mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-22 17:52:57 +00:00
06d58c939c
See #12981
2402 lines
76 KiB
C++
2402 lines
76 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* temperature.cpp - temperature control
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
#include "temperature.h"
|
|
#include "thermistortables.h"
|
|
#include "ultralcd.h"
|
|
#include "planner.h"
|
|
#include "language.h"
|
|
#include "printcounter.h"
|
|
#include "delay.h"
|
|
#include "endstops.h"
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
#include "MarlinSPI.h"
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
#include "watchdog.h"
|
|
#endif
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
#include "emergency_parser.h"
|
|
#endif
|
|
|
|
#if HOTEND_USES_THERMISTOR
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
|
|
static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
|
|
#else
|
|
static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
|
|
static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
|
|
#endif
|
|
#endif
|
|
|
|
Temperature thermalManager;
|
|
|
|
/**
|
|
* Macros to include the heater id in temp errors. The compiler's dead-code
|
|
* elimination should (hopefully) optimize out the unused strings.
|
|
*/
|
|
#if HAS_HEATED_BED
|
|
#define TEMP_ERR_PSTR(MSG, E) \
|
|
(E) == -1 ? PSTR(MSG ## _BED) : \
|
|
(HOTENDS > 1 && (E) == 1) ? PSTR(MSG_E2 " " MSG) : \
|
|
(HOTENDS > 2 && (E) == 2) ? PSTR(MSG_E3 " " MSG) : \
|
|
(HOTENDS > 3 && (E) == 3) ? PSTR(MSG_E4 " " MSG) : \
|
|
(HOTENDS > 4 && (E) == 4) ? PSTR(MSG_E5 " " MSG) : \
|
|
PSTR(MSG_E1 " " MSG)
|
|
#else
|
|
#define TEMP_ERR_PSTR(MSG, E) \
|
|
(HOTENDS > 1 && (E) == 1) ? PSTR(MSG_E2 " " MSG) : \
|
|
(HOTENDS > 2 && (E) == 2) ? PSTR(MSG_E3 " " MSG) : \
|
|
(HOTENDS > 3 && (E) == 3) ? PSTR(MSG_E4 " " MSG) : \
|
|
(HOTENDS > 4 && (E) == 4) ? PSTR(MSG_E5 " " MSG) : \
|
|
PSTR(MSG_E1 " " MSG)
|
|
#endif
|
|
|
|
// public:
|
|
|
|
float Temperature::current_temperature[HOTENDS] = { 0.0 };
|
|
int16_t Temperature::current_temperature_raw[HOTENDS] = { 0 },
|
|
Temperature::target_temperature[HOTENDS] = { 0 };
|
|
|
|
#if ENABLED(AUTO_POWER_E_FANS)
|
|
int16_t Temperature::autofan_speed[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
float Temperature::current_temperature_bed = 0.0;
|
|
int16_t Temperature::current_temperature_bed_raw = 0,
|
|
Temperature::target_temperature_bed = 0;
|
|
uint8_t Temperature::soft_pwm_amount_bed;
|
|
#ifdef BED_MINTEMP
|
|
int16_t Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
|
|
#endif
|
|
#ifdef BED_MAXTEMP
|
|
int16_t Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
#if WATCH_THE_BED
|
|
uint16_t Temperature::watch_target_bed_temp = 0;
|
|
millis_t Temperature::watch_bed_next_ms = 0;
|
|
#endif
|
|
#if ENABLED(PIDTEMPBED)
|
|
float Temperature::bedKp, Temperature::bedKi, Temperature::bedKd, // Initialized by settings.load()
|
|
Temperature::temp_iState_bed = { 0 },
|
|
Temperature::temp_dState_bed = { 0 },
|
|
Temperature::pTerm_bed,
|
|
Temperature::iTerm_bed,
|
|
Temperature::dTerm_bed,
|
|
Temperature::pid_error_bed;
|
|
#else
|
|
millis_t Temperature::next_bed_check_ms;
|
|
#endif
|
|
uint16_t Temperature::raw_temp_bed_value = 0;
|
|
#if HEATER_IDLE_HANDLER
|
|
millis_t Temperature::bed_idle_timeout_ms = 0;
|
|
bool Temperature::bed_idle_timeout_exceeded = false;
|
|
#endif
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
float Temperature::current_temperature_chamber = 0.0;
|
|
int16_t Temperature::current_temperature_chamber_raw = 0;
|
|
uint16_t Temperature::raw_temp_chamber_value = 0;
|
|
#endif
|
|
|
|
// Initialized by settings.load()
|
|
#if ENABLED(PIDTEMP)
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
|
|
float Temperature::Kp[HOTENDS], Temperature::Ki[HOTENDS], Temperature::Kd[HOTENDS];
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
float Temperature::Kc[HOTENDS];
|
|
#endif
|
|
#else
|
|
float Temperature::Kp, Temperature::Ki, Temperature::Kd;
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
float Temperature::Kc;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
volatile int Temperature::babystepsTodo[XYZ] = { 0 };
|
|
#endif
|
|
|
|
#if WATCH_HOTENDS
|
|
uint16_t Temperature::watch_target_temp[HOTENDS] = { 0 };
|
|
millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
bool Temperature::allow_cold_extrude = false;
|
|
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
uint16_t Temperature::redundant_temperature_raw = 0;
|
|
float Temperature::redundant_temperature = 0.0;
|
|
#endif
|
|
|
|
volatile bool Temperature::temp_meas_ready = false;
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
float Temperature::temp_iState[HOTENDS] = { 0 },
|
|
Temperature::temp_dState[HOTENDS] = { 0 },
|
|
Temperature::pTerm[HOTENDS],
|
|
Temperature::iTerm[HOTENDS],
|
|
Temperature::dTerm[HOTENDS];
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
float Temperature::cTerm[HOTENDS];
|
|
long Temperature::last_e_position;
|
|
long Temperature::lpq[LPQ_MAX_LEN];
|
|
int Temperature::lpq_ptr = 0;
|
|
#endif
|
|
|
|
float Temperature::pid_error[HOTENDS];
|
|
bool Temperature::pid_reset[HOTENDS];
|
|
#endif
|
|
|
|
uint16_t Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
int16_t Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
|
|
Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
|
|
Temperature::minttemp[HOTENDS] = { 0 },
|
|
Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#ifdef MILLISECONDS_PREHEAT_TIME
|
|
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
millis_t Temperature::next_auto_fan_check_ms = 0;
|
|
#endif
|
|
|
|
uint8_t Temperature::soft_pwm_amount[HOTENDS];
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
|
|
Temperature::soft_pwm_count_fan[FAN_COUNT];
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
bool Temperature::paused;
|
|
#endif
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
millis_t Temperature::heater_idle_timeout_ms[HOTENDS] = { 0 };
|
|
bool Temperature::heater_idle_timeout_exceeded[HOTENDS] = { false };
|
|
#endif
|
|
|
|
#if ENABLED(ADC_KEYPAD)
|
|
uint32_t Temperature::current_ADCKey_raw = 0;
|
|
uint8_t Temperature::ADCKey_count = 0;
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
int16_t Temperature::lpq_len; // Initialized in configuration_store
|
|
#endif
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
/**
|
|
* PID Autotuning (M303)
|
|
*
|
|
* Alternately heat and cool the nozzle, observing its behavior to
|
|
* determine the best PID values to achieve a stable temperature.
|
|
*/
|
|
void Temperature::pid_autotune(const float &target, const int8_t hotend, const int8_t ncycles, const bool set_result/*=false*/) {
|
|
float current = 0.0;
|
|
int cycles = 0;
|
|
bool heating = true;
|
|
|
|
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
|
|
long t_high = 0, t_low = 0;
|
|
|
|
long bias, d;
|
|
float Ku, Tu,
|
|
workKp = 0, workKi = 0, workKd = 0,
|
|
max = 0, min = 10000;
|
|
|
|
#if HAS_PID_FOR_BOTH
|
|
#define GHV(B,H) (hotend < 0 ? (B) : (H))
|
|
#define SHV(S,B,H) if (hotend < 0) S##_bed = B; else S [hotend] = H;
|
|
#elif ENABLED(PIDTEMPBED)
|
|
#define GHV(B,H) B
|
|
#define SHV(S,B,H) (S##_bed = B)
|
|
#else
|
|
#define GHV(B,H) H
|
|
#define SHV(S,B,H) (S [hotend] = H)
|
|
#endif
|
|
|
|
#if WATCH_THE_BED || WATCH_HOTENDS
|
|
#define HAS_TP_BED (ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED))
|
|
#if HAS_TP_BED && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
|
|
#define GTV(B,H) (hotend < 0 ? (B) : (H))
|
|
#elif HAS_TP_BED
|
|
#define GTV(B,H) (B)
|
|
#else
|
|
#define GTV(B,H) (H)
|
|
#endif
|
|
const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
|
|
const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
|
|
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
|
|
millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL;
|
|
float next_watch_temp = 0.0;
|
|
bool heated = false;
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
next_auto_fan_check_ms = next_temp_ms + 2500UL;
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
#define _TOP_HOTEND HOTENDS - 1
|
|
#else
|
|
#define _TOP_HOTEND -1
|
|
#endif
|
|
#if ENABLED(PIDTEMPBED)
|
|
#define _BOT_HOTEND -1
|
|
#else
|
|
#define _BOT_HOTEND 0
|
|
#endif
|
|
|
|
if (!WITHIN(hotend, _BOT_HOTEND, _TOP_HOTEND)) {
|
|
SERIAL_ECHOLNPGM(MSG_PID_BAD_EXTRUDER_NUM);
|
|
return;
|
|
}
|
|
|
|
if (target > GHV(BED_MAXTEMP, maxttemp[hotend]) - 15) {
|
|
SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
|
|
return;
|
|
}
|
|
|
|
SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_START);
|
|
|
|
disable_all_heaters(); // switch off all heaters.
|
|
|
|
SHV(soft_pwm_amount, bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
|
|
|
|
wait_for_heatup = true; // Can be interrupted with M108
|
|
|
|
// PID Tuning loop
|
|
while (wait_for_heatup) {
|
|
|
|
const millis_t ms = millis();
|
|
|
|
if (temp_meas_ready) { // temp sample ready
|
|
calculate_celsius_temperatures();
|
|
|
|
// Get the current temperature and constrain it
|
|
current = GHV(current_temperature_bed, current_temperature[hotend]);
|
|
NOLESS(max, current);
|
|
NOMORE(min, current);
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ELAPSED(ms, next_auto_fan_check_ms)) {
|
|
check_extruder_auto_fans();
|
|
next_auto_fan_check_ms = ms + 2500UL;
|
|
}
|
|
#endif
|
|
|
|
if (heating && current > target) {
|
|
if (ELAPSED(ms, t2 + 5000UL)) {
|
|
heating = false;
|
|
SHV(soft_pwm_amount, (bias - d) >> 1, (bias - d) >> 1);
|
|
t1 = ms;
|
|
t_high = t1 - t2;
|
|
max = target;
|
|
}
|
|
}
|
|
|
|
if (!heating && current < target) {
|
|
if (ELAPSED(ms, t1 + 5000UL)) {
|
|
heating = true;
|
|
t2 = ms;
|
|
t_low = t2 - t1;
|
|
if (cycles > 0) {
|
|
const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
|
|
bias += (d * (t_high - t_low)) / (t_low + t_high);
|
|
bias = constrain(bias, 20, max_pow - 20);
|
|
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
|
|
|
|
SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
|
|
SERIAL_PROTOCOLPAIR(MSG_D, d);
|
|
SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
|
|
SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
|
|
if (cycles > 2) {
|
|
Ku = (4.0f * d) / (M_PI * (max - min) * 0.5f);
|
|
Tu = ((float)(t_low + t_high) * 0.001f);
|
|
SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
|
|
SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
|
|
workKp = 0.6f * Ku;
|
|
workKi = 2 * workKp / Tu;
|
|
workKd = workKp * Tu * 0.125f;
|
|
SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
|
|
SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
|
|
SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
|
|
SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
|
|
/**
|
|
workKp = 0.33*Ku;
|
|
workKi = workKp/Tu;
|
|
workKd = workKp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" Some overshoot");
|
|
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
|
|
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
|
|
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
|
|
workKp = 0.2*Ku;
|
|
workKi = 2*workKp/Tu;
|
|
workKd = workKp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" No overshoot");
|
|
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
|
|
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
|
|
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
|
|
*/
|
|
}
|
|
}
|
|
SHV(soft_pwm_amount, (bias + d) >> 1, (bias + d) >> 1);
|
|
cycles++;
|
|
min = target;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Did the temperature overshoot very far?
|
|
#ifndef MAX_OVERSHOOT_PID_AUTOTUNE
|
|
#define MAX_OVERSHOOT_PID_AUTOTUNE 20
|
|
#endif
|
|
if (current > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
|
|
break;
|
|
}
|
|
|
|
// Report heater states every 2 seconds
|
|
if (ELAPSED(ms, next_temp_ms)) {
|
|
#if HAS_TEMP_SENSOR
|
|
print_heaterstates();
|
|
SERIAL_EOL();
|
|
#endif
|
|
next_temp_ms = ms + 2000UL;
|
|
|
|
// Make sure heating is actually working
|
|
#if WATCH_THE_BED || WATCH_HOTENDS
|
|
if (
|
|
#if WATCH_THE_BED && WATCH_HOTENDS
|
|
true
|
|
#elif WATCH_HOTENDS
|
|
hotend >= 0
|
|
#else
|
|
hotend < 0
|
|
#endif
|
|
) {
|
|
if (!heated) { // If not yet reached target...
|
|
if (current > next_watch_temp) { // Over the watch temp?
|
|
next_watch_temp = current + watch_temp_increase; // - set the next temp to watch for
|
|
temp_change_ms = ms + watch_temp_period * 1000UL; // - move the expiration timer up
|
|
if (current > watch_temp_target) heated = true; // - Flag if target temperature reached
|
|
}
|
|
else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
|
|
_temp_error(hotend, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, hotend));
|
|
}
|
|
else if (current < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
|
|
_temp_error(hotend, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, hotend));
|
|
}
|
|
#endif
|
|
} // every 2 seconds
|
|
|
|
// Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
|
|
#ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
|
|
#define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
|
|
#endif
|
|
if (((ms - t1) + (ms - t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
|
|
break;
|
|
}
|
|
|
|
if (cycles > ncycles) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
|
|
|
|
#if HAS_PID_FOR_BOTH
|
|
const char* estring = GHV("bed", "");
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL();
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL();
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL();
|
|
#elif ENABLED(PIDTEMP)
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL();
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL();
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL();
|
|
#else
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL();
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL();
|
|
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL();
|
|
#endif
|
|
|
|
#define _SET_BED_PID() do { \
|
|
bedKp = workKp; \
|
|
bedKi = scalePID_i(workKi); \
|
|
bedKd = scalePID_d(workKd); \
|
|
}while(0)
|
|
|
|
#define _SET_EXTRUDER_PID() do { \
|
|
PID_PARAM(Kp, hotend) = workKp; \
|
|
PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
|
|
PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
|
|
update_pid(); }while(0)
|
|
|
|
// Use the result? (As with "M303 U1")
|
|
if (set_result) {
|
|
#if HAS_PID_FOR_BOTH
|
|
if (hotend < 0)
|
|
_SET_BED_PID();
|
|
else
|
|
_SET_EXTRUDER_PID();
|
|
#elif ENABLED(PIDTEMP)
|
|
_SET_EXTRUDER_PID();
|
|
#else
|
|
_SET_BED_PID();
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
lcd_update();
|
|
}
|
|
disable_all_heaters();
|
|
}
|
|
|
|
#endif // HAS_PID_HEATING
|
|
|
|
/**
|
|
* Class and Instance Methods
|
|
*/
|
|
|
|
Temperature::Temperature() { }
|
|
|
|
int Temperature::getHeaterPower(const int heater) {
|
|
return (
|
|
#if HAS_HEATED_BED
|
|
heater < 0 ? soft_pwm_amount_bed :
|
|
#endif
|
|
soft_pwm_amount[heater]
|
|
);
|
|
}
|
|
|
|
#if HAS_AUTO_FAN
|
|
|
|
void Temperature::check_extruder_auto_fans() {
|
|
static const pin_t fanPin[] PROGMEM = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN, CHAMBER_AUTO_FAN_PIN };
|
|
static const uint8_t fanBit[] PROGMEM = {
|
|
0,
|
|
AUTO_1_IS_0 ? 0 : 1,
|
|
AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
|
|
AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
|
|
AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4,
|
|
AUTO_CHAMBER_IS_0 ? 0 : AUTO_CHAMBER_IS_1 ? 1 : AUTO_CHAMBER_IS_2 ? 2 : AUTO_CHAMBER_IS_3 ? 3 : AUTO_CHAMBER_IS_4 ? 4 : 5
|
|
};
|
|
uint8_t fanState = 0;
|
|
|
|
HOTEND_LOOP()
|
|
if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
SBI(fanState, pgm_read_byte(&fanBit[e]));
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
if (current_temperature_chamber > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
SBI(fanState, pgm_read_byte(&fanBit[5]));
|
|
#endif
|
|
|
|
uint8_t fanDone = 0;
|
|
for (uint8_t f = 0; f < COUNT(fanPin); f++) {
|
|
const pin_t pin =
|
|
#ifdef ARDUINO
|
|
pgm_read_byte(&fanPin[f])
|
|
#else
|
|
fanPin[f]
|
|
#endif
|
|
;
|
|
const uint8_t bit = pgm_read_byte(&fanBit[f]);
|
|
if (pin >= 0 && !TEST(fanDone, bit)) {
|
|
uint8_t newFanSpeed = TEST(fanState, bit) ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
|
#if ENABLED(AUTO_POWER_E_FANS)
|
|
autofan_speed[f] = newFanSpeed;
|
|
#endif
|
|
// this idiom allows both digital and PWM fan outputs (see M42 handling).
|
|
digitalWrite(pin, newFanSpeed);
|
|
analogWrite(pin, newFanSpeed);
|
|
SBI(fanDone, bit);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // HAS_AUTO_FAN
|
|
|
|
//
|
|
// Temperature Error Handlers
|
|
//
|
|
void Temperature::_temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg) {
|
|
if (IsRunning()) {
|
|
SERIAL_ERROR_START();
|
|
serialprintPGM(serial_msg);
|
|
SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
|
|
if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
|
|
}
|
|
#if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
|
|
static bool killed = false;
|
|
if (!killed) {
|
|
Running = false;
|
|
killed = true;
|
|
kill(lcd_msg);
|
|
}
|
|
else
|
|
disable_all_heaters(); // paranoia
|
|
#endif
|
|
}
|
|
|
|
void Temperature::max_temp_error(const int8_t e) {
|
|
_temp_error(e, PSTR(MSG_T_MAXTEMP), TEMP_ERR_PSTR(MSG_ERR_MAXTEMP, e));
|
|
}
|
|
|
|
void Temperature::min_temp_error(const int8_t e) {
|
|
_temp_error(e, PSTR(MSG_T_MINTEMP), TEMP_ERR_PSTR(MSG_ERR_MINTEMP, e));
|
|
}
|
|
|
|
float Temperature::get_pid_output(const int8_t e) {
|
|
#if HOTENDS == 1
|
|
UNUSED(e);
|
|
#define _HOTEND_TEST true
|
|
#else
|
|
#define _HOTEND_TEST e == active_extruder
|
|
#endif
|
|
float pid_output;
|
|
#if ENABLED(PIDTEMP)
|
|
#if DISABLED(PID_OPENLOOP)
|
|
pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
|
|
dTerm[HOTEND_INDEX] = PID_K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + float(PID_K1) * dTerm[HOTEND_INDEX];
|
|
temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
|
|
|
|
if (target_temperature[HOTEND_INDEX] == 0
|
|
|| pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE)
|
|
#if HEATER_IDLE_HANDLER
|
|
|| heater_idle_timeout_exceeded[HOTEND_INDEX]
|
|
#endif
|
|
) {
|
|
pid_output = 0;
|
|
pid_reset[HOTEND_INDEX] = true;
|
|
}
|
|
else if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
|
|
pid_output = BANG_MAX;
|
|
pid_reset[HOTEND_INDEX] = true;
|
|
}
|
|
else {
|
|
if (pid_reset[HOTEND_INDEX]) {
|
|
temp_iState[HOTEND_INDEX] = 0.0;
|
|
pid_reset[HOTEND_INDEX] = false;
|
|
}
|
|
pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
|
|
temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
|
|
iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
|
|
|
|
pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
cTerm[HOTEND_INDEX] = 0;
|
|
if (_HOTEND_TEST) {
|
|
const long e_position = stepper.position(E_AXIS);
|
|
if (e_position > last_e_position) {
|
|
lpq[lpq_ptr] = e_position - last_e_position;
|
|
last_e_position = e_position;
|
|
}
|
|
else
|
|
lpq[lpq_ptr] = 0;
|
|
|
|
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
|
|
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
|
|
pid_output += cTerm[HOTEND_INDEX];
|
|
}
|
|
#endif // PID_EXTRUSION_SCALING
|
|
|
|
if (pid_output > PID_MAX) {
|
|
if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
|
|
pid_output = PID_MAX;
|
|
}
|
|
else if (pid_output < 0) {
|
|
if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
|
|
pid_output = 0;
|
|
}
|
|
}
|
|
#else
|
|
pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
|
|
#endif // PID_OPENLOOP
|
|
|
|
#if ENABLED(PID_DEBUG)
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
|
|
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
|
|
SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
|
|
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
|
|
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
|
|
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
|
|
#endif
|
|
SERIAL_EOL();
|
|
#endif // PID_DEBUG
|
|
|
|
#else /* PID off */
|
|
#if HEATER_IDLE_HANDLER
|
|
if (heater_idle_timeout_exceeded[HOTEND_INDEX])
|
|
pid_output = 0;
|
|
else
|
|
#endif
|
|
pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
|
|
#endif
|
|
|
|
return pid_output;
|
|
}
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
float Temperature::get_pid_output_bed() {
|
|
float pid_output;
|
|
#if DISABLED(PID_OPENLOOP)
|
|
pid_error_bed = target_temperature_bed - current_temperature_bed;
|
|
pTerm_bed = bedKp * pid_error_bed;
|
|
temp_iState_bed += pid_error_bed;
|
|
iTerm_bed = bedKi * temp_iState_bed;
|
|
|
|
dTerm_bed = PID_K2 * bedKd * (current_temperature_bed - temp_dState_bed) + PID_K1 * dTerm_bed;
|
|
temp_dState_bed = current_temperature_bed;
|
|
|
|
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
|
if (pid_output > MAX_BED_POWER) {
|
|
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
pid_output = MAX_BED_POWER;
|
|
}
|
|
else if (pid_output < 0) {
|
|
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
pid_output = 0;
|
|
}
|
|
#else
|
|
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
|
#endif // PID_OPENLOOP
|
|
|
|
#if ENABLED(PID_BED_DEBUG)
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(" PID_BED_DEBUG ");
|
|
SERIAL_ECHOPGM(": Input ");
|
|
SERIAL_ECHO(current_temperature_bed);
|
|
SERIAL_ECHOPGM(" Output ");
|
|
SERIAL_ECHO(pid_output);
|
|
SERIAL_ECHOPGM(" pTerm ");
|
|
SERIAL_ECHO(pTerm_bed);
|
|
SERIAL_ECHOPGM(" iTerm ");
|
|
SERIAL_ECHO(iTerm_bed);
|
|
SERIAL_ECHOPGM(" dTerm ");
|
|
SERIAL_ECHOLN(dTerm_bed);
|
|
#endif // PID_BED_DEBUG
|
|
|
|
return pid_output;
|
|
}
|
|
#endif // PIDTEMPBED
|
|
|
|
/**
|
|
* Manage heating activities for extruder hot-ends and a heated bed
|
|
* - Acquire updated temperature readings
|
|
* - Also resets the watchdog timer
|
|
* - Invoke thermal runaway protection
|
|
* - Manage extruder auto-fan
|
|
* - Apply filament width to the extrusion rate (may move)
|
|
* - Update the heated bed PID output value
|
|
*/
|
|
void Temperature::manage_heater() {
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
static bool last_pause_state;
|
|
#endif
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
if (emergency_parser.killed_by_M112) kill(PSTR(MSG_KILLED));
|
|
#endif
|
|
|
|
if (!temp_meas_ready) return;
|
|
|
|
calculate_celsius_temperatures(); // also resets the watchdog
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
if (current_temperature[0] > MIN(HEATER_0_MAXTEMP, MAX6675_TMAX - 1.0)) max_temp_error(0);
|
|
if (current_temperature[0] < MAX(HEATER_0_MINTEMP, MAX6675_TMIN + .01)) min_temp_error(0);
|
|
#endif
|
|
|
|
#if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER
|
|
millis_t ms = millis();
|
|
#endif
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
if (!heater_idle_timeout_exceeded[e] && heater_idle_timeout_ms[e] && ELAPSED(ms, heater_idle_timeout_ms[e]))
|
|
heater_idle_timeout_exceeded[e] = true;
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
// Check for thermal runaway
|
|
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
|
|
#endif
|
|
|
|
soft_pwm_amount[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)get_pid_output(e) >> 1 : 0;
|
|
|
|
#if WATCH_HOTENDS
|
|
// Make sure temperature is increasing
|
|
if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) { // Time to check this extruder?
|
|
if (degHotend(e) < watch_target_temp[e]) // Failed to increase enough?
|
|
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, e));
|
|
else // Start again if the target is still far off
|
|
start_watching_heater(e);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
// Make sure measured temperatures are close together
|
|
if (ABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
|
|
_temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
|
|
#endif
|
|
|
|
} // HOTEND_LOOP
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
|
|
check_extruder_auto_fans();
|
|
next_auto_fan_check_ms = ms + 2500UL;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
/**
|
|
* Filament Width Sensor dynamically sets the volumetric multiplier
|
|
* based on a delayed measurement of the filament diameter.
|
|
*/
|
|
if (filament_sensor) {
|
|
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
|
|
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
|
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
|
planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]);
|
|
}
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
#if WATCH_THE_BED
|
|
// Make sure temperature is increasing
|
|
if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) { // Time to check the bed?
|
|
if (degBed() < watch_target_bed_temp) // Failed to increase enough?
|
|
_temp_error(-1, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -1));
|
|
else // Start again if the target is still far off
|
|
start_watching_bed();
|
|
}
|
|
#endif // WATCH_THE_BED
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
if (PENDING(ms, next_bed_check_ms)
|
|
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
&& paused == last_pause_state
|
|
#endif
|
|
) return;
|
|
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
|
|
#if ENABLED(PROBING_HEATERS_OFF) && ENABLED(BED_LIMIT_SWITCHING)
|
|
last_pause_state = paused;
|
|
#endif
|
|
#endif
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
if (!bed_idle_timeout_exceeded && bed_idle_timeout_ms && ELAPSED(ms, bed_idle_timeout_ms))
|
|
bed_idle_timeout_exceeded = true;
|
|
#endif
|
|
|
|
#if HAS_THERMALLY_PROTECTED_BED
|
|
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
|
|
#endif
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
if (bed_idle_timeout_exceeded) {
|
|
soft_pwm_amount_bed = 0;
|
|
#if DISABLED(PIDTEMPBED)
|
|
WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#if ENABLED(PIDTEMPBED)
|
|
soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
|
|
#else
|
|
// Check if temperature is within the correct band
|
|
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
|
|
#if ENABLED(BED_LIMIT_SWITCHING)
|
|
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
|
|
soft_pwm_amount_bed = 0;
|
|
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
|
|
soft_pwm_amount_bed = MAX_BED_POWER >> 1;
|
|
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
|
|
soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
|
|
#endif
|
|
}
|
|
else {
|
|
soft_pwm_amount_bed = 0;
|
|
WRITE_HEATER_BED(LOW);
|
|
}
|
|
#endif
|
|
}
|
|
#endif // HAS_HEATED_BED
|
|
}
|
|
|
|
#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
|
|
#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
|
|
|
|
/**
|
|
* Bisect search for the range of the 'raw' value, then interpolate
|
|
* proportionally between the under and over values.
|
|
*/
|
|
#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
|
|
uint8_t l = 0, r = LEN, m; \
|
|
for (;;) { \
|
|
m = (l + r) >> 1; \
|
|
if (m == l || m == r) return (short)pgm_read_word(&TBL[LEN-1][1]); \
|
|
short v00 = pgm_read_word(&TBL[m-1][0]), \
|
|
v10 = pgm_read_word(&TBL[m-0][0]); \
|
|
if (raw < v00) r = m; \
|
|
else if (raw > v10) l = m; \
|
|
else { \
|
|
const short v01 = (short)pgm_read_word(&TBL[m-1][1]), \
|
|
v11 = (short)pgm_read_word(&TBL[m-0][1]); \
|
|
return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
|
|
} \
|
|
} \
|
|
}while(0)
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
if (e > HOTENDS)
|
|
#else
|
|
if (e >= HOTENDS)
|
|
#endif
|
|
{
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
|
|
kill(PSTR(MSG_KILLED));
|
|
return 0.0;
|
|
}
|
|
|
|
switch (e) {
|
|
case 0:
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
return raw * 0.25;
|
|
#elif ENABLED(HEATER_0_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_0_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 1:
|
|
#if ENABLED(HEATER_1_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_1_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 2:
|
|
#if ENABLED(HEATER_2_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_2_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 3:
|
|
#if ENABLED(HEATER_3_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_3_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 4:
|
|
#if ENABLED(HEATER_4_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_4_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
default: break;
|
|
}
|
|
|
|
#if HOTEND_USES_THERMISTOR
|
|
// Thermistor with conversion table?
|
|
const short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
|
|
SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if HAS_HEATED_BED
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
float Temperature::analog_to_celsius_bed(const int raw) {
|
|
#if ENABLED(HEATER_BED_USES_THERMISTOR)
|
|
SCAN_THERMISTOR_TABLE(BEDTEMPTABLE, BEDTEMPTABLE_LEN);
|
|
#elif ENABLED(HEATER_BED_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_BED_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For chamber temperature measurement.
|
|
float Temperature::analog_to_celsius_chamber(const int raw) {
|
|
#if ENABLED(HEATER_CHAMBER_USES_THERMISTOR)
|
|
SCAN_THERMISTOR_TABLE(CHAMBERTEMPTABLE, CHAMBERTEMPTABLE_LEN);
|
|
#elif ENABLED(HEATER_CHAMBER_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_CHAMBER_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif // HAS_TEMP_CHAMBER
|
|
|
|
/**
|
|
* Get the raw values into the actual temperatures.
|
|
* The raw values are created in interrupt context,
|
|
* and this function is called from normal context
|
|
* as it would block the stepper routine.
|
|
*/
|
|
void Temperature::calculate_celsius_temperatures() {
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
current_temperature_raw[0] = read_max6675();
|
|
#endif
|
|
HOTEND_LOOP() current_temperature[e] = analog_to_celsius_hotend(current_temperature_raw[e], e);
|
|
#if HAS_HEATED_BED
|
|
current_temperature_bed = analog_to_celsius_bed(current_temperature_bed_raw);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
current_temperature_chamber = analog_to_celsius_chamber(current_temperature_chamber_raw);
|
|
#endif
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
|
|
#endif
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
filament_width_meas = analog_to_mm_fil_width();
|
|
#endif
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
// Reset the watchdog after we know we have a temperature measurement.
|
|
watchdog_reset();
|
|
#endif
|
|
|
|
temp_meas_ready = false;
|
|
}
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
// Convert raw Filament Width to millimeters
|
|
float Temperature::analog_to_mm_fil_width() {
|
|
return current_raw_filwidth * 5.0f * (1.0f / 16383.0);
|
|
}
|
|
|
|
/**
|
|
* Convert Filament Width (mm) to a simple ratio
|
|
* and reduce to an 8 bit value.
|
|
*
|
|
* A nominal width of 1.75 and measured width of 1.73
|
|
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
|
|
* a return value of 1.
|
|
*/
|
|
int8_t Temperature::widthFil_to_size_ratio() {
|
|
if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN)
|
|
return int(100.0f * filament_width_nominal / filament_width_meas) - 100;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
#ifndef MAX6675_SCK_PIN
|
|
#define MAX6675_SCK_PIN SCK_PIN
|
|
#endif
|
|
#ifndef MAX6675_DO_PIN
|
|
#define MAX6675_DO_PIN MISO_PIN
|
|
#endif
|
|
SPI<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
|
#endif
|
|
|
|
/**
|
|
* Initialize the temperature manager
|
|
* The manager is implemented by periodic calls to manage_heater()
|
|
*/
|
|
void Temperature::init() {
|
|
|
|
#if MB(RUMBA) && ( \
|
|
ENABLED(HEATER_0_USES_AD595) || ENABLED(HEATER_1_USES_AD595) || ENABLED(HEATER_2_USES_AD595) || ENABLED(HEATER_3_USES_AD595) || ENABLED(HEATER_4_USES_AD595) || ENABLED(HEATER_BED_USES_AD595) || ENABLED(HEATER_CHAMBER_USES_AD595) \
|
|
|| ENABLED(HEATER_0_USES_AD8495) || ENABLED(HEATER_1_USES_AD8495) || ENABLED(HEATER_2_USES_AD8495) || ENABLED(HEATER_3_USES_AD8495) || ENABLED(HEATER_4_USES_AD8495) || ENABLED(HEATER_BED_USES_AD8495) || ENABLED(HEATER_CHAMBER_USES_AD8495))
|
|
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
MCUCR = _BV(JTD);
|
|
MCUCR = _BV(JTD);
|
|
#endif
|
|
|
|
// Finish init of mult hotend arrays
|
|
HOTEND_LOOP() maxttemp[e] = maxttemp[0];
|
|
|
|
#if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
|
|
last_e_position = 0;
|
|
#endif
|
|
|
|
#if HAS_HEATER_0
|
|
SET_OUTPUT(HEATER_0_PIN);
|
|
#endif
|
|
#if HAS_HEATER_1
|
|
SET_OUTPUT(HEATER_1_PIN);
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
SET_OUTPUT(HEATER_2_PIN);
|
|
#endif
|
|
#if HAS_HEATER_3
|
|
SET_OUTPUT(HEATER_3_PIN);
|
|
#endif
|
|
#if HAS_HEATER_4
|
|
SET_OUTPUT(HEATER_3_PIN);
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
SET_OUTPUT(HEATER_BED_PIN);
|
|
#endif
|
|
|
|
#if HAS_FAN0
|
|
SET_OUTPUT(FAN_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_FAN1
|
|
SET_OUTPUT(FAN1_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_FAN2
|
|
SET_OUTPUT(FAN2_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
|
OUT_WRITE(SCK_PIN, LOW);
|
|
OUT_WRITE(MOSI_PIN, HIGH);
|
|
SET_INPUT_PULLUP(MISO_PIN);
|
|
|
|
max6675_spi.init();
|
|
|
|
OUT_WRITE(SS_PIN, HIGH);
|
|
OUT_WRITE(MAX6675_SS, HIGH);
|
|
|
|
#endif // HEATER_0_USES_MAX6675
|
|
|
|
HAL_adc_init();
|
|
|
|
#if HAS_TEMP_ADC_0
|
|
HAL_ANALOG_SELECT(TEMP_0_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_1
|
|
HAL_ANALOG_SELECT(TEMP_1_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_2
|
|
HAL_ANALOG_SELECT(TEMP_2_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_3
|
|
HAL_ANALOG_SELECT(TEMP_3_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_4
|
|
HAL_ANALOG_SELECT(TEMP_4_PIN);
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
HAL_ANALOG_SELECT(TEMP_BED_PIN);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
|
|
#endif
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
HAL_ANALOG_SELECT(FILWIDTH_PIN);
|
|
#endif
|
|
|
|
HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
|
|
ENABLE_TEMPERATURE_INTERRUPT();
|
|
|
|
#if HAS_AUTO_FAN_0
|
|
#if E0_AUTO_FAN_PIN == FAN1_PIN
|
|
SET_OUTPUT(E0_AUTO_FAN_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#else
|
|
SET_OUTPUT(E0_AUTO_FAN_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
|
|
#if E1_AUTO_FAN_PIN == FAN1_PIN
|
|
SET_OUTPUT(E1_AUTO_FAN_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#else
|
|
SET_OUTPUT(E1_AUTO_FAN_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
|
|
#if E2_AUTO_FAN_PIN == FAN1_PIN
|
|
SET_OUTPUT(E2_AUTO_FAN_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#else
|
|
SET_OUTPUT(E2_AUTO_FAN_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
|
|
#if E3_AUTO_FAN_PIN == FAN1_PIN
|
|
SET_OUTPUT(E3_AUTO_FAN_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#else
|
|
SET_OUTPUT(E3_AUTO_FAN_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
|
|
#if E4_AUTO_FAN_PIN == FAN1_PIN
|
|
SET_OUTPUT(E4_AUTO_FAN_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#else
|
|
SET_OUTPUT(E4_AUTO_FAN_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_0 && !AUTO_CHAMBER_IS_1 && !AUTO_CHAMBER_IS_2 && !AUTO_CHAMBER_IS_3 && ! AUTO_CHAMBER_IS_4
|
|
#if CHAMBER_AUTO_FAN_PIN == FAN1_PIN
|
|
SET_OUTPUT(CHAMBER_AUTO_FAN_PIN);
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
setPwmFrequency(CHAMBER_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#else
|
|
SET_OUTPUT(CHAMBER_AUTO_FAN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
// Wait for temperature measurement to settle
|
|
delay(250);
|
|
|
|
#define TEMP_MIN_ROUTINE(NR) \
|
|
minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
|
|
while (analog_to_celsius_hotend(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
|
|
if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
|
|
minttemp_raw[NR] += OVERSAMPLENR; \
|
|
else \
|
|
minttemp_raw[NR] -= OVERSAMPLENR; \
|
|
}
|
|
#define TEMP_MAX_ROUTINE(NR) \
|
|
maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
|
|
while (analog_to_celsius_hotend(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
|
|
if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
|
|
maxttemp_raw[NR] -= OVERSAMPLENR; \
|
|
else \
|
|
maxttemp_raw[NR] += OVERSAMPLENR; \
|
|
}
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
TEMP_MIN_ROUTINE(0);
|
|
#endif
|
|
#ifdef HEATER_0_MAXTEMP
|
|
TEMP_MAX_ROUTINE(0);
|
|
#endif
|
|
#if HOTENDS > 1
|
|
#ifdef HEATER_1_MINTEMP
|
|
TEMP_MIN_ROUTINE(1);
|
|
#endif
|
|
#ifdef HEATER_1_MAXTEMP
|
|
TEMP_MAX_ROUTINE(1);
|
|
#endif
|
|
#if HOTENDS > 2
|
|
#ifdef HEATER_2_MINTEMP
|
|
TEMP_MIN_ROUTINE(2);
|
|
#endif
|
|
#ifdef HEATER_2_MAXTEMP
|
|
TEMP_MAX_ROUTINE(2);
|
|
#endif
|
|
#if HOTENDS > 3
|
|
#ifdef HEATER_3_MINTEMP
|
|
TEMP_MIN_ROUTINE(3);
|
|
#endif
|
|
#ifdef HEATER_3_MAXTEMP
|
|
TEMP_MAX_ROUTINE(3);
|
|
#endif
|
|
#if HOTENDS > 4
|
|
#ifdef HEATER_4_MINTEMP
|
|
TEMP_MIN_ROUTINE(4);
|
|
#endif
|
|
#ifdef HEATER_4_MAXTEMP
|
|
TEMP_MAX_ROUTINE(4);
|
|
#endif
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
|
|
#if HAS_HEATED_BED
|
|
#ifdef BED_MINTEMP
|
|
while (analog_to_celsius_bed(bed_minttemp_raw) < BED_MINTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_minttemp_raw += OVERSAMPLENR;
|
|
#else
|
|
bed_minttemp_raw -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif // BED_MINTEMP
|
|
#ifdef BED_MAXTEMP
|
|
while (analog_to_celsius_bed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_maxttemp_raw -= OVERSAMPLENR;
|
|
#else
|
|
bed_maxttemp_raw += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif // BED_MAXTEMP
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
paused = false;
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
|
|
void Temperature::setPwmFrequency(const pin_t pin, int val) {
|
|
val &= 0x07;
|
|
switch (digitalPinToTimer(pin)) {
|
|
#ifdef TCCR0A
|
|
#if !AVR_AT90USB1286_FAMILY
|
|
case TIMER0A:
|
|
#endif
|
|
case TIMER0B: //_SET_CS(0, val);
|
|
break;
|
|
#endif
|
|
#ifdef TCCR1A
|
|
case TIMER1A: case TIMER1B: //_SET_CS(1, val);
|
|
break;
|
|
#endif
|
|
#if defined(TCCR2) || defined(TCCR2A)
|
|
#ifdef TCCR2
|
|
case TIMER2:
|
|
#endif
|
|
#ifdef TCCR2A
|
|
case TIMER2A: case TIMER2B:
|
|
#endif
|
|
_SET_CS(2, val); break;
|
|
#endif
|
|
#ifdef TCCR3A
|
|
case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
|
|
#endif
|
|
#ifdef TCCR4A
|
|
case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
|
|
#endif
|
|
#ifdef TCCR5A
|
|
case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // FAST_PWM_FAN
|
|
|
|
#if WATCH_HOTENDS
|
|
/**
|
|
* Start Heating Sanity Check for hotends that are below
|
|
* their target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M104, M109)
|
|
*/
|
|
void Temperature::start_watching_heater(const uint8_t e) {
|
|
#if HOTENDS == 1
|
|
UNUSED(e);
|
|
#endif
|
|
if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
|
|
watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
|
|
watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
|
|
}
|
|
else
|
|
watch_heater_next_ms[HOTEND_INDEX] = 0;
|
|
}
|
|
#endif
|
|
|
|
#if WATCH_THE_BED
|
|
/**
|
|
* Start Heating Sanity Check for hotends that are below
|
|
* their target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M140, M190)
|
|
*/
|
|
void Temperature::start_watching_bed() {
|
|
if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
|
|
watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
|
|
watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
|
|
}
|
|
else
|
|
watch_bed_next_ms = 0;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
|
|
millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#if HAS_THERMALLY_PROTECTED_BED
|
|
Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
|
|
millis_t Temperature::thermal_runaway_bed_timer;
|
|
#endif
|
|
|
|
void Temperature::thermal_runaway_protection(Temperature::TRState * const state, millis_t * const timer, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
|
|
|
|
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
|
|
|
|
/**
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
|
|
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
|
|
SERIAL_ECHOPAIR(" ; State:", *state);
|
|
SERIAL_ECHOPAIR(" ; Timer:", *timer);
|
|
SERIAL_ECHOPAIR(" ; Temperature:", current);
|
|
SERIAL_ECHOPAIR(" ; Target Temp:", target);
|
|
if (heater_id >= 0)
|
|
SERIAL_ECHOPAIR(" ; Idle Timeout:", heater_idle_timeout_exceeded[heater_id]);
|
|
else
|
|
SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle_timeout_exceeded);
|
|
SERIAL_EOL();
|
|
*/
|
|
|
|
const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
// If the heater idle timeout expires, restart
|
|
if ((heater_id >= 0 && heater_idle_timeout_exceeded[heater_id])
|
|
#if HAS_HEATED_BED
|
|
|| (heater_id < 0 && bed_idle_timeout_exceeded)
|
|
#endif
|
|
) {
|
|
*state = TRInactive;
|
|
tr_target_temperature[heater_index] = 0;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// If the target temperature changes, restart
|
|
if (tr_target_temperature[heater_index] != target) {
|
|
tr_target_temperature[heater_index] = target;
|
|
*state = target > 0 ? TRFirstHeating : TRInactive;
|
|
}
|
|
}
|
|
|
|
switch (*state) {
|
|
// Inactive state waits for a target temperature to be set
|
|
case TRInactive: break;
|
|
// When first heating, wait for the temperature to be reached then go to Stable state
|
|
case TRFirstHeating:
|
|
if (current < tr_target_temperature[heater_index]) break;
|
|
*state = TRStable;
|
|
// While the temperature is stable watch for a bad temperature
|
|
case TRStable:
|
|
if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
|
|
*timer = millis() + period_seconds * 1000UL;
|
|
break;
|
|
}
|
|
else if (PENDING(millis(), *timer)) break;
|
|
*state = TRRunaway;
|
|
case TRRunaway:
|
|
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater_id));
|
|
}
|
|
}
|
|
|
|
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
|
|
|
|
void Temperature::disable_all_heaters() {
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
planner.autotemp_enabled = false;
|
|
#endif
|
|
|
|
HOTEND_LOOP() setTargetHotend(0, e);
|
|
|
|
#if HAS_HEATED_BED
|
|
setTargetBed(0);
|
|
#endif
|
|
|
|
// Unpause and reset everything
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
pause(false);
|
|
#endif
|
|
|
|
// If all heaters go down then for sure our print job has stopped
|
|
print_job_timer.stop();
|
|
|
|
#define DISABLE_HEATER(NR) { \
|
|
setTargetHotend(0, NR); \
|
|
soft_pwm_amount[NR] = 0; \
|
|
WRITE_HEATER_ ##NR (LOW); \
|
|
}
|
|
|
|
#if HAS_TEMP_HOTEND
|
|
DISABLE_HEATER(0);
|
|
#if HOTENDS > 1
|
|
DISABLE_HEATER(1);
|
|
#if HOTENDS > 2
|
|
DISABLE_HEATER(2);
|
|
#if HOTENDS > 3
|
|
DISABLE_HEATER(3);
|
|
#if HOTENDS > 4
|
|
DISABLE_HEATER(4);
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
target_temperature_bed = 0;
|
|
soft_pwm_amount_bed = 0;
|
|
#if HAS_HEATED_BED
|
|
WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
|
void Temperature::pause(const bool p) {
|
|
if (p != paused) {
|
|
paused = p;
|
|
if (p) {
|
|
HOTEND_LOOP() start_heater_idle_timer(e, 0); // timeout immediately
|
|
#if HAS_HEATED_BED
|
|
start_bed_idle_timer(0); // timeout immediately
|
|
#endif
|
|
}
|
|
else {
|
|
HOTEND_LOOP() reset_heater_idle_timer(e);
|
|
#if HAS_HEATED_BED
|
|
reset_bed_idle_timer();
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // PROBING_HEATERS_OFF
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
|
#define MAX6675_HEAT_INTERVAL 250u
|
|
|
|
#if ENABLED(MAX6675_IS_MAX31855)
|
|
uint32_t max6675_temp = 2000;
|
|
#define MAX6675_ERROR_MASK 7
|
|
#define MAX6675_DISCARD_BITS 18
|
|
#define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
|
|
#else
|
|
uint16_t max6675_temp = 2000;
|
|
#define MAX6675_ERROR_MASK 4
|
|
#define MAX6675_DISCARD_BITS 3
|
|
#define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
|
|
#endif
|
|
|
|
int Temperature::read_max6675() {
|
|
|
|
static millis_t next_max6675_ms = 0;
|
|
|
|
millis_t ms = millis();
|
|
|
|
if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
|
|
|
|
next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
|
|
|
|
CBI(
|
|
#ifdef PRR
|
|
PRR
|
|
#elif defined(PRR0)
|
|
PRR0
|
|
#endif
|
|
, PRSPI);
|
|
SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
|
|
|
|
WRITE(MAX6675_SS, 0); // enable TT_MAX6675
|
|
|
|
DELAY_NS(100); // Ensure 100ns delay
|
|
|
|
// Read a big-endian temperature value
|
|
max6675_temp = 0;
|
|
for (uint8_t i = sizeof(max6675_temp); i--;) {
|
|
max6675_temp |= max6675_spi.receive();
|
|
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
|
|
}
|
|
|
|
WRITE(MAX6675_SS, 1); // disable TT_MAX6675
|
|
|
|
if (max6675_temp & MAX6675_ERROR_MASK) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORPGM("Temp measurement error! ");
|
|
#if MAX6675_ERROR_MASK == 7
|
|
SERIAL_ERRORPGM("MAX31855 ");
|
|
if (max6675_temp & 1)
|
|
SERIAL_ERRORLNPGM("Open Circuit");
|
|
else if (max6675_temp & 2)
|
|
SERIAL_ERRORLNPGM("Short to GND");
|
|
else if (max6675_temp & 4)
|
|
SERIAL_ERRORLNPGM("Short to VCC");
|
|
#else
|
|
SERIAL_ERRORLNPGM("MAX6675");
|
|
#endif
|
|
max6675_temp = MAX6675_TMAX * 4; // thermocouple open
|
|
}
|
|
else
|
|
max6675_temp >>= MAX6675_DISCARD_BITS;
|
|
#if ENABLED(MAX6675_IS_MAX31855)
|
|
// Support negative temperature
|
|
if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000;
|
|
#endif
|
|
|
|
return (int)max6675_temp;
|
|
}
|
|
|
|
#endif // HEATER_0_USES_MAX6675
|
|
|
|
/**
|
|
* Get raw temperatures
|
|
*/
|
|
void Temperature::set_current_temp_raw() {
|
|
#if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675)
|
|
current_temperature_raw[0] = raw_temp_value[0];
|
|
#endif
|
|
#if HAS_TEMP_ADC_1
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
redundant_temperature_raw = raw_temp_value[1];
|
|
#else
|
|
current_temperature_raw[1] = raw_temp_value[1];
|
|
#endif
|
|
#if HAS_TEMP_ADC_2
|
|
current_temperature_raw[2] = raw_temp_value[2];
|
|
#if HAS_TEMP_ADC_3
|
|
current_temperature_raw[3] = raw_temp_value[3];
|
|
#if HAS_TEMP_ADC_4
|
|
current_temperature_raw[4] = raw_temp_value[4];
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
current_temperature_bed_raw = raw_temp_bed_value;
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
current_temperature_chamber_raw = raw_temp_chamber_value;
|
|
#endif
|
|
temp_meas_ready = true;
|
|
}
|
|
|
|
#if ENABLED(PINS_DEBUGGING)
|
|
/**
|
|
* monitors endstops & Z probe for changes
|
|
*
|
|
* If a change is detected then the LED is toggled and
|
|
* a message is sent out the serial port
|
|
*
|
|
* Yes, we could miss a rapid back & forth change but
|
|
* that won't matter because this is all manual.
|
|
*
|
|
*/
|
|
void endstop_monitor() {
|
|
static uint16_t old_live_state_local = 0;
|
|
static uint8_t local_LED_status = 0;
|
|
uint16_t live_state_local = 0;
|
|
#if HAS_X_MIN
|
|
if (READ(X_MIN_PIN)) SBI(live_state_local, X_MIN);
|
|
#endif
|
|
#if HAS_X_MAX
|
|
if (READ(X_MAX_PIN)) SBI(live_state_local, X_MAX);
|
|
#endif
|
|
#if HAS_Y_MIN
|
|
if (READ(Y_MIN_PIN)) SBI(live_state_local, Y_MIN);
|
|
#endif
|
|
#if HAS_Y_MAX
|
|
if (READ(Y_MAX_PIN)) SBI(live_state_local, Y_MAX);
|
|
#endif
|
|
#if HAS_Z_MIN
|
|
if (READ(Z_MIN_PIN)) SBI(live_state_local, Z_MIN);
|
|
#endif
|
|
#if HAS_Z_MAX
|
|
if (READ(Z_MAX_PIN)) SBI(live_state_local, Z_MAX);
|
|
#endif
|
|
#if HAS_Z_MIN_PROBE_PIN
|
|
if (READ(Z_MIN_PROBE_PIN)) SBI(live_state_local, Z_MIN_PROBE);
|
|
#endif
|
|
#if HAS_Z2_MIN
|
|
if (READ(Z2_MIN_PIN)) SBI(live_state_local, Z2_MIN);
|
|
#endif
|
|
#if HAS_Z2_MAX
|
|
if (READ(Z2_MAX_PIN)) SBI(live_state_local, Z2_MAX);
|
|
#endif
|
|
|
|
uint16_t endstop_change = live_state_local ^ old_live_state_local;
|
|
|
|
if (endstop_change) {
|
|
#if HAS_X_MIN
|
|
if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR(" X_MIN:", !!TEST(live_state_local, X_MIN));
|
|
#endif
|
|
#if HAS_X_MAX
|
|
if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(live_state_local, X_MAX));
|
|
#endif
|
|
#if HAS_Y_MIN
|
|
if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(live_state_local, Y_MIN));
|
|
#endif
|
|
#if HAS_Y_MAX
|
|
if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(live_state_local, Y_MAX));
|
|
#endif
|
|
#if HAS_Z_MIN
|
|
if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(live_state_local, Z_MIN));
|
|
#endif
|
|
#if HAS_Z_MAX
|
|
if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(live_state_local, Z_MAX));
|
|
#endif
|
|
#if HAS_Z_MIN_PROBE_PIN
|
|
if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(live_state_local, Z_MIN_PROBE));
|
|
#endif
|
|
#if HAS_Z2_MIN
|
|
if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(live_state_local, Z2_MIN));
|
|
#endif
|
|
#if HAS_Z2_MAX
|
|
if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(live_state_local, Z2_MAX));
|
|
#endif
|
|
SERIAL_PROTOCOLPGM("\n\n");
|
|
analogWrite(LED_PIN, local_LED_status);
|
|
local_LED_status ^= 255;
|
|
old_live_state_local = live_state_local;
|
|
}
|
|
}
|
|
#endif // PINS_DEBUGGING
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
uint32_t raw_filwidth_value; // = 0
|
|
#endif
|
|
|
|
void Temperature::readings_ready() {
|
|
// Update the raw values if they've been read. Else we could be updating them during reading.
|
|
if (!temp_meas_ready) set_current_temp_raw();
|
|
|
|
// Filament Sensor - can be read any time since IIR filtering is used
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
|
#endif
|
|
|
|
ZERO(raw_temp_value);
|
|
|
|
#if HAS_HEATED_BED
|
|
raw_temp_bed_value = 0;
|
|
#endif
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
raw_temp_chamber_value = 0;
|
|
#endif
|
|
|
|
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
|
|
|
|
int constexpr temp_dir[] = {
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
0
|
|
#else
|
|
TEMPDIR(0)
|
|
#endif
|
|
#if HOTENDS > 1
|
|
, TEMPDIR(1)
|
|
#if HOTENDS > 2
|
|
, TEMPDIR(2)
|
|
#if HOTENDS > 3
|
|
, TEMPDIR(3)
|
|
#if HOTENDS > 4
|
|
, TEMPDIR(4)
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
};
|
|
|
|
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
|
|
const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
|
|
const bool heater_on = (target_temperature[e] > 0)
|
|
#if ENABLED(PIDTEMP)
|
|
|| (soft_pwm_amount[e] > 0)
|
|
#endif
|
|
;
|
|
if (rawtemp > maxttemp_raw[e] * tdir) max_temp_error(e);
|
|
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && heater_on) {
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
#endif
|
|
min_temp_error(e);
|
|
}
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
else
|
|
consecutive_low_temperature_error[e] = 0;
|
|
#endif
|
|
}
|
|
|
|
#if HAS_HEATED_BED
|
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
#define GEBED <=
|
|
#else
|
|
#define GEBED >=
|
|
#endif
|
|
const bool bed_on = (target_temperature_bed > 0)
|
|
#if ENABLED(PIDTEMPBED)
|
|
|| (soft_pwm_amount_bed > 0)
|
|
#endif
|
|
;
|
|
if (current_temperature_bed_raw GEBED bed_maxttemp_raw) max_temp_error(-1);
|
|
if (bed_minttemp_raw GEBED current_temperature_bed_raw && bed_on) min_temp_error(-1);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Timer 0 is shared with millis so don't change the prescaler.
|
|
*
|
|
* This ISR uses the compare method so it runs at the base
|
|
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
|
|
* in OCR0B above (128 or halfway between OVFs).
|
|
*
|
|
* - Manage PWM to all the heaters and fan
|
|
* - Prepare or Measure one of the raw ADC sensor values
|
|
* - Check new temperature values for MIN/MAX errors (kill on error)
|
|
* - Step the babysteps value for each axis towards 0
|
|
* - For PINS_DEBUGGING, monitor and report endstop pins
|
|
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
|
|
* - Call planner.tick to count down its "ignore" time
|
|
*/
|
|
HAL_TEMP_TIMER_ISR {
|
|
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
|
|
|
|
Temperature::isr();
|
|
|
|
HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
|
|
}
|
|
|
|
void Temperature::isr() {
|
|
|
|
static int8_t temp_count = -1;
|
|
static ADCSensorState adc_sensor_state = StartupDelay;
|
|
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
|
|
// avoid multiple loads of pwm_count
|
|
uint8_t pwm_count_tmp = pwm_count;
|
|
#if ENABLED(ADC_KEYPAD)
|
|
static unsigned int raw_ADCKey_value = 0;
|
|
#endif
|
|
|
|
// Static members for each heater
|
|
#if ENABLED(SLOW_PWM_HEATERS)
|
|
static uint8_t slow_pwm_count = 0;
|
|
#define ISR_STATICS(n) \
|
|
static uint8_t soft_pwm_count_ ## n, \
|
|
state_heater_ ## n = 0, \
|
|
state_timer_heater_ ## n = 0
|
|
#else
|
|
#define ISR_STATICS(n) static uint8_t soft_pwm_count_ ## n = 0
|
|
#endif
|
|
|
|
// Statics per heater
|
|
ISR_STATICS(0);
|
|
#if HOTENDS > 1
|
|
ISR_STATICS(1);
|
|
#if HOTENDS > 2
|
|
ISR_STATICS(2);
|
|
#if HOTENDS > 3
|
|
ISR_STATICS(3);
|
|
#if HOTENDS > 4
|
|
ISR_STATICS(4);
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#if HAS_HEATED_BED
|
|
ISR_STATICS(BED);
|
|
#endif
|
|
|
|
#if DISABLED(SLOW_PWM_HEATERS)
|
|
constexpr uint8_t pwm_mask =
|
|
#if ENABLED(SOFT_PWM_DITHER)
|
|
_BV(SOFT_PWM_SCALE) - 1
|
|
#else
|
|
0
|
|
#endif
|
|
;
|
|
|
|
/**
|
|
* Standard PWM modulation
|
|
*/
|
|
if (pwm_count_tmp >= 127) {
|
|
pwm_count_tmp -= 127;
|
|
soft_pwm_count_0 = (soft_pwm_count_0 & pwm_mask) + soft_pwm_amount[0];
|
|
WRITE_HEATER_0(soft_pwm_count_0 > pwm_mask ? HIGH : LOW);
|
|
#if HOTENDS > 1
|
|
soft_pwm_count_1 = (soft_pwm_count_1 & pwm_mask) + soft_pwm_amount[1];
|
|
WRITE_HEATER_1(soft_pwm_count_1 > pwm_mask ? HIGH : LOW);
|
|
#if HOTENDS > 2
|
|
soft_pwm_count_2 = (soft_pwm_count_2 & pwm_mask) + soft_pwm_amount[2];
|
|
WRITE_HEATER_2(soft_pwm_count_2 > pwm_mask ? HIGH : LOW);
|
|
#if HOTENDS > 3
|
|
soft_pwm_count_3 = (soft_pwm_count_3 & pwm_mask) + soft_pwm_amount[3];
|
|
WRITE_HEATER_3(soft_pwm_count_3 > pwm_mask ? HIGH : LOW);
|
|
#if HOTENDS > 4
|
|
soft_pwm_count_4 = (soft_pwm_count_4 & pwm_mask) + soft_pwm_amount[4];
|
|
WRITE_HEATER_4(soft_pwm_count_4 > pwm_mask ? HIGH : LOW);
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
|
|
#if HAS_HEATED_BED
|
|
soft_pwm_count_BED = (soft_pwm_count_BED & pwm_mask) + soft_pwm_amount_bed;
|
|
WRITE_HEATER_BED(soft_pwm_count_BED > pwm_mask ? HIGH : LOW);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#if HAS_FAN0
|
|
soft_pwm_count_fan[0] = (soft_pwm_count_fan[0] & pwm_mask) + (soft_pwm_amount_fan[0] >> 1);
|
|
WRITE_FAN(soft_pwm_count_fan[0] > pwm_mask ? HIGH : LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
soft_pwm_count_fan[1] = (soft_pwm_count_fan[1] & pwm_mask) + (soft_pwm_amount_fan[1] >> 1);
|
|
WRITE_FAN1(soft_pwm_count_fan[1] > pwm_mask ? HIGH : LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
soft_pwm_count_fan[2] = (soft_pwm_count_fan[2] & pwm_mask) + (soft_pwm_amount_fan[2] >> 1);
|
|
WRITE_FAN2(soft_pwm_count_fan[2] > pwm_mask ? HIGH : LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
else {
|
|
if (soft_pwm_count_0 <= pwm_count_tmp) WRITE_HEATER_0(LOW);
|
|
#if HOTENDS > 1
|
|
if (soft_pwm_count_1 <= pwm_count_tmp) WRITE_HEATER_1(LOW);
|
|
#if HOTENDS > 2
|
|
if (soft_pwm_count_2 <= pwm_count_tmp) WRITE_HEATER_2(LOW);
|
|
#if HOTENDS > 3
|
|
if (soft_pwm_count_3 <= pwm_count_tmp) WRITE_HEATER_3(LOW);
|
|
#if HOTENDS > 4
|
|
if (soft_pwm_count_4 <= pwm_count_tmp) WRITE_HEATER_4(LOW);
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
|
|
#if HAS_HEATED_BED
|
|
if (soft_pwm_count_BED <= pwm_count_tmp) WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#if HAS_FAN0
|
|
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// SOFT_PWM_SCALE to frequency:
|
|
//
|
|
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
// 1: / 64 = 15.2588 Hz
|
|
// 2: / 32 = 30.5176 Hz
|
|
// 3: / 16 = 61.0352 Hz
|
|
// 4: / 8 = 122.0703 Hz
|
|
// 5: / 4 = 244.1406 Hz
|
|
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
|
#else // SLOW_PWM_HEATERS
|
|
|
|
/**
|
|
* SLOW PWM HEATERS
|
|
*
|
|
* For relay-driven heaters
|
|
*/
|
|
#ifndef MIN_STATE_TIME
|
|
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
|
#endif
|
|
|
|
// Macros for Slow PWM timer logic
|
|
#define _SLOW_PWM_ROUTINE(NR, src) \
|
|
soft_pwm_count_ ##NR = src; \
|
|
if (soft_pwm_count_ ##NR > 0) { \
|
|
if (state_timer_heater_ ##NR == 0) { \
|
|
if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
|
|
state_heater_ ##NR = 1; \
|
|
WRITE_HEATER_ ##NR(1); \
|
|
} \
|
|
} \
|
|
else { \
|
|
if (state_timer_heater_ ##NR == 0) { \
|
|
if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
|
|
state_heater_ ##NR = 0; \
|
|
WRITE_HEATER_ ##NR(0); \
|
|
} \
|
|
}
|
|
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n])
|
|
|
|
#define PWM_OFF_ROUTINE(NR) \
|
|
if (soft_pwm_count_ ##NR < slow_pwm_count) { \
|
|
if (state_timer_heater_ ##NR == 0) { \
|
|
if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
|
|
state_heater_ ##NR = 0; \
|
|
WRITE_HEATER_ ##NR (0); \
|
|
} \
|
|
}
|
|
|
|
if (slow_pwm_count == 0) {
|
|
|
|
SLOW_PWM_ROUTINE(0);
|
|
#if HOTENDS > 1
|
|
SLOW_PWM_ROUTINE(1);
|
|
#if HOTENDS > 2
|
|
SLOW_PWM_ROUTINE(2);
|
|
#if HOTENDS > 3
|
|
SLOW_PWM_ROUTINE(3);
|
|
#if HOTENDS > 4
|
|
SLOW_PWM_ROUTINE(4);
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#if HAS_HEATED_BED
|
|
_SLOW_PWM_ROUTINE(BED, soft_pwm_amount_bed); // BED
|
|
#endif
|
|
|
|
} // slow_pwm_count == 0
|
|
|
|
PWM_OFF_ROUTINE(0);
|
|
#if HOTENDS > 1
|
|
PWM_OFF_ROUTINE(1);
|
|
#if HOTENDS > 2
|
|
PWM_OFF_ROUTINE(2);
|
|
#if HOTENDS > 3
|
|
PWM_OFF_ROUTINE(3);
|
|
#if HOTENDS > 4
|
|
PWM_OFF_ROUTINE(4);
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#if HAS_HEATED_BED
|
|
PWM_OFF_ROUTINE(BED); // BED
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
if (pwm_count_tmp >= 127) {
|
|
pwm_count_tmp = 0;
|
|
#if HAS_FAN0
|
|
soft_pwm_count_fan[0] = soft_pwm_amount_fan[0] >> 1;
|
|
WRITE_FAN(soft_pwm_count_fan[0] > 0 ? HIGH : LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
soft_pwm_count_fan[1] = soft_pwm_amount_fan[1] >> 1;
|
|
WRITE_FAN1(soft_pwm_count_fan[1] > 0 ? HIGH : LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
soft_pwm_count_fan[2] = soft_pwm_amount_fan[2] >> 1;
|
|
WRITE_FAN2(soft_pwm_count_fan[2] > 0 ? HIGH : LOW);
|
|
#endif
|
|
}
|
|
#if HAS_FAN0
|
|
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
|
|
#endif
|
|
#endif // FAN_SOFT_PWM
|
|
|
|
// SOFT_PWM_SCALE to frequency:
|
|
//
|
|
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
// 1: / 64 = 15.2588 Hz
|
|
// 2: / 32 = 30.5176 Hz
|
|
// 3: / 16 = 61.0352 Hz
|
|
// 4: / 8 = 122.0703 Hz
|
|
// 5: / 4 = 244.1406 Hz
|
|
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
|
// increment slow_pwm_count only every 64th pwm_count,
|
|
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
|
|
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
|
|
slow_pwm_count++;
|
|
slow_pwm_count &= 0x7F;
|
|
|
|
if (state_timer_heater_0 > 0) state_timer_heater_0--;
|
|
#if HOTENDS > 1
|
|
if (state_timer_heater_1 > 0) state_timer_heater_1--;
|
|
#if HOTENDS > 2
|
|
if (state_timer_heater_2 > 0) state_timer_heater_2--;
|
|
#if HOTENDS > 3
|
|
if (state_timer_heater_3 > 0) state_timer_heater_3--;
|
|
#if HOTENDS > 4
|
|
if (state_timer_heater_4 > 0) state_timer_heater_4--;
|
|
#endif // HOTENDS > 4
|
|
#endif // HOTENDS > 3
|
|
#endif // HOTENDS > 2
|
|
#endif // HOTENDS > 1
|
|
#if HAS_HEATED_BED
|
|
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
|
|
#endif
|
|
} // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
|
|
|
|
#endif // SLOW_PWM_HEATERS
|
|
|
|
//
|
|
// Update lcd buttons 488 times per second
|
|
//
|
|
static bool do_buttons;
|
|
if ((do_buttons ^= true)) lcd_buttons_update();
|
|
|
|
/**
|
|
* One sensor is sampled on every other call of the ISR.
|
|
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
|
|
*
|
|
* On each Prepare pass, ADC is started for a sensor pin.
|
|
* On the next pass, the ADC value is read and accumulated.
|
|
*
|
|
* This gives each ADC 0.9765ms to charge up.
|
|
*/
|
|
#define ACCUMULATE_ADC(var) do{ \
|
|
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
|
|
else var += HAL_READ_ADC(); \
|
|
}while(0)
|
|
|
|
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
|
|
|
|
switch (adc_sensor_state) {
|
|
|
|
case SensorsReady: {
|
|
// All sensors have been read. Stay in this state for a few
|
|
// ISRs to save on calls to temp update/checking code below.
|
|
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
|
|
static uint8_t delay_count = 0;
|
|
if (extra_loops > 0) {
|
|
if (delay_count == 0) delay_count = extra_loops; // Init this delay
|
|
if (--delay_count) // While delaying...
|
|
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
|
|
break;
|
|
}
|
|
else {
|
|
adc_sensor_state = StartSampling; // Fall-through to start sampling
|
|
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
|
|
}
|
|
}
|
|
|
|
case StartSampling: // Start of sampling loops. Do updates/checks.
|
|
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
|
temp_count = 0;
|
|
readings_ready();
|
|
}
|
|
break;
|
|
|
|
#if HAS_TEMP_ADC_0
|
|
case PrepareTemp_0:
|
|
HAL_START_ADC(TEMP_0_PIN);
|
|
break;
|
|
case MeasureTemp_0:
|
|
ACCUMULATE_ADC(raw_temp_value[0]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
case PrepareTemp_BED:
|
|
HAL_START_ADC(TEMP_BED_PIN);
|
|
break;
|
|
case MeasureTemp_BED:
|
|
ACCUMULATE_ADC(raw_temp_bed_value);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
case PrepareTemp_CHAMBER:
|
|
HAL_START_ADC(TEMP_CHAMBER_PIN);
|
|
break;
|
|
case MeasureTemp_CHAMBER:
|
|
ACCUMULATE_ADC(raw_temp_chamber_value);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_1
|
|
case PrepareTemp_1:
|
|
HAL_START_ADC(TEMP_1_PIN);
|
|
break;
|
|
case MeasureTemp_1:
|
|
ACCUMULATE_ADC(raw_temp_value[1]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_2
|
|
case PrepareTemp_2:
|
|
HAL_START_ADC(TEMP_2_PIN);
|
|
break;
|
|
case MeasureTemp_2:
|
|
ACCUMULATE_ADC(raw_temp_value[2]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_3
|
|
case PrepareTemp_3:
|
|
HAL_START_ADC(TEMP_3_PIN);
|
|
break;
|
|
case MeasureTemp_3:
|
|
ACCUMULATE_ADC(raw_temp_value[3]);
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_4
|
|
case PrepareTemp_4:
|
|
HAL_START_ADC(TEMP_4_PIN);
|
|
break;
|
|
case MeasureTemp_4:
|
|
ACCUMULATE_ADC(raw_temp_value[4]);
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
case Prepare_FILWIDTH:
|
|
HAL_START_ADC(FILWIDTH_PIN);
|
|
break;
|
|
case Measure_FILWIDTH:
|
|
if (!HAL_ADC_READY())
|
|
next_sensor_state = adc_sensor_state; // redo this state
|
|
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
|
|
raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value
|
|
raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(ADC_KEYPAD)
|
|
case Prepare_ADC_KEY:
|
|
HAL_START_ADC(ADC_KEYPAD_PIN);
|
|
break;
|
|
case Measure_ADC_KEY:
|
|
if (!HAL_ADC_READY())
|
|
next_sensor_state = adc_sensor_state; // redo this state
|
|
else if (ADCKey_count < 16) {
|
|
raw_ADCKey_value = HAL_READ_ADC();
|
|
if (raw_ADCKey_value > 900) {
|
|
//ADC Key release
|
|
ADCKey_count = 0;
|
|
current_ADCKey_raw = 0;
|
|
}
|
|
else {
|
|
current_ADCKey_raw += raw_ADCKey_value;
|
|
ADCKey_count++;
|
|
}
|
|
}
|
|
break;
|
|
#endif // ADC_KEYPAD
|
|
|
|
case StartupDelay: break;
|
|
|
|
} // switch(adc_sensor_state)
|
|
|
|
// Go to the next state
|
|
adc_sensor_state = next_sensor_state;
|
|
|
|
//
|
|
// Additional ~1KHz Tasks
|
|
//
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
LOOP_XYZ(axis) {
|
|
const int curTodo = babystepsTodo[axis]; // get rid of volatile for performance
|
|
if (curTodo) {
|
|
stepper.babystep((AxisEnum)axis, curTodo > 0);
|
|
if (curTodo > 0) babystepsTodo[axis]--;
|
|
else babystepsTodo[axis]++;
|
|
}
|
|
}
|
|
#endif // BABYSTEPPING
|
|
|
|
// Poll endstops state, if required
|
|
endstops.poll();
|
|
|
|
// Periodically call the planner timer
|
|
planner.tick();
|
|
}
|
|
|
|
#if HAS_TEMP_SENSOR
|
|
|
|
void print_heater_state(const float &c, const float &t,
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
const float r,
|
|
#endif
|
|
const int8_t e=-3
|
|
) {
|
|
#if !(HAS_HEATED_BED && HAS_TEMP_HOTEND && HAS_TEMP_CHAMBER) && HOTENDS <= 1
|
|
UNUSED(e);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOLCHAR(
|
|
#if HAS_TEMP_CHAMBER && HAS_HEATED_BED && HAS_TEMP_HOTEND
|
|
e == -2 ? 'C' : e == -1 ? 'B' : 'T'
|
|
#elif HAS_HEATED_BED && HAS_TEMP_HOTEND
|
|
e == -1 ? 'B' : 'T'
|
|
#elif HAS_TEMP_HOTEND
|
|
'T'
|
|
#else
|
|
'B'
|
|
#endif
|
|
);
|
|
#if HOTENDS > 1
|
|
if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
|
|
#endif
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL(c);
|
|
SERIAL_PROTOCOLPAIR(" /" , t);
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
|
|
SERIAL_PROTOCOLCHAR(')');
|
|
#endif
|
|
delay(2);
|
|
}
|
|
|
|
extern uint8_t target_extruder;
|
|
|
|
void Temperature::print_heaterstates() {
|
|
#if HAS_TEMP_HOTEND
|
|
print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawHotendTemp(target_extruder)
|
|
#endif
|
|
);
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
print_heater_state(degBed(), degTargetBed()
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawBedTemp()
|
|
#endif
|
|
, -1 // BED
|
|
);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
print_heater_state(degChamber(), 0
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawChamberTemp()
|
|
#endif
|
|
, -2 // CHAMBER
|
|
);
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawHotendTemp(e)
|
|
#endif
|
|
, e
|
|
);
|
|
#endif
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
|
|
#if HAS_HEATED_BED
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() {
|
|
SERIAL_PROTOCOLPAIR(" @", e);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL(getHeaterPower(e));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
|
uint8_t Temperature::auto_report_temp_interval;
|
|
millis_t Temperature::next_temp_report_ms;
|
|
|
|
void Temperature::auto_report_temperatures() {
|
|
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
|
|
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
|
print_heaterstates();
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
|
|
#endif // AUTO_REPORT_TEMPERATURES
|
|
|
|
#endif // HAS_TEMP_SENSOR
|