupply_on;
|
|
#define PSU_PIN_ON() do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0)
|
|
#define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0)
|
|
#endif
|
|
|
|
// Handling multiple extruders pins
|
|
extern uint8_t active_extruder;
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
extern float mixing_factor[MIXING_STEPPERS];
|
|
#endif
|
|
|
|
inline void set_current_from_destination() { COPY(current_position, destination); }
|
|
inline void set_destination_from_current() { COPY(destination, current_position); }
|
|
void prepare_move_to_destination();
|
|
|
|
/**
|
|
* Blocking movement and shorthand functions
|
|
*/
|
|
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0);
|
|
void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
|
|
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
|
|
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
|
|
|
|
#define HAS_AXIS_UNHOMED_ERR ( \
|
|
ENABLED(Z_PROBE_ALLEN_KEY) \
|
|
|| ENABLED(Z_PROBE_SLED) \
|
|
|| HAS_PROBING_PROCEDURE \
|
|
|| HOTENDS > 1 \
|
|
|| ENABLED(NOZZLE_CLEAN_FEATURE) \
|
|
|| ENABLED(NOZZLE_PARK_FEATURE) \
|
|
|| (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
|
|
|| HAS_M206_COMMAND \
|
|
) || ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
|
#if HAS_AXIS_UNHOMED_ERR
|
|
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
|
|
#endif
|
|
|
|
/**
|
|
* position_is_reachable family of functions
|
|
*/
|
|
|
|
#if IS_KINEMATIC // (DELTA or SCARA)
|
|
|
|
#if IS_SCARA
|
|
extern const float L1, L2;
|
|
#endif
|
|
|
|
// Return true if the given point is within the printable area
|
|
inline bool position_is_reachable(const float &rx, const float &ry) {
|
|
#if ENABLED(DELTA)
|
|
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS);
|
|
#elif IS_SCARA
|
|
#if MIDDLE_DEAD_ZONE_R > 0
|
|
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
|
|
return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
|
|
#else
|
|
return HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y) <= sq(L1 + L2);
|
|
#endif
|
|
#else // CARTESIAN
|
|
// To be migrated from MakerArm branch in future
|
|
#endif
|
|
}
|
|
|
|
// Return true if the both nozzle and the probe can reach the given point.
|
|
// Note: This won't work on SCARA since the probe offset rotates with the arm.
|
|
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
|
return position_is_reachable(rx, ry)
|
|
&& position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
|
}
|
|
|
|
#else // CARTESIAN
|
|
|
|
// Return true if the given position is within the machine bounds.
|
|
inline bool position_is_reachable(const float &rx, const float &ry) {
|
|
// Add 0.001 margin to deal with float imprecision
|
|
return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001)
|
|
&& WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001);
|
|
}
|
|
|
|
/**
|
|
* Return whether the given position is within the bed, and whether the nozzle
|
|
* can reach the position required to put the probe at the given position.
|
|
*
|
|
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
|
|
* nozzle must be be able to reach +10,-10.
|
|
*/
|
|
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
|
const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
return position_is_reachable(nx, ny)
|
|
&& WITHIN(rx, X_MIN_BED - 0.001, X_MAX_BED + 0.001)
|
|
&& WITHIN(ry, Y_MIN_BED - 0.001, Y_MAX_BED + 0.001);
|
|
}
|
|
|
|
#endif // CARTESIAN
|
|
|
|
#endif // MARLIN_H
|