mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-24 12:35:51 +00:00
942 lines
29 KiB
C++
942 lines
29 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* configuration_store.cpp
|
|
*
|
|
* Configuration and EEPROM storage
|
|
*
|
|
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
|
* in the functions below, also increment the version number. This makes sure that
|
|
* the default values are used whenever there is a change to the data, to prevent
|
|
* wrong data being written to the variables.
|
|
*
|
|
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
|
|
* If a feature is disabled, some data must still be written that, when read,
|
|
* either sets a Sane Default, or results in No Change to the existing value.
|
|
*
|
|
*/
|
|
|
|
#define EEPROM_VERSION "V23"
|
|
|
|
/**
|
|
* V23 EEPROM Layout:
|
|
*
|
|
* 100 Version (char x4)
|
|
*
|
|
* 104 M92 XYZE planner.axis_steps_per_mm (float x4)
|
|
* 120 M203 XYZE planner.max_feedrate (float x4)
|
|
* 136 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
|
|
* 152 M204 P planner.acceleration (float)
|
|
* 156 M204 R planner.retract_acceleration (float)
|
|
* 160 M204 T planner.travel_acceleration (float)
|
|
* 164 M205 S planner.min_feedrate (float)
|
|
* 168 M205 T planner.min_travel_feedrate (float)
|
|
* 172 M205 B planner.min_segment_time (ulong)
|
|
* 176 M205 X planner.max_xy_jerk (float)
|
|
* 180 M205 Z planner.max_z_jerk (float)
|
|
* 184 M205 E planner.max_e_jerk (float)
|
|
* 188 M206 XYZ home_offset (float x3)
|
|
*
|
|
* Mesh bed leveling:
|
|
* 200 M420 S status (uint8)
|
|
* 201 z_offset (float)
|
|
* 205 mesh_num_x (uint8 as set in firmware)
|
|
* 206 mesh_num_y (uint8 as set in firmware)
|
|
* 207 G29 S3 XYZ z_values[][] (float x9, by default)
|
|
*
|
|
* AUTO BED LEVELING
|
|
* 243 M851 zprobe_zoffset (float)
|
|
*
|
|
* DELTA:
|
|
* 247 M666 XYZ endstop_adj (float x3)
|
|
* 259 M665 R delta_radius (float)
|
|
* 263 M665 L delta_diagonal_rod (float)
|
|
* 267 M665 S delta_segments_per_second (float)
|
|
* 271 M665 A delta_diagonal_rod_trim_tower_1 (float)
|
|
* 275 M665 B delta_diagonal_rod_trim_tower_2 (float)
|
|
* 279 M665 C delta_diagonal_rod_trim_tower_3 (float)
|
|
*
|
|
* Z_DUAL_ENDSTOPS:
|
|
* 283 M666 Z z_endstop_adj (float)
|
|
*
|
|
* ULTIPANEL:
|
|
* 287 M145 S0 H plaPreheatHotendTemp (int)
|
|
* 289 M145 S0 B plaPreheatHPBTemp (int)
|
|
* 291 M145 S0 F plaPreheatFanSpeed (int)
|
|
* 293 M145 S1 H absPreheatHotendTemp (int)
|
|
* 295 M145 S1 B absPreheatHPBTemp (int)
|
|
* 297 M145 S1 F absPreheatFanSpeed (int)
|
|
*
|
|
* PIDTEMP:
|
|
* 299 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
|
|
* 315 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
|
|
* 331 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
|
|
* 347 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
|
|
* 363 M301 L lpq_len (int)
|
|
*
|
|
* PIDTEMPBED:
|
|
* 365 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
|
|
*
|
|
* DOGLCD:
|
|
* 377 M250 C lcd_contrast (int)
|
|
*
|
|
* SCARA:
|
|
* 379 M365 XYZ axis_scaling (float x3)
|
|
*
|
|
* FWRETRACT:
|
|
* 391 M209 S autoretract_enabled (bool)
|
|
* 392 M207 S retract_length (float)
|
|
* 396 M207 W retract_length_swap (float)
|
|
* 400 M207 F retract_feedrate (float)
|
|
* 404 M207 Z retract_zlift (float)
|
|
* 408 M208 S retract_recover_length (float)
|
|
* 412 M208 W retract_recover_length_swap (float)
|
|
* 416 M208 F retract_recover_feedrate (float)
|
|
*
|
|
* Volumetric Extrusion:
|
|
* 420 M200 D volumetric_enabled (bool)
|
|
* 421 M200 T D filament_size (float x4) (T0..3)
|
|
*
|
|
* 437 This Slot is Available!
|
|
*
|
|
*/
|
|
#include "Marlin.h"
|
|
#include "language.h"
|
|
#include "planner.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
#include "configuration_store.h"
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
#include "mesh_bed_leveling.h"
|
|
#endif
|
|
|
|
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
|
|
uint8_t c;
|
|
while (size--) {
|
|
eeprom_write_byte((unsigned char*)pos, *value);
|
|
c = eeprom_read_byte((unsigned char*)pos);
|
|
if (c != *value) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
|
|
}
|
|
pos++;
|
|
value++;
|
|
};
|
|
}
|
|
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
|
|
do {
|
|
*value = eeprom_read_byte((unsigned char*)pos);
|
|
pos++;
|
|
value++;
|
|
} while (--size);
|
|
}
|
|
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
|
|
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
|
|
|
|
/**
|
|
* Store Configuration Settings - M500
|
|
*/
|
|
|
|
#define DUMMY_PID_VALUE 3000.0f
|
|
|
|
#define EEPROM_OFFSET 100
|
|
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
|
|
/**
|
|
* Store Configuration Settings - M500
|
|
*/
|
|
|
|
void Config_StoreSettings() {
|
|
float dummy = 0.0f;
|
|
char ver[4] = "000";
|
|
int i = EEPROM_OFFSET;
|
|
EEPROM_WRITE_VAR(i, ver); // invalidate data first
|
|
EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
|
|
EEPROM_WRITE_VAR(i, planner.max_feedrate);
|
|
EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
|
|
EEPROM_WRITE_VAR(i, planner.acceleration);
|
|
EEPROM_WRITE_VAR(i, planner.retract_acceleration);
|
|
EEPROM_WRITE_VAR(i, planner.travel_acceleration);
|
|
EEPROM_WRITE_VAR(i, planner.min_feedrate);
|
|
EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
|
|
EEPROM_WRITE_VAR(i, planner.min_segment_time);
|
|
EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
|
|
EEPROM_WRITE_VAR(i, planner.max_z_jerk);
|
|
EEPROM_WRITE_VAR(i, planner.max_e_jerk);
|
|
EEPROM_WRITE_VAR(i, home_offset);
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
|
|
uint8_t mesh_num_x = MESH_NUM_X_POINTS,
|
|
mesh_num_y = MESH_NUM_Y_POINTS,
|
|
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
|
|
EEPROM_WRITE_VAR(i, dummy_uint8);
|
|
EEPROM_WRITE_VAR(i, mbl.z_offset);
|
|
EEPROM_WRITE_VAR(i, mesh_num_x);
|
|
EEPROM_WRITE_VAR(i, mesh_num_y);
|
|
EEPROM_WRITE_VAR(i, mbl.z_values);
|
|
#else
|
|
uint8_t mesh_num_x = 3,
|
|
mesh_num_y = 3,
|
|
dummy_uint8 = 0;
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE_VAR(i, dummy_uint8);
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
EEPROM_WRITE_VAR(i, mesh_num_x);
|
|
EEPROM_WRITE_VAR(i, mesh_num_y);
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#if !HAS_BED_PROBE
|
|
float zprobe_zoffset = 0;
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, zprobe_zoffset);
|
|
|
|
#if ENABLED(DELTA)
|
|
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
|
|
EEPROM_WRITE_VAR(i, delta_radius); // 1 float
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
|
|
EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
|
|
EEPROM_WRITE_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 float
|
|
dummy = 0.0f;
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
#else
|
|
dummy = 0.0f;
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
|
|
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
|
|
#endif // !ULTIPANEL
|
|
|
|
EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
|
|
EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
|
|
EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
|
|
EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
|
|
EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
|
|
EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
|
|
|
|
for (uint8_t e = 0; e < 4; e++) {
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
if (e < HOTENDS) {
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
|
|
#else
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
}
|
|
else
|
|
#endif // !PIDTEMP
|
|
{
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
EEPROM_WRITE_VAR(i, dummy); // Kp
|
|
dummy = 0.0f;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
|
|
}
|
|
|
|
} // Hotends Loop
|
|
|
|
#if DISABLED(PID_ADD_EXTRUSION_RATE)
|
|
int lpq_len = 20;
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, lpq_len);
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
dummy = DUMMY_PID_VALUE;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
|
|
#else
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKp);
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKi);
|
|
EEPROM_WRITE_VAR(i, thermalManager.bedKd);
|
|
#endif
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
const int lcd_contrast = 32;
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, lcd_contrast);
|
|
|
|
#if ENABLED(SCARA)
|
|
EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
|
|
#else
|
|
dummy = 1.0f;
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
EEPROM_WRITE_VAR(i, autoretract_enabled);
|
|
EEPROM_WRITE_VAR(i, retract_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_WRITE_VAR(i, retract_length_swap);
|
|
#else
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, retract_feedrate);
|
|
EEPROM_WRITE_VAR(i, retract_zlift);
|
|
EEPROM_WRITE_VAR(i, retract_recover_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_WRITE_VAR(i, retract_recover_length_swap);
|
|
#else
|
|
dummy = 0.0f;
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_WRITE_VAR(i, retract_recover_feedrate);
|
|
#endif // FWRETRACT
|
|
|
|
EEPROM_WRITE_VAR(i, volumetric_enabled);
|
|
|
|
// Save filament sizes
|
|
for (uint8_t q = 0; q < 4; q++) {
|
|
if (q < EXTRUDERS) dummy = filament_size[q];
|
|
EEPROM_WRITE_VAR(i, dummy);
|
|
}
|
|
|
|
char ver2[4] = EEPROM_VERSION;
|
|
int j = EEPROM_OFFSET;
|
|
EEPROM_WRITE_VAR(j, ver2); // validate data
|
|
|
|
// Report storage size
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR("Settings Stored (", i);
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
}
|
|
|
|
/**
|
|
* Retrieve Configuration Settings - M501
|
|
*/
|
|
|
|
void Config_RetrieveSettings() {
|
|
|
|
int i = EEPROM_OFFSET;
|
|
char stored_ver[4];
|
|
char ver[4] = EEPROM_VERSION;
|
|
EEPROM_READ_VAR(i, stored_ver); //read stored version
|
|
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
|
|
|
|
if (strncmp(ver, stored_ver, 3) != 0) {
|
|
Config_ResetDefault();
|
|
}
|
|
else {
|
|
float dummy = 0;
|
|
|
|
// version number match
|
|
EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
|
|
EEPROM_READ_VAR(i, planner.max_feedrate);
|
|
EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
|
|
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
planner.reset_acceleration_rates();
|
|
|
|
EEPROM_READ_VAR(i, planner.acceleration);
|
|
EEPROM_READ_VAR(i, planner.retract_acceleration);
|
|
EEPROM_READ_VAR(i, planner.travel_acceleration);
|
|
EEPROM_READ_VAR(i, planner.min_feedrate);
|
|
EEPROM_READ_VAR(i, planner.min_travel_feedrate);
|
|
EEPROM_READ_VAR(i, planner.min_segment_time);
|
|
EEPROM_READ_VAR(i, planner.max_xy_jerk);
|
|
EEPROM_READ_VAR(i, planner.max_z_jerk);
|
|
EEPROM_READ_VAR(i, planner.max_e_jerk);
|
|
EEPROM_READ_VAR(i, home_offset);
|
|
|
|
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
|
|
EEPROM_READ_VAR(i, dummy_uint8);
|
|
EEPROM_READ_VAR(i, dummy);
|
|
EEPROM_READ_VAR(i, mesh_num_x);
|
|
EEPROM_READ_VAR(i, mesh_num_y);
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mbl.status = dummy_uint8;
|
|
mbl.z_offset = dummy;
|
|
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
|
|
EEPROM_READ_VAR(i, mbl.z_values);
|
|
} else {
|
|
mbl.reset();
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
|
|
}
|
|
#else
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ_VAR(i, dummy);
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#if !HAS_BED_PROBE
|
|
float zprobe_zoffset = 0;
|
|
#endif
|
|
EEPROM_READ_VAR(i, zprobe_zoffset);
|
|
|
|
#if ENABLED(DELTA)
|
|
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
|
|
EEPROM_READ_VAR(i, delta_radius); // 1 float
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
|
|
EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_1); // 1 float
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_2); // 1 float
|
|
EEPROM_READ_VAR(i, delta_diagonal_rod_trim_tower_3); // 1 float
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
EEPROM_READ_VAR(i, z_endstop_adj);
|
|
dummy = 0.0f;
|
|
for (uint8_t q=8; q--;) EEPROM_READ_VAR(i, dummy);
|
|
#else
|
|
dummy = 0.0f;
|
|
for (uint8_t q=9; q--;) EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
|
|
absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
|
|
#endif
|
|
|
|
EEPROM_READ_VAR(i, plaPreheatHotendTemp);
|
|
EEPROM_READ_VAR(i, plaPreheatHPBTemp);
|
|
EEPROM_READ_VAR(i, plaPreheatFanSpeed);
|
|
EEPROM_READ_VAR(i, absPreheatHotendTemp);
|
|
EEPROM_READ_VAR(i, absPreheatHPBTemp);
|
|
EEPROM_READ_VAR(i, absPreheatFanSpeed);
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
for (uint8_t e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
|
|
EEPROM_READ_VAR(i, dummy); // Kp
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
PID_PARAM(Kp, e) = dummy;
|
|
EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
}
|
|
else {
|
|
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
|
|
}
|
|
}
|
|
#else // !PIDTEMP
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
for (uint8_t q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
|
|
#endif // !PIDTEMP
|
|
|
|
#if DISABLED(PID_ADD_EXTRUSION_RATE)
|
|
int lpq_len;
|
|
#endif
|
|
EEPROM_READ_VAR(i, lpq_len);
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
EEPROM_READ_VAR(i, dummy); // bedKp
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
thermalManager.bedKp = dummy;
|
|
EEPROM_READ_VAR(i, thermalManager.bedKi);
|
|
EEPROM_READ_VAR(i, thermalManager.bedKd);
|
|
}
|
|
#else
|
|
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
|
|
#endif
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
int lcd_contrast;
|
|
#endif
|
|
EEPROM_READ_VAR(i, lcd_contrast);
|
|
|
|
#if ENABLED(SCARA)
|
|
EEPROM_READ_VAR(i, axis_scaling); // 3 floats
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
EEPROM_READ_VAR(i, autoretract_enabled);
|
|
EEPROM_READ_VAR(i, retract_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_READ_VAR(i, retract_length_swap);
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_READ_VAR(i, retract_feedrate);
|
|
EEPROM_READ_VAR(i, retract_zlift);
|
|
EEPROM_READ_VAR(i, retract_recover_length);
|
|
#if EXTRUDERS > 1
|
|
EEPROM_READ_VAR(i, retract_recover_length_swap);
|
|
#else
|
|
EEPROM_READ_VAR(i, dummy);
|
|
#endif
|
|
EEPROM_READ_VAR(i, retract_recover_feedrate);
|
|
#endif // FWRETRACT
|
|
|
|
EEPROM_READ_VAR(i, volumetric_enabled);
|
|
|
|
for (uint8_t q = 0; q < 4; q++) {
|
|
EEPROM_READ_VAR(i, dummy);
|
|
if (q < EXTRUDERS) filament_size[q] = dummy;
|
|
}
|
|
|
|
calculate_volumetric_multipliers();
|
|
// Call thermalManager.updatePID (similar to when we have processed M301)
|
|
thermalManager.updatePID();
|
|
|
|
// Report settings retrieved and length
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(ver);
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", i);
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
}
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
Config_PrintSettings();
|
|
#endif
|
|
}
|
|
|
|
#endif // EEPROM_SETTINGS
|
|
|
|
/**
|
|
* Reset Configuration Settings - M502
|
|
*/
|
|
|
|
void Config_ResetDefault() {
|
|
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
|
|
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
|
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
|
for (uint8_t i = 0; i < NUM_AXIS; i++) {
|
|
planner.axis_steps_per_mm[i] = tmp1[i];
|
|
planner.max_feedrate[i] = tmp2[i];
|
|
planner.max_acceleration_mm_per_s2[i] = tmp3[i];
|
|
#if ENABLED(SCARA)
|
|
if (i < COUNT(axis_scaling))
|
|
axis_scaling[i] = 1;
|
|
#endif
|
|
}
|
|
|
|
// steps per sq second need to be updated to agree with the units per sq second
|
|
planner.reset_acceleration_rates();
|
|
|
|
planner.acceleration = DEFAULT_ACCELERATION;
|
|
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
|
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
|
planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
|
|
planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
|
|
planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
|
|
planner.max_xy_jerk = DEFAULT_XYJERK;
|
|
planner.max_z_jerk = DEFAULT_ZJERK;
|
|
planner.max_e_jerk = DEFAULT_EJERK;
|
|
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mbl.reset();
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
|
|
delta_radius = DELTA_RADIUS;
|
|
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
|
|
delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
|
|
delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
z_endstop_adj = 0;
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
|
|
plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
|
|
plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
|
|
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
|
|
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
|
|
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
|
|
#endif
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
lcd_contrast = DEFAULT_LCD_CONTRAST;
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND)
|
|
for (uint8_t e = 0; e < HOTENDS; e++)
|
|
#else
|
|
int e = 0; UNUSED(e); // only need to write once
|
|
#endif
|
|
{
|
|
PID_PARAM(Kp, e) = DEFAULT_Kp;
|
|
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
|
|
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
PID_PARAM(Kc, e) = DEFAULT_Kc;
|
|
#endif
|
|
}
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
lpq_len = 20; // default last-position-queue size
|
|
#endif
|
|
// call thermalManager.updatePID (similar to when we have processed M301)
|
|
thermalManager.updatePID();
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
thermalManager.bedKp = DEFAULT_bedKp;
|
|
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
|
|
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
autoretract_enabled = false;
|
|
retract_length = RETRACT_LENGTH;
|
|
#if EXTRUDERS > 1
|
|
retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
#endif
|
|
retract_feedrate = RETRACT_FEEDRATE;
|
|
retract_zlift = RETRACT_ZLIFT;
|
|
retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
#if EXTRUDERS > 1
|
|
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
#endif
|
|
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
#endif
|
|
|
|
volumetric_enabled = false;
|
|
for (uint8_t q = 0; q < COUNT(filament_size); q++)
|
|
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
calculate_volumetric_multipliers();
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
|
|
}
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
|
|
/**
|
|
* Print Configuration Settings - M503
|
|
*/
|
|
|
|
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
|
|
|
|
void Config_PrintSettings(bool forReplay) {
|
|
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
|
|
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
#if ENABLED(SCARA)
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Scaling factors:");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
|
|
SERIAL_EOL;
|
|
CONFIG_ECHO_START;
|
|
#endif // SCARA
|
|
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
|
|
SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
|
|
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
|
|
SERIAL_EOL;
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
|
|
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
|
|
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
|
|
SERIAL_EOL;
|
|
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate);
|
|
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
|
|
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
|
|
SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
|
|
SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
|
|
SERIAL_ECHOPAIR(" E", planner.max_e_jerk);
|
|
SERIAL_EOL;
|
|
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Home offset (mm):");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Mesh bed leveling:");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
|
|
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
|
|
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
|
|
SERIAL_EOL;
|
|
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
|
|
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" G29 S3 X", px);
|
|
SERIAL_ECHOPAIR(" Y", py);
|
|
SERIAL_ECHOPGM(" Z");
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
|
|
SERIAL_EOL;
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
|
|
SERIAL_ECHOPAIR(" R", delta_radius);
|
|
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
|
|
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
|
|
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
|
|
SERIAL_EOL;
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
|
|
SERIAL_EOL;
|
|
#endif // DELTA
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Material heatup parameters:");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M145 S0 H", plaPreheatHotendTemp);
|
|
SERIAL_ECHOPAIR(" B", plaPreheatHPBTemp);
|
|
SERIAL_ECHOPAIR(" F", plaPreheatFanSpeed);
|
|
SERIAL_EOL;
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M145 S1 H", absPreheatHotendTemp);
|
|
SERIAL_ECHOPAIR(" B", absPreheatHPBTemp);
|
|
SERIAL_ECHOPAIR(" F", absPreheatFanSpeed);
|
|
SERIAL_EOL;
|
|
#endif // ULTIPANEL
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("PID settings:");
|
|
}
|
|
#if ENABLED(PIDTEMP)
|
|
#if HOTENDS > 1
|
|
if (forReplay) {
|
|
for (uint8_t i = 0; i < HOTENDS; i++) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M301 E", i);
|
|
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
|
|
if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len);
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
else
|
|
#endif // HOTENDS > 1
|
|
// !forReplay || HOTENDS == 1
|
|
{
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
|
|
SERIAL_ECHOPAIR(" L", lpq_len);
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
|
|
SERIAL_EOL;
|
|
#endif
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("LCD Contrast:");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
|
|
SERIAL_EOL;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M207 S", retract_length);
|
|
#if EXTRUDERS > 1
|
|
SERIAL_ECHOPAIR(" W", retract_length_swap);
|
|
#endif
|
|
SERIAL_ECHOPAIR(" F", retract_feedrate * 60);
|
|
SERIAL_ECHOPAIR(" Z", retract_zlift);
|
|
SERIAL_EOL;
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
|
|
#if EXTRUDERS > 1
|
|
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
|
|
#endif
|
|
SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
|
|
SERIAL_EOL;
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR(" M209 S", (autoretract_enabled ? 1 : 0));
|
|
SERIAL_EOL;
|
|
|
|
#endif // FWRETRACT
|
|
|
|
/**
|
|
* Volumetric extrusion M200
|
|
*/
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPGM("Filament settings:");
|
|
if (volumetric_enabled)
|
|
SERIAL_EOL;
|
|
else
|
|
SERIAL_ECHOLNPGM(" Disabled");
|
|
}
|
|
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 1
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 2
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
|
SERIAL_EOL;
|
|
#if EXTRUDERS > 3
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
|
SERIAL_EOL;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
if (!volumetric_enabled) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM(" M200 D0");
|
|
}
|
|
|
|
/**
|
|
* Auto Bed Leveling
|
|
*/
|
|
#if HAS_BED_PROBE
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
|
|
SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
#endif // !DISABLE_M503
|