mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-23 12:04:19 +00:00
1373 lines
43 KiB
Plaintext
1373 lines
43 KiB
Plaintext
/*
|
|
Reprap firmware based on Sprinter and grbl.
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
*/
|
|
|
|
#include "EEPROMwrite.h"
|
|
#include "fastio.h"
|
|
#include "Configuration.h"
|
|
#include "pins.h"
|
|
#include "Marlin.h"
|
|
#include "ultralcd.h"
|
|
#include "streaming.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "motion_control.h"
|
|
|
|
#ifdef SIMPLE_LCD
|
|
#include "Simplelcd.h"
|
|
#endif
|
|
|
|
char version_string[] = "1.0.0 Alpha 1";
|
|
|
|
#ifdef SDSUPPORT
|
|
#include "SdFat.h"
|
|
#endif //SDSUPPORT
|
|
|
|
|
|
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
|
|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
|
//Implemented Codes
|
|
//-------------------
|
|
// G0 -> G1
|
|
// G1 - Coordinated Movement X Y Z E
|
|
// G2 - CW ARC
|
|
// G3 - CCW ARC
|
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
|
// G28 - Home all Axis
|
|
// G90 - Use Absolute Coordinates
|
|
// G91 - Use Relative Coordinates
|
|
// G92 - Set current position to cordinates given
|
|
|
|
//RepRap M Codes
|
|
// M104 - Set extruder target temp
|
|
// M105 - Read current temp
|
|
// M106 - Fan on
|
|
// M107 - Fan off
|
|
// M109 - Wait for extruder current temp to reach target temp.
|
|
// M114 - Display current position
|
|
|
|
//Custom M Codes
|
|
// M20 - List SD card
|
|
// M21 - Init SD card
|
|
// M22 - Release SD card
|
|
// M23 - Select SD file (M23 filename.g)
|
|
// M24 - Start/resume SD print
|
|
// M25 - Pause SD print
|
|
// M26 - Set SD position in bytes (M26 S12345)
|
|
// M27 - Report SD print status
|
|
// M28 - Start SD write (M28 filename.g)
|
|
// M29 - Stop SD write
|
|
// M42 - Change pin status via gcode
|
|
// M80 - Turn on Power Supply
|
|
// M81 - Turn off Power Supply
|
|
// M82 - Set E codes absolute (default)
|
|
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
// M84 - Disable steppers until next move,
|
|
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
// M92 - Set axis_steps_per_unit - same syntax as G92
|
|
// M115 - Capabilities string
|
|
// M140 - Set bed target temp
|
|
// M190 - Wait for bed current temp to reach target temp.
|
|
// M200 - Set filament diameter
|
|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
|
|
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
// M220 - set speed factor override percentage S:factor in percent
|
|
// M301 - Set PID parameters P I and D
|
|
// M500 - stores paramters in EEPROM
|
|
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
|
|
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
|
|
//Stepper Movement Variables
|
|
|
|
char axis_codes[NUM_AXIS] = {
|
|
'X', 'Y', 'Z', 'E'};
|
|
float destination[NUM_AXIS] = {
|
|
0.0, 0.0, 0.0, 0.0};
|
|
float current_position[NUM_AXIS] = {
|
|
0.0, 0.0, 0.0, 0.0};
|
|
float offset[3] = {0.0, 0.0, 0.0};
|
|
bool home_all_axis = true;
|
|
float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
long gcode_N, gcode_LastN;
|
|
|
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
|
|
bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
|
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
|
|
|
|
uint8_t fanpwm=0;
|
|
|
|
volatile int feedmultiply=100; //100->1 200->2
|
|
int saved_feedmultiply;
|
|
volatile bool feedmultiplychanged=false;
|
|
// comm variables
|
|
#define MAX_CMD_SIZE 96
|
|
#define BUFSIZE 4
|
|
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
|
bool fromsd[BUFSIZE];
|
|
int bufindr = 0;
|
|
int bufindw = 0;
|
|
int buflen = 0;
|
|
int i = 0;
|
|
char serial_char;
|
|
int serial_count = 0;
|
|
boolean comment_mode = false;
|
|
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
|
|
extern float HeaterPower;
|
|
|
|
#include "EEPROM.h"
|
|
|
|
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
|
|
|
float tt = 0, bt = 0;
|
|
#ifdef WATCHPERIOD
|
|
int watch_raw = -1000;
|
|
unsigned long watchmillis = 0;
|
|
#endif //WATCHPERIOD
|
|
|
|
//Inactivity shutdown variables
|
|
unsigned long previous_millis_cmd = 0;
|
|
unsigned long max_inactive_time = 0;
|
|
unsigned long stepper_inactive_time = 0;
|
|
|
|
unsigned long starttime=0;
|
|
unsigned long stoptime=0;
|
|
#ifdef SDSUPPORT
|
|
Sd2Card card;
|
|
SdVolume volume;
|
|
SdFile root;
|
|
SdFile file;
|
|
uint32_t filesize = 0;
|
|
uint32_t sdpos = 0;
|
|
bool sdmode = false;
|
|
bool sdactive = false;
|
|
bool savetosd = false;
|
|
int16_t n;
|
|
unsigned long autostart_atmillis=0;
|
|
|
|
void initsd(){
|
|
sdactive = false;
|
|
#if SDSS >- 1
|
|
if(root.isOpen())
|
|
root.close();
|
|
if (!card.init(SPI_FULL_SPEED,SDSS)){
|
|
//if (!card.init(SPI_HALF_SPEED,SDSS))
|
|
Serial.println("SD init fail");
|
|
}
|
|
else if (!volume.init(&card))
|
|
Serial.println("volume.init failed");
|
|
else if (!root.openRoot(&volume))
|
|
Serial.println("openRoot failed");
|
|
else
|
|
{
|
|
sdactive = true;
|
|
Serial.println("SD card ok");
|
|
}
|
|
#endif //SDSS
|
|
}
|
|
|
|
void quickinitsd(){
|
|
sdactive=false;
|
|
autostart_atmillis=millis()+5000;
|
|
}
|
|
|
|
inline void write_command(char *buf){
|
|
char* begin = buf;
|
|
char* npos = 0;
|
|
char* end = buf + strlen(buf) - 1;
|
|
|
|
file.writeError = false;
|
|
if((npos = strchr(buf, 'N')) != NULL){
|
|
begin = strchr(npos, ' ') + 1;
|
|
end = strchr(npos, '*') - 1;
|
|
}
|
|
end[1] = '\r';
|
|
end[2] = '\n';
|
|
end[3] = '\0';
|
|
//Serial.println(begin);
|
|
file.write(begin);
|
|
if (file.writeError){
|
|
Serial.println("error writing to file");
|
|
}
|
|
}
|
|
#endif //SDSUPPORT
|
|
|
|
|
|
///adds an command to the main command buffer
|
|
void enquecommand(const char *cmd)
|
|
{
|
|
if(buflen < BUFSIZE)
|
|
{
|
|
//this is dangerous if a mixing of serial and this happsens
|
|
strcpy(&(cmdbuffer[bufindw][0]),cmd);
|
|
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
|
|
bufindw= (bufindw + 1)%BUFSIZE;
|
|
buflen += 1;
|
|
}
|
|
}
|
|
|
|
void setup()
|
|
{
|
|
|
|
Serial.begin(BAUDRATE);
|
|
ECHOLN("Marlin "<<version_string);
|
|
Serial.println("start");
|
|
#if defined FANCY_LCD || defined SIMPLE_LCD
|
|
lcd_init();
|
|
#endif
|
|
for(int i = 0; i < BUFSIZE; i++){
|
|
fromsd[i] = false;
|
|
}
|
|
|
|
RetrieveSettings(); // loads data from EEPROM if available
|
|
|
|
|
|
for(int i=0; i < NUM_AXIS; i++){
|
|
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
|
}
|
|
|
|
#ifdef SDSUPPORT
|
|
//power to SD reader
|
|
#if SDPOWER > -1
|
|
SET_OUTPUT(SDPOWER);
|
|
WRITE(SDPOWER,HIGH);
|
|
#endif //SDPOWER
|
|
quickinitsd();
|
|
|
|
#endif //SDSUPPORT
|
|
plan_init(); // Initialize planner;
|
|
st_init(); // Initialize stepper;
|
|
tp_init(); // Initialize temperature loop
|
|
//checkautostart();
|
|
}
|
|
|
|
#ifdef SDSUPPORT
|
|
bool autostart_stilltocheck=true;
|
|
|
|
|
|
void checkautostart(bool force)
|
|
{
|
|
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
|
|
if(!force)
|
|
{
|
|
if(!autostart_stilltocheck)
|
|
return;
|
|
if(autostart_atmillis<millis())
|
|
return;
|
|
}
|
|
autostart_stilltocheck=false;
|
|
if(!sdactive)
|
|
{
|
|
initsd();
|
|
if(!sdactive) //fail
|
|
return;
|
|
}
|
|
static int lastnr=0;
|
|
char autoname[30];
|
|
sprintf(autoname,"auto%i.g",lastnr);
|
|
for(int i=0;i<(int)strlen(autoname);i++)
|
|
autoname[i]=tolower(autoname[i]);
|
|
dir_t p;
|
|
|
|
root.rewind();
|
|
//char filename[11];
|
|
//int cnt=0;
|
|
|
|
bool found=false;
|
|
while (root.readDir(p) > 0)
|
|
{
|
|
for(int i=0;i<(int)strlen((char*)p.name);i++)
|
|
p.name[i]=tolower(p.name[i]);
|
|
//Serial.print((char*)p.name);
|
|
//Serial.print(" ");
|
|
//Serial.println(autoname);
|
|
if(p.name[9]!='~') //skip safety copies
|
|
if(strncmp((char*)p.name,autoname,5)==0)
|
|
{
|
|
char cmd[30];
|
|
|
|
sprintf(cmd,"M23 %s",autoname);
|
|
//sprintf(cmd,"M115");
|
|
//enquecommand("G92 Z0");
|
|
//enquecommand("G1 Z10 F2000");
|
|
//enquecommand("G28 X-105 Y-105");
|
|
enquecommand(cmd);
|
|
enquecommand("M24");
|
|
found=true;
|
|
|
|
}
|
|
}
|
|
if(!found)
|
|
lastnr=-1;
|
|
else
|
|
lastnr++;
|
|
|
|
}
|
|
#else
|
|
|
|
inline void checkautostart(bool x)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
|
|
void loop()
|
|
{
|
|
if(buflen<3)
|
|
get_command();
|
|
checkautostart(false);
|
|
if(buflen)
|
|
{
|
|
#ifdef SDSUPPORT
|
|
if(savetosd){
|
|
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
|
|
write_command(cmdbuffer[bufindr]);
|
|
Serial.println("ok");
|
|
}
|
|
else{
|
|
file.sync();
|
|
file.close();
|
|
savetosd = false;
|
|
Serial.println("Done saving file.");
|
|
}
|
|
}
|
|
else{
|
|
process_commands();
|
|
}
|
|
#else
|
|
process_commands();
|
|
#endif //SDSUPPORT
|
|
buflen = (buflen-1);
|
|
bufindr = (bufindr + 1)%BUFSIZE;
|
|
}
|
|
//check heater every n milliseconds
|
|
manage_heater();
|
|
manage_inactivity(1);
|
|
LCD_STATUS;
|
|
}
|
|
|
|
|
|
inline void get_command()
|
|
{
|
|
while( Serial.available() > 0 && buflen < BUFSIZE) {
|
|
serial_char = Serial.read();
|
|
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
|
|
{
|
|
if(!serial_count) return; //if empty line
|
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
|
if(!comment_mode){
|
|
fromsd[bufindw] = false;
|
|
if(strstr(cmdbuffer[bufindw], "N") != NULL)
|
|
{
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
|
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
|
|
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
|
|
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
|
|
Serial.println(gcode_LastN);
|
|
//Serial.println(gcode_N);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
if(strstr(cmdbuffer[bufindw], "*") != NULL)
|
|
{
|
|
byte checksum = 0;
|
|
byte count = 0;
|
|
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
|
|
|
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
|
|
Serial.print("Error: checksum mismatch, Last Line:");
|
|
Serial.println(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
//if no errors, continue parsing
|
|
}
|
|
else
|
|
{
|
|
Serial.print("Error: No Checksum with line number, Last Line:");
|
|
Serial.println(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
gcode_LastN = gcode_N;
|
|
//if no errors, continue parsing
|
|
}
|
|
else // if we don't receive 'N' but still see '*'
|
|
{
|
|
if((strstr(cmdbuffer[bufindw], "*") != NULL))
|
|
{
|
|
Serial.print("Error: No Line Number with checksum, Last Line:");
|
|
Serial.println(gcode_LastN);
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
}
|
|
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
|
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
#ifdef SDSUPPORT
|
|
if(savetosd)
|
|
break;
|
|
#endif //SDSUPPORT
|
|
Serial.println("ok");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
bufindw = (bufindw + 1)%BUFSIZE;
|
|
buflen += 1;
|
|
|
|
}
|
|
comment_mode = false; //for new command
|
|
serial_count = 0; //clear buffer
|
|
}
|
|
else
|
|
{
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
}
|
|
#ifdef SDSUPPORT
|
|
if(!sdmode || serial_count!=0){
|
|
return;
|
|
}
|
|
while( filesize > sdpos && buflen < BUFSIZE) {
|
|
n = file.read();
|
|
serial_char = (char)n;
|
|
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
|
|
{
|
|
sdpos = file.curPosition();
|
|
if(sdpos >= filesize){
|
|
sdmode = false;
|
|
Serial.println("Done printing file");
|
|
stoptime=millis();
|
|
char time[30];
|
|
unsigned long t=(stoptime-starttime)/1000;
|
|
int sec,min;
|
|
min=t/60;
|
|
sec=t%60;
|
|
sprintf(time,"%i min, %i sec",min,sec);
|
|
Serial.println(time);
|
|
LCD_MESSAGE(time);
|
|
checkautostart(true);
|
|
}
|
|
if(!serial_count) return; //if empty line
|
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
|
if(!comment_mode){
|
|
fromsd[bufindw] = true;
|
|
buflen += 1;
|
|
bufindw = (bufindw + 1)%BUFSIZE;
|
|
}
|
|
comment_mode = false; //for new command
|
|
serial_count = 0; //clear buffer
|
|
}
|
|
else
|
|
{
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
}
|
|
#endif //SDSUPPORT
|
|
|
|
}
|
|
|
|
|
|
inline float code_value() {
|
|
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
|
|
}
|
|
inline long code_value_long() {
|
|
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
|
|
}
|
|
inline bool code_seen(char code_string[]) {
|
|
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
|
|
} //Return True if the string was found
|
|
|
|
inline bool code_seen(char code)
|
|
{
|
|
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
|
return (strchr_pointer != NULL); //Return True if a character was found
|
|
}
|
|
|
|
inline void process_commands()
|
|
{
|
|
unsigned long codenum; //throw away variable
|
|
char *starpos = NULL;
|
|
|
|
if(code_seen('G'))
|
|
{
|
|
switch((int)code_value())
|
|
{
|
|
case 0: // G0 -> G1
|
|
case 1: // G1
|
|
get_coordinates(); // For X Y Z E F
|
|
prepare_move();
|
|
previous_millis_cmd = millis();
|
|
//ClearToSend();
|
|
return;
|
|
//break;
|
|
case 2: // G2 - CW ARC
|
|
get_arc_coordinates();
|
|
prepare_arc_move(true);
|
|
previous_millis_cmd = millis();
|
|
return;
|
|
case 3: // G3 - CCW ARC
|
|
get_arc_coordinates();
|
|
prepare_arc_move(false);
|
|
previous_millis_cmd = millis();
|
|
return;
|
|
case 4: // G4 dwell
|
|
codenum = 0;
|
|
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
|
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
|
codenum += millis(); // keep track of when we started waiting
|
|
while(millis() < codenum ){
|
|
manage_heater();
|
|
}
|
|
break;
|
|
case 28: //G28 Home all Axis one at a time
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
destination[i] = current_position[i];
|
|
}
|
|
feedrate = 0.0;
|
|
|
|
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
|
|
|
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
|
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
|
|
// st_synchronize();
|
|
current_position[X_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
prepare_move();
|
|
|
|
// st_synchronize();
|
|
current_position[X_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = -5 * X_HOME_DIR;
|
|
prepare_move();
|
|
|
|
// st_synchronize();
|
|
destination[X_AXIS] = 10 * X_HOME_DIR;
|
|
feedrate = homing_feedrate[X_AXIS]/2 ;
|
|
prepare_move();
|
|
|
|
// st_synchronize();
|
|
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
feedrate = 0.0;
|
|
}
|
|
}
|
|
|
|
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
|
|
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
|
|
current_position[Y_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
|
feedrate = homing_feedrate[Y_AXIS];
|
|
prepare_move();
|
|
// st_synchronize();
|
|
|
|
current_position[Y_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Y_AXIS] = -5 * Y_HOME_DIR;
|
|
prepare_move();
|
|
// st_synchronize();
|
|
|
|
destination[Y_AXIS] = 10 * Y_HOME_DIR;
|
|
feedrate = homing_feedrate[Y_AXIS]/2;
|
|
prepare_move();
|
|
// st_synchronize();
|
|
|
|
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
feedrate = 0.0;
|
|
}
|
|
}
|
|
|
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
|
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
prepare_move();
|
|
// st_synchronize();
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Z_AXIS] = -2 * Z_HOME_DIR;
|
|
prepare_move();
|
|
// st_synchronize();
|
|
|
|
destination[Z_AXIS] = 3 * Z_HOME_DIR;
|
|
feedrate = homing_feedrate[Z_AXIS]/2;
|
|
prepare_move();
|
|
// st_synchronize();
|
|
|
|
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
destination[Z_AXIS] = current_position[Z_AXIS];
|
|
feedrate = 0.0;
|
|
}
|
|
}
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
previous_millis_cmd = millis();
|
|
break;
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
case 92: // G92
|
|
if(!code_seen(axis_codes[E_AXIS]))
|
|
st_synchronize();
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) current_position[i] = code_value();
|
|
}
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
else if(code_seen('M'))
|
|
{
|
|
|
|
switch( (int)code_value() )
|
|
{
|
|
#ifdef SDSUPPORT
|
|
|
|
case 20: // M20 - list SD card
|
|
Serial.println("Begin file list");
|
|
root.ls();
|
|
Serial.println("End file list");
|
|
break;
|
|
case 21: // M21 - init SD card
|
|
sdmode = false;
|
|
initsd();
|
|
break;
|
|
case 22: //M22 - release SD card
|
|
sdmode = false;
|
|
sdactive = false;
|
|
break;
|
|
case 23: //M23 - Select file
|
|
if(sdactive){
|
|
sdmode = false;
|
|
file.close();
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos!=NULL)
|
|
*(starpos-1)='\0';
|
|
if (file.open(&root, strchr_pointer + 4, O_READ)) {
|
|
Serial.print("File opened:");
|
|
Serial.print(strchr_pointer + 4);
|
|
Serial.print(" Size:");
|
|
Serial.println(file.fileSize());
|
|
sdpos = 0;
|
|
filesize = file.fileSize();
|
|
Serial.println("File selected");
|
|
}
|
|
else{
|
|
Serial.println("file.open failed");
|
|
}
|
|
}
|
|
break;
|
|
case 24: //M24 - Start SD print
|
|
if(sdactive){
|
|
sdmode = true;
|
|
starttime=millis();
|
|
}
|
|
break;
|
|
case 25: //M25 - Pause SD print
|
|
if(sdmode){
|
|
sdmode = false;
|
|
}
|
|
break;
|
|
case 26: //M26 - Set SD index
|
|
if(sdactive && code_seen('S')){
|
|
sdpos = code_value_long();
|
|
file.seekSet(sdpos);
|
|
}
|
|
break;
|
|
case 27: //M27 - Get SD status
|
|
if(sdactive){
|
|
Serial.print("SD printing byte ");
|
|
Serial.print(sdpos);
|
|
Serial.print("/");
|
|
Serial.println(filesize);
|
|
}
|
|
else{
|
|
Serial.println("Not SD printing");
|
|
}
|
|
break;
|
|
case 28: //M28 - Start SD write
|
|
if(sdactive){
|
|
char* npos = 0;
|
|
file.close();
|
|
sdmode = false;
|
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
if(starpos != NULL){
|
|
npos = strchr(cmdbuffer[bufindr], 'N');
|
|
strchr_pointer = strchr(npos,' ') + 1;
|
|
*(starpos-1) = '\0';
|
|
}
|
|
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
|
|
{
|
|
Serial.print("open failed, File: ");
|
|
Serial.print(strchr_pointer + 4);
|
|
Serial.print(".");
|
|
}
|
|
else{
|
|
savetosd = true;
|
|
Serial.print("Writing to file: ");
|
|
Serial.println(strchr_pointer + 4);
|
|
}
|
|
}
|
|
break;
|
|
case 29: //M29 - Stop SD write
|
|
//processed in write to file routine above
|
|
//savetosd = false;
|
|
break;
|
|
case 30:
|
|
{
|
|
stoptime=millis();
|
|
char time[30];
|
|
unsigned long t=(stoptime-starttime)/1000;
|
|
int sec,min;
|
|
min=t/60;
|
|
sec=t%60;
|
|
sprintf(time,"%i min, %i sec",min,sec);
|
|
Serial.println(time);
|
|
LCD_MESSAGE(time);
|
|
}
|
|
break;
|
|
#endif //SDSUPPORT
|
|
case 42: //M42 -Change pin status via gcode
|
|
if (code_seen('S'))
|
|
{
|
|
int pin_status = code_value();
|
|
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
{
|
|
int pin_number = code_value();
|
|
for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
|
|
{
|
|
if (sensitive_pins[i] == pin_number)
|
|
{
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pin_number > -1)
|
|
{
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 104: // M104
|
|
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
|
|
#ifdef PIDTEMP
|
|
pid_setpoint = code_value();
|
|
#endif //PIDTEM
|
|
#ifdef WATCHPERIOD
|
|
if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
|
|
watchmillis = max(1,millis());
|
|
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
|
|
}else{
|
|
watchmillis = 0;
|
|
}
|
|
#endif
|
|
break;
|
|
case 140: // M140 set bed temp
|
|
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
|
|
break;
|
|
case 105: // M105
|
|
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
|
tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
|
#endif
|
|
#if TEMP_1_PIN > -1
|
|
bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
|
|
#endif
|
|
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
|
Serial.print("ok T:");
|
|
Serial.print(tt);
|
|
// Serial.print(", raw:");
|
|
// Serial.print(current_raw);
|
|
#if TEMP_1_PIN > -1
|
|
#ifdef PIDTEMP
|
|
Serial.print(" B:");
|
|
#if TEMP_1_PIN > -1
|
|
Serial.println(bt);
|
|
#else
|
|
Serial.println(HeaterPower);
|
|
#endif
|
|
#else
|
|
Serial.println();
|
|
#endif
|
|
#else
|
|
Serial.println();
|
|
#endif
|
|
#else
|
|
Serial.println("No thermistors - no temp");
|
|
#endif
|
|
return;
|
|
//break;
|
|
case 109: {// M109 - Wait for extruder heater to reach target.
|
|
LCD_MESSAGE("Heating...");
|
|
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
|
|
#ifdef PIDTEMP
|
|
pid_setpoint = code_value();
|
|
#endif //PIDTEM
|
|
#ifdef WATCHPERIOD
|
|
if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
|
|
watchmillis = max(1,millis());
|
|
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
|
|
} else {
|
|
watchmillis = 0;
|
|
}
|
|
#endif //WATCHPERIOD
|
|
codenum = millis();
|
|
|
|
/* See if we are heating up or cooling down */
|
|
bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
|
|
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
long residencyStart;
|
|
residencyStart = -1;
|
|
/* continue to loop until we have reached the target temp
|
|
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
|
|
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
|
|
#else
|
|
while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
|
|
Serial.print("T:");
|
|
Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) );
|
|
codenum = millis();
|
|
}
|
|
manage_heater();
|
|
LCD_STATUS;
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
or when current temp falls outside the hysteresis after target temp was reached */
|
|
if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
|
|
(residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
|
|
(residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
|
|
residencyStart = millis();
|
|
}
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
}
|
|
LCD_MESSAGE("Marlin ready.");
|
|
}
|
|
break;
|
|
case 190: // M190 - Wait bed for heater to reach target.
|
|
#if TEMP_1_PIN > -1
|
|
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
|
|
codenum = millis();
|
|
while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
|
|
{
|
|
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
|
{
|
|
float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
|
Serial.print("T:");
|
|
Serial.println( tt );
|
|
Serial.print("ok T:");
|
|
Serial.print( tt );
|
|
Serial.print(" B:");
|
|
Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
|
|
codenum = millis();
|
|
}
|
|
manage_heater();
|
|
}
|
|
#endif
|
|
break;
|
|
#if FAN_PIN > -1
|
|
case 106: //M106 Fan On
|
|
if (code_seen('S')){
|
|
WRITE(FAN_PIN,HIGH);
|
|
fanpwm=constrain(code_value(),0,255);
|
|
analogWrite(FAN_PIN, fanpwm);
|
|
}
|
|
else {
|
|
WRITE(FAN_PIN,HIGH);
|
|
fanpwm=255;
|
|
analogWrite(FAN_PIN, fanpwm);
|
|
}
|
|
break;
|
|
case 107: //M107 Fan Off
|
|
WRITE(FAN_PIN,LOW);
|
|
analogWrite(FAN_PIN, 0);
|
|
break;
|
|
#endif
|
|
#if (PS_ON_PIN > -1)
|
|
case 80: // M80 - ATX Power On
|
|
SET_OUTPUT(PS_ON_PIN); //GND
|
|
break;
|
|
case 81: // M81 - ATX Power Off
|
|
SET_INPUT(PS_ON_PIN); //Floating
|
|
break;
|
|
#endif
|
|
case 82:
|
|
axis_relative_modes[3] = false;
|
|
break;
|
|
case 83:
|
|
axis_relative_modes[3] = true;
|
|
break;
|
|
case 18:
|
|
case 84:
|
|
if(code_seen('S')){
|
|
stepper_inactive_time = code_value() * 1000;
|
|
}
|
|
else{
|
|
st_synchronize();
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e();
|
|
}
|
|
break;
|
|
case 85: // M85
|
|
code_seen('S');
|
|
max_inactive_time = code_value() * 1000;
|
|
break;
|
|
case 92: // M92
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
|
|
}
|
|
|
|
break;
|
|
case 115: // M115
|
|
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
|
|
break;
|
|
case 114: // M114
|
|
Serial.print("X:");
|
|
Serial.print(current_position[X_AXIS]);
|
|
Serial.print("Y:");
|
|
Serial.print(current_position[Y_AXIS]);
|
|
Serial.print("Z:");
|
|
Serial.print(current_position[Z_AXIS]);
|
|
Serial.print("E:");
|
|
Serial.print(current_position[E_AXIS]);
|
|
#ifdef DEBUG_STEPS
|
|
Serial.print(" Count X:");
|
|
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
|
|
Serial.print("Y:");
|
|
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
|
|
Serial.print("Z:");
|
|
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
|
|
#endif
|
|
Serial.println("");
|
|
break;
|
|
case 119: // M119
|
|
#if (X_MIN_PIN > -1)
|
|
Serial.print("x_min:");
|
|
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
|
#endif
|
|
#if (X_MAX_PIN > -1)
|
|
Serial.print("x_max:");
|
|
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
|
#endif
|
|
#if (Y_MIN_PIN > -1)
|
|
Serial.print("y_min:");
|
|
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
|
#endif
|
|
#if (Y_MAX_PIN > -1)
|
|
Serial.print("y_max:");
|
|
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
|
#endif
|
|
#if (Z_MIN_PIN > -1)
|
|
Serial.print("z_min:");
|
|
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
|
#endif
|
|
#if (Z_MAX_PIN > -1)
|
|
Serial.print("z_max:");
|
|
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
|
#endif
|
|
Serial.println("");
|
|
break;
|
|
//TODO: update for all axis, use for loop
|
|
case 201: // M201
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
}
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
}
|
|
break;
|
|
#endif
|
|
case 203: // M203 max feedrate mm/sec
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
|
|
}
|
|
break;
|
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
{
|
|
if(code_seen('S')) acceleration = code_value() ;
|
|
if(code_seen('T')) retract_acceleration = code_value() ;
|
|
}
|
|
break;
|
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
{
|
|
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
|
|
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
|
|
if(code_seen('B')) minsegmenttime = code_value() ;
|
|
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
|
|
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
|
|
}
|
|
break;
|
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
{
|
|
if(code_seen('S'))
|
|
{
|
|
feedmultiply = code_value() ;
|
|
feedmultiplychanged=true;
|
|
}
|
|
}
|
|
break;
|
|
#ifdef PIDTEMP
|
|
case 301: // M301
|
|
if(code_seen('P')) Kp = code_value();
|
|
if(code_seen('I')) Ki = code_value()*PID_dT;
|
|
if(code_seen('D')) Kd = code_value()/PID_dT;
|
|
// ECHOLN("Kp "<<_FLOAT(Kp,2));
|
|
// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
|
|
// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
|
|
|
|
// temp_iState_min = 0.0;
|
|
// if (Ki!=0) {
|
|
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
|
|
// }
|
|
// else temp_iState_max = 1.0e10;
|
|
break;
|
|
#endif //PIDTEMP
|
|
case 500: // Store settings in EEPROM
|
|
{
|
|
StoreSettings();
|
|
}
|
|
break;
|
|
case 501: // Read settings from EEPROM
|
|
{
|
|
RetrieveSettings();
|
|
}
|
|
break;
|
|
case 502: // Revert to default settings
|
|
{
|
|
RetrieveSettings(true);
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
else{
|
|
Serial.println("Unknown command:");
|
|
Serial.println(cmdbuffer[bufindr]);
|
|
}
|
|
|
|
ClearToSend();
|
|
}
|
|
|
|
void FlushSerialRequestResend()
|
|
{
|
|
//char cmdbuffer[bufindr][100]="Resend:";
|
|
Serial.flush();
|
|
Serial.print("Resend:");
|
|
Serial.println(gcode_LastN + 1);
|
|
ClearToSend();
|
|
}
|
|
|
|
void ClearToSend()
|
|
{
|
|
previous_millis_cmd = millis();
|
|
#ifdef SDSUPPORT
|
|
if(fromsd[bufindr])
|
|
return;
|
|
#endif //SDSUPPORT
|
|
Serial.println("ok");
|
|
}
|
|
|
|
inline void get_coordinates()
|
|
{
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
|
else destination[i] = current_position[i]; //Are these else lines really needed?
|
|
}
|
|
if(code_seen('F')) {
|
|
next_feedrate = code_value();
|
|
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
}
|
|
|
|
inline void get_arc_coordinates()
|
|
{
|
|
get_coordinates();
|
|
if(code_seen("I")) offset[0] = code_value();
|
|
if(code_seen("J")) offset[1] = code_value();
|
|
}
|
|
|
|
void prepare_move()
|
|
{
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
|
|
for(int i=0; i < NUM_AXIS; i++) {
|
|
current_position[i] = destination[i];
|
|
}
|
|
}
|
|
|
|
void prepare_arc_move(char isclockwise) {
|
|
#if 0
|
|
if (radius_mode) {
|
|
/*
|
|
We need to calculate the center of the circle that has the designated radius and passes
|
|
through both the current position and the target position. This method calculates the following
|
|
set of equations where [x,y] is the vector from current to target position, d == magnitude of
|
|
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
|
|
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
|
|
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
|
|
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
|
|
|
|
d^2 == x^2 + y^2
|
|
h^2 == r^2 - (d/2)^2
|
|
i == x/2 - y/d*h
|
|
j == y/2 + x/d*h
|
|
|
|
O <- [i,j]
|
|
- |
|
|
r - |
|
|
- |
|
|
- | h
|
|
- |
|
|
[0,0] -> C -----------------+--------------- T <- [x,y]
|
|
| <------ d/2 ---->|
|
|
|
|
C - Current position
|
|
T - Target position
|
|
O - center of circle that pass through both C and T
|
|
d - distance from C to T
|
|
r - designated radius
|
|
h - distance from center of CT to O
|
|
|
|
Expanding the equations:
|
|
|
|
d -> sqrt(x^2 + y^2)
|
|
h -> sqrt(4 * r^2 - x^2 - y^2)/2
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
|
|
Which can be written:
|
|
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
|
|
Which we for size and speed reasons optimize to:
|
|
|
|
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
|
|
i = (x - (y * h_x2_div_d))/2
|
|
j = (y + (x * h_x2_div_d))/2
|
|
|
|
*/
|
|
|
|
// Calculate the change in position along each selected axis
|
|
double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
|
|
double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
|
|
|
|
clear_vector(offset);
|
|
double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
|
|
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
|
|
// real CNC, and thus - for practical reasons - we will terminate promptly:
|
|
if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
|
|
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
|
|
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
|
|
|
|
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
|
|
the left hand circle will be generated - when it is negative the right hand circle is generated.
|
|
|
|
|
|
T <-- Target position
|
|
|
|
^
|
|
Clockwise circles with this center | Clockwise circles with this center will have
|
|
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
|
|
\ | /
|
|
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
|
|
|
|
|
|
|
|
C <-- Current position */
|
|
|
|
|
|
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
|
|
// even though it is advised against ever generating such circles in a single line of g-code. By
|
|
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
|
|
// travel and thus we get the unadvisably long arcs as prescribed.
|
|
if (r < 0) {
|
|
h_x2_div_d = -h_x2_div_d;
|
|
r = -r; // Finished with r. Set to positive for mc_arc
|
|
}
|
|
// Complete the operation by calculating the actual center of the arc
|
|
offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
|
|
offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
|
|
|
|
} else { // Offset mode specific computations
|
|
#endif
|
|
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
|
|
// }
|
|
|
|
// Set clockwise/counter-clockwise sign for mc_arc computations
|
|
// uint8_t isclockwise = false;
|
|
// if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
|
|
|
|
// Trace the arc
|
|
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
|
|
|
|
// }
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
for(int ii=0; ii < NUM_AXIS; ii++) {
|
|
current_position[ii] = destination[ii];
|
|
}
|
|
}
|
|
|
|
#ifdef USE_WATCHDOG
|
|
|
|
#include <avr/wdt.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
volatile uint8_t timeout_seconds=0;
|
|
|
|
void(* ctrlaltdelete) (void) = 0;
|
|
|
|
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
|
|
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
|
|
{
|
|
kill();
|
|
#ifdef RESET_MANUAL
|
|
LCD_MESSAGE("Please Reset!");
|
|
ECHOLN("echo_: Something is wrong, please turn off the printer.");
|
|
#else
|
|
LCD_MESSAGE("Timeout, resetting!");
|
|
#endif
|
|
//disable watchdog, it will survife reboot.
|
|
WDTCSR |= (1<<WDCE) | (1<<WDE);
|
|
WDTCSR = 0;
|
|
#ifdef RESET_MANUAL
|
|
while(1); //wait for user or serial reset
|
|
#else
|
|
ctrlaltdelete();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// intialise watch dog with a 1 sec interrupt time
|
|
void wd_init() {
|
|
WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
|
|
WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
|
|
}
|
|
|
|
/// reset watchdog. MUST be called every 1s after init or avr will reset.
|
|
void wd_reset() {
|
|
wdt_reset();
|
|
timeout_seconds=0; //reset counter for resets
|
|
}
|
|
#endif /* USE_WATCHDOG */
|
|
|
|
|
|
inline void kill()
|
|
{
|
|
#if TEMP_0_PIN > -1
|
|
target_raw[0]=0;
|
|
#if HEATER_0_PIN > -1
|
|
WRITE(HEATER_0_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
#if TEMP_1_PIN > -1
|
|
target_raw[1]=0;
|
|
#if HEATER_1_PIN > -1
|
|
WRITE(HEATER_1_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
#if TEMP_2_PIN > -1
|
|
target_raw[2]=0;
|
|
#if HEATER_2_PIN > -1
|
|
WRITE(HEATER_2_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e();
|
|
|
|
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
|
|
Serial.println("!! Printer halted. kill() called !!");
|
|
while(1); // Wait for reset
|
|
}
|
|
|
|
void manage_inactivity(byte debug) {
|
|
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
|
|
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e();
|
|
}
|
|
check_axes_activity();
|
|
}
|
|
|