mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-26 05:17:17 +00:00
382 lines
11 KiB
C++
382 lines
11 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* temperature.h - temperature controller
|
|
*/
|
|
|
|
#ifndef TEMPERATURE_H
|
|
#define TEMPERATURE_H
|
|
|
|
#include "Marlin.h"
|
|
#include "planner.h"
|
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
#ifndef SOFT_PWM_SCALE
|
|
#define SOFT_PWM_SCALE 0
|
|
#endif
|
|
|
|
class Temperature {
|
|
|
|
public:
|
|
|
|
int current_temperature_raw[EXTRUDERS] = { 0 };
|
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
|
int target_temperature[EXTRUDERS] = { 0 };
|
|
|
|
int current_temperature_bed_raw = 0;
|
|
float current_temperature_bed = 0.0;
|
|
int target_temperature_bed = 0;
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
float redundant_temperature = 0.0;
|
|
#endif
|
|
|
|
unsigned char soft_pwm_bed;
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
unsigned char fanSpeedSoftPwm[FAN_COUNT];
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
|
|
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
|
|
|
|
static float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS];
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
float Kc[EXTRUDERS];
|
|
#endif
|
|
#define PID_PARAM(param, e) Temperature::param[e]
|
|
|
|
#else
|
|
|
|
static float Kp, Ki, Kd;
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
static float Kc;
|
|
#endif
|
|
#define PID_PARAM(param, e) Temperature::param
|
|
|
|
#endif // PID_PARAMS_PER_EXTRUDER
|
|
|
|
// Apply the scale factors to the PID values
|
|
#define scalePID_i(i) ( (i) * PID_dT )
|
|
#define unscalePID_i(i) ( (i) / PID_dT )
|
|
#define scalePID_d(d) ( (d) / PID_dT )
|
|
#define unscalePID_d(d) ( (d) * PID_dT )
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
float bedKp = DEFAULT_bedKp,
|
|
bedKi = ((DEFAULT_bedKi) * PID_dT),
|
|
bedKd = ((DEFAULT_bedKd) / PID_dT);
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
volatile int babystepsTodo[3] = { 0 };
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
|
int watch_target_temp[EXTRUDERS] = { 0 };
|
|
millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0
|
|
int watch_target_bed_temp = 0;
|
|
millis_t watch_bed_next_ms = 0;
|
|
#endif
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
float extrude_min_temp = EXTRUDE_MINTEMP;
|
|
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
|
|
#else
|
|
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
|
|
#endif
|
|
|
|
private:
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
int redundant_temperature_raw = 0;
|
|
float redundant_temperature = 0.0;
|
|
#endif
|
|
|
|
volatile bool temp_meas_ready = false;
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
float temp_iState[EXTRUDERS] = { 0 };
|
|
float temp_dState[EXTRUDERS] = { 0 };
|
|
float pTerm[EXTRUDERS];
|
|
float iTerm[EXTRUDERS];
|
|
float dTerm[EXTRUDERS];
|
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
float cTerm[EXTRUDERS];
|
|
long last_position[EXTRUDERS];
|
|
long lpq[LPQ_MAX_LEN];
|
|
int lpq_ptr = 0;
|
|
#endif
|
|
|
|
float pid_error[EXTRUDERS];
|
|
float temp_iState_min[EXTRUDERS];
|
|
float temp_iState_max[EXTRUDERS];
|
|
bool pid_reset[EXTRUDERS];
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
float temp_iState_bed = { 0 };
|
|
float temp_dState_bed = { 0 };
|
|
float pTerm_bed;
|
|
float iTerm_bed;
|
|
float dTerm_bed;
|
|
float pid_error_bed;
|
|
float temp_iState_min_bed;
|
|
float temp_iState_max_bed;
|
|
#else
|
|
millis_t next_bed_check_ms;
|
|
#endif
|
|
|
|
unsigned long raw_temp_value[4] = { 0 };
|
|
unsigned long raw_temp_bed_value = 0;
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
|
|
int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
|
|
int minttemp[EXTRUDERS] = { 0 };
|
|
int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383);
|
|
|
|
#ifdef BED_MINTEMP
|
|
int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
|
|
#endif
|
|
|
|
#ifdef BED_MAXTEMP
|
|
int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
int meas_shift_index; // Index of a delayed sample in buffer
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
millis_t next_auto_fan_check_ms;
|
|
#endif
|
|
|
|
unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
unsigned char soft_pwm_fan[FAN_COUNT];
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
|
|
#endif
|
|
|
|
public:
|
|
|
|
/**
|
|
* Static (class) methods
|
|
*/
|
|
static float analog2temp(int raw, uint8_t e);
|
|
static float analog2tempBed(int raw);
|
|
|
|
/**
|
|
* Instance Methods
|
|
*/
|
|
|
|
Temperature();
|
|
|
|
void init();
|
|
|
|
/**
|
|
* Called from the Temperature ISR
|
|
*/
|
|
void isr();
|
|
|
|
/**
|
|
* Call periodically to manage heaters
|
|
*/
|
|
void manage_heater();
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
float analog2widthFil(); // Convert raw Filament Width to millimeters
|
|
int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
|
|
#endif
|
|
|
|
|
|
//high level conversion routines, for use outside of temperature.cpp
|
|
//inline so that there is no performance decrease.
|
|
//deg=degreeCelsius
|
|
|
|
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
|
|
FORCE_INLINE float degBed() { return current_temperature_bed; }
|
|
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
|
|
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
|
|
#endif
|
|
|
|
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
|
|
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
|
void start_watching_heater(int e = 0);
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
|
|
void start_watching_bed();
|
|
#endif
|
|
|
|
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
|
|
target_temperature[extruder] = celsius;
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
|
start_watching_heater(extruder);
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE void setTargetBed(const float& celsius) {
|
|
target_temperature_bed = celsius;
|
|
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
|
|
start_watching_bed();
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
|
|
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
|
|
|
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
|
|
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
|
|
|
/**
|
|
* The software PWM power for a heater
|
|
*/
|
|
int getHeaterPower(int heater);
|
|
|
|
/**
|
|
* Switch off all heaters, set all target temperatures to 0
|
|
*/
|
|
void disable_all_heaters();
|
|
|
|
/**
|
|
* Perform auto-tuning for hotend or bed in response to M303
|
|
*/
|
|
#if HAS_PID_HEATING
|
|
void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false);
|
|
#endif
|
|
|
|
/**
|
|
* Update the temp manager when PID values change
|
|
*/
|
|
void updatePID();
|
|
|
|
FORCE_INLINE void autotempShutdown() {
|
|
#if ENABLED(AUTOTEMP)
|
|
if (planner.autotemp_enabled) {
|
|
planner.autotemp_enabled = false;
|
|
if (degTargetHotend(active_extruder) > planner.autotemp_min)
|
|
setTargetHotend(0, active_extruder);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
FORCE_INLINE void babystep_axis(AxisEnum axis, int distance) {
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
|
#if ENABLED(BABYSTEP_XY)
|
|
switch (axis) {
|
|
case X_AXIS: // X on CoreXY and CoreXZ
|
|
babystepsTodo[A_AXIS] += distance * 2;
|
|
babystepsTodo[CORE_AXIS_2] += distance * 2;
|
|
break;
|
|
case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ
|
|
babystepsTodo[A_AXIS] += distance * 2;
|
|
babystepsTodo[CORE_AXIS_2] -= distance * 2;
|
|
break;
|
|
case CORE_AXIS_3: // Z on CoreXY, Y on CoreXZ
|
|
babystepsTodo[CORE_AXIS_3] += distance;
|
|
break;
|
|
}
|
|
#elif ENABLED(COREXZ)
|
|
babystepsTodo[A_AXIS] += distance * 2;
|
|
babystepsTodo[C_AXIS] -= distance * 2;
|
|
#else
|
|
babystepsTodo[Z_AXIS] += distance;
|
|
#endif
|
|
#else
|
|
babystepsTodo[axis] += distance;
|
|
#endif
|
|
}
|
|
|
|
#endif // BABYSTEPPING
|
|
|
|
private:
|
|
|
|
void set_current_temp_raw();
|
|
|
|
void updateTemperaturesFromRawValues();
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
int read_max6675();
|
|
#endif
|
|
|
|
void checkExtruderAutoFans();
|
|
|
|
float get_pid_output(int e);
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
float get_pid_output_bed();
|
|
#endif
|
|
|
|
void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
|
|
void min_temp_error(uint8_t e);
|
|
void max_temp_error(uint8_t e);
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
|
|
|
|
typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
|
|
|
|
void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
TRState thermal_runaway_state_machine[EXTRUDERS] = { TRInactive };
|
|
millis_t thermal_runaway_timer[EXTRUDERS] = { 0 };
|
|
#endif
|
|
|
|
#if HAS_THERMALLY_PROTECTED_BED
|
|
TRState thermal_runaway_bed_state_machine = TRInactive;
|
|
millis_t thermal_runaway_bed_timer;
|
|
#endif
|
|
|
|
#endif // THERMAL_PROTECTION
|
|
|
|
};
|
|
|
|
extern Temperature thermalManager;
|
|
|
|
#endif // TEMPERATURE_H
|