1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-27 13:56:24 +00:00
MarlinFirmware/Marlin/configuration_store.cpp
2018-02-26 01:00:56 -06:00

2433 lines
72 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* configuration_store.cpp
*
* Settings and EEPROM storage
*
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*
*/
// Change EEPROM version if the structure changes
#define EEPROM_VERSION "V52"
#define EEPROM_OFFSET 100
// Check the integrity of data offsets.
// Can be disabled for production build.
//#define DEBUG_EEPROM_READWRITE
#include "configuration_store.h"
#include "Marlin.h"
#include "language.h"
#include "endstops.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "stepper.h"
#include "gcode.h"
#include "vector_3.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
#if HAS_TRINAMIC
#include "stepper_indirection.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#endif
#if ENABLED(FWRETRACT)
#include "fwretract.h"
#endif
#pragma pack(push, 1) // No padding between variables
typedef struct PID { float Kp, Ki, Kd; } PID;
typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC;
/**
* Current EEPROM Layout
*
* Keep this data structure up to date so
* EEPROM size is known at compile time!
*/
typedef struct SettingsDataStruct {
char version[4]; // Vnn\0
uint16_t crc; // Data Checksum
//
// DISTINCT_E_FACTORS
//
uint8_t esteppers; // XYZE_N - XYZ
float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N]
planner_max_feedrate_mm_s[XYZE_N]; // M203 XYZE planner.max_feedrate_mm_s[XYZE_N]
uint32_t planner_max_acceleration_mm_per_s2[XYZE_N]; // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N]
float planner_acceleration, // M204 P planner.acceleration
planner_retract_acceleration, // M204 R planner.retract_acceleration
planner_travel_acceleration, // M204 T planner.travel_acceleration
planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s
planner_min_travel_feedrate_mm_s; // M205 T planner.min_travel_feedrate_mm_s
uint32_t planner_min_segment_time_us; // M205 B planner.min_segment_time_us
float planner_max_jerk[XYZE]; // M205 XYZE planner.max_jerk[XYZE]
float home_offset[XYZ]; // M206 XYZ
#if HOTENDS > 1
float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
#endif
//
// ENABLE_LEVELING_FADE_HEIGHT
//
float planner_z_fade_height; // M420 Zn planner.z_fade_height
//
// MESH_BED_LEVELING
//
float mbl_z_offset; // mbl.z_offset
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
#if ENABLED(MESH_BED_LEVELING)
float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
#else
float mbl_z_values[3][3];
#endif
//
// HAS_BED_PROBE
//
float zprobe_zoffset; // M851 Z
//
// ABL_PLANAR
//
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
//
// AUTO_BED_LEVELING_BILINEAR
//
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
int bilinear_grid_spacing[2],
bilinear_start[2]; // G29 L F
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
#else
float z_values[3][3];
#endif
//
// AUTO_BED_LEVELING_UBL
//
bool planner_leveling_active; // M420 S planner.leveling_active
int8_t ubl_storage_slot; // ubl.storage_slot
//
// DELTA / [XYZ]_DUAL_ENDSTOPS
//
#if ENABLED(DELTA)
float delta_height, // M666 H
delta_endstop_adj[ABC], // M666 XYZ
delta_radius, // M665 R
delta_diagonal_rod, // M665 L
delta_segments_per_second, // M665 S
delta_calibration_radius, // M665 B
delta_tower_angle_trim[ABC]; // M665 XYZ
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
float x_endstop_adj, // M666 X
y_endstop_adj, // M666 Y
z_endstop_adj; // M666 Z
#endif
//
// ULTIPANEL
//
int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
lcd_preheat_bed_temp[2], // M145 S0 B
lcd_preheat_fan_speed[2]; // M145 S0 F
//
// PIDTEMP
//
PIDC hotendPID[MAX_EXTRUDERS]; // M301 En PIDC / M303 En U
int lpq_len; // M301 L
//
// PIDTEMPBED
//
PID bedPID; // M304 PID / M303 E-1 U
//
// HAS_LCD_CONTRAST
//
int16_t lcd_contrast; // M250 C
//
// FWRETRACT
//
bool autoretract_enabled; // M209 S
float retract_length, // M207 S
retract_feedrate_mm_s, // M207 F
retract_zlift, // M207 Z
retract_recover_length, // M208 S
retract_recover_feedrate_mm_s, // M208 F
swap_retract_length, // M207 W
swap_retract_recover_length, // M208 W
swap_retract_recover_feedrate_mm_s; // M208 R
//
// !NO_VOLUMETRIC
//
bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
float planner_filament_size[MAX_EXTRUDERS]; // M200 T D planner.filament_size[]
//
// HAS_TRINAMIC
//
uint16_t tmc_stepper_current[11]; // M906 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
int16_t tmc_sgt[XYZ]; // M914 X Y Z
//
// LIN_ADVANCE
//
float planner_extruder_advance_K; // M900 K planner.extruder_advance_K
//
// HAS_MOTOR_CURRENT_PWM
//
uint32_t motor_current_setting[XYZ]; // M907 X Z E
//
// CNC_COORDINATE_SYSTEMS
//
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
//
// SKEW_CORRECTION
//
float planner_xy_skew_factor, // M852 I planner.xy_skew_factor
planner_xz_skew_factor, // M852 J planner.xz_skew_factor
planner_yz_skew_factor; // M852 K planner.yz_skew_factor
//
// ADVANCED_PAUSE_FEATURE
//
float filament_change_unload_length[MAX_EXTRUDERS], // M603 T U
filament_change_load_length[MAX_EXTRUDERS]; // M603 T L
} SettingsData;
#pragma pack(pop)
MarlinSettings settings;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
extern void refresh_bed_level();
#endif
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
/**
* Post-process after Retrieve or Reset
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float new_z_fade_height;
#endif
void MarlinSettings::postprocess() {
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
// steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA)
recalc_delta_settings();
#endif
#if ENABLED(PIDTEMP)
thermalManager.updatePID();
#endif
#if DISABLED(NO_VOLUMETRICS)
planner.calculate_volumetric_multipliers();
#else
for (uint8_t i = COUNT(planner.e_factor); i--;)
planner.refresh_e_factor(i);
#endif
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
// Software endstops depend on home_offset
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
set_z_fade_height(new_z_fade_height, false); // false = no report
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
refresh_bed_level();
#endif
#if HAS_MOTOR_CURRENT_PWM
stepper.refresh_motor_power();
#endif
#if ENABLED(FWRETRACT)
fwretract.refresh_autoretract();
#endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
// Various factors can change the current position
if (memcmp(oldpos, current_position, sizeof(oldpos)))
report_current_position();
}
#if ENABLED(EEPROM_SETTINGS)
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_READ_ALWAYS(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, true)
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_error = true; }while(0)
#if ENABLED(DEBUG_EEPROM_READWRITE)
#define _FIELD_TEST(FIELD) \
EEPROM_ASSERT( \
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
"Field " STRINGIFY(FIELD) " mismatch." \
)
#else
#define _FIELD_TEST(FIELD) NOOP
#endif
const char version[4] = EEPROM_VERSION;
bool MarlinSettings::eeprom_error, MarlinSettings::validating;
void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
if (eeprom_error) { pos += size; return; }
while (size--) {
uint8_t * const p = (uint8_t * const)pos;
uint8_t v = *value;
// EEPROM has only ~100,000 write cycles,
// so only write bytes that have changed!
if (v != eeprom_read_byte(p)) {
eeprom_write_byte(p, v);
if (eeprom_read_byte(p) != v) {
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
eeprom_error = true;
return;
}
}
crc16(crc, &v, 1);
pos++;
value++;
};
}
void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool force/*=false*/) {
if (eeprom_error) { pos += size; return; }
do {
uint8_t c = eeprom_read_byte((unsigned char*)pos);
if (!validating || force) *value = c;
crc16(crc, &c, 1);
pos++;
value++;
} while (--size);
}
bool MarlinSettings::size_error(const uint16_t size) {
if (size != datasize()) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("EEPROM datasize error.");
return true;
}
return false;
}
/**
* M500 - Store Configuration
*/
bool MarlinSettings::save() {
float dummy = 0.0f;
char ver[4] = "ERR";
uint16_t working_crc = 0;
EEPROM_START();
eeprom_error = false;
EEPROM_WRITE(ver); // invalidate data first
EEPROM_SKIP(working_crc); // Skip the checksum slot
working_crc = 0; // clear before first "real data"
_FIELD_TEST(esteppers);
const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
EEPROM_WRITE(esteppers);
EEPROM_WRITE(planner.axis_steps_per_mm);
EEPROM_WRITE(planner.max_feedrate_mm_s);
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
EEPROM_WRITE(planner.acceleration);
EEPROM_WRITE(planner.retract_acceleration);
EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time_us);
EEPROM_WRITE(planner.max_jerk);
_FIELD_TEST(home_offset);
#if !HAS_HOME_OFFSET
const float home_offset[XYZ] = { 0 };
#endif
EEPROM_WRITE(home_offset);
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float zfh = planner.z_fade_height;
#else
const float zfh = 10.0;
#endif
EEPROM_WRITE(zfh);
//
// Mesh Bed Leveling
//
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
static_assert(
sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
"MBL Z array is the wrong size."
);
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else // For disabled MBL write a default mesh
dummy = 0.0f;
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
EEPROM_WRITE(dummy); // z_offset
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE
const float zprobe_zoffset = 0;
#endif
EEPROM_WRITE(zprobe_zoffset);
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_WRITE(planner.bed_level_matrix);
#else
dummy = 0.0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif
//
// Bilinear Auto Bed Leveling
//
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Compile time test that sizeof(z_values) is as expected
static_assert(
sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
"Bilinear Z array is the wrong size."
);
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(grid_max_x); // 1 byte
EEPROM_WRITE(grid_max_y); // 1 byte
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
EEPROM_WRITE(bilinear_start); // 2 ints
EEPROM_WRITE(z_values); // 9-256 floats
#else
// For disabled Bilinear Grid write an empty 3x3 grid
const uint8_t grid_max_x = 3, grid_max_y = 3;
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
dummy = 0.0f;
EEPROM_WRITE(grid_max_x);
EEPROM_WRITE(grid_max_y);
EEPROM_WRITE(bilinear_grid_spacing);
EEPROM_WRITE(bilinear_start);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
#endif // AUTO_BED_LEVELING_BILINEAR
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_WRITE(planner.leveling_active);
EEPROM_WRITE(ubl.storage_slot);
#else
const bool ubl_active = false;
const int8_t storage_slot = -1;
EEPROM_WRITE(ubl_active);
EEPROM_WRITE(storage_slot);
#endif // AUTO_BED_LEVELING_UBL
// 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_WRITE(delta_height); // 1 float
EEPROM_WRITE(delta_endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_calibration_radius); // 1 float
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
_FIELD_TEST(x_endstop_adj);
// Write dual endstops in X, Y, Z order. Unused = 0.0
dummy = 0.0f;
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_WRITE(x_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_WRITE(y_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(z_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#endif
_FIELD_TEST(lcd_preheat_hotend_temp);
#if DISABLED(ULTIPANEL)
constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
#endif
EEPROM_WRITE(lcd_preheat_hotend_temp);
EEPROM_WRITE(lcd_preheat_bed_temp);
EEPROM_WRITE(lcd_preheat_fan_speed);
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
#if ENABLED(PIDTEMP)
if (e < HOTENDS) {
EEPROM_WRITE(PID_PARAM(Kp, e));
EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_WRITE(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_WRITE(PID_PARAM(Kc, e));
#else
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE(dummy);
#endif
}
else
#endif // !PIDTEMP
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE(dummy); // Kp
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
}
} // Hotends Loop
_FIELD_TEST(lpq_len);
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#endif
EEPROM_WRITE(lpq_len);
#if DISABLED(PIDTEMPBED)
dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#else
EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE(thermalManager.bedKd);
#endif
_FIELD_TEST(lcd_contrast);
#if !HAS_LCD_CONTRAST
const int16_t lcd_contrast = 32;
#endif
EEPROM_WRITE(lcd_contrast);
#if DISABLED(FWRETRACT)
const bool autoretract_enabled = false;
const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 };
EEPROM_WRITE(autoretract_enabled);
EEPROM_WRITE(autoretract_defaults);
#else
EEPROM_WRITE(fwretract.autoretract_enabled);
EEPROM_WRITE(fwretract.retract_length);
EEPROM_WRITE(fwretract.retract_feedrate_mm_s);
EEPROM_WRITE(fwretract.retract_zlift);
EEPROM_WRITE(fwretract.retract_recover_length);
EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s);
EEPROM_WRITE(fwretract.swap_retract_length);
EEPROM_WRITE(fwretract.swap_retract_recover_length);
EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s);
#endif
//
// Volumetric & Filament Size
//
_FIELD_TEST(parser_volumetric_enabled);
#if DISABLED(NO_VOLUMETRICS)
EEPROM_WRITE(parser.volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
EEPROM_WRITE(dummy);
}
#else
const bool volumetric_enabled = false;
dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
EEPROM_WRITE(volumetric_enabled);
for (uint8_t q = MAX_EXTRUDERS; q--;) EEPROM_WRITE(dummy);
#endif
//
// Save TMC2130 or TMC2208 Configuration, and placeholder values
//
_FIELD_TEST(tmc_stepper_current);
uint16_t currents[11] = {
#if HAS_TRINAMIC
#if X_IS_TRINAMIC
stepperX.getCurrent(),
#else
0,
#endif
#if Y_IS_TRINAMIC
stepperY.getCurrent(),
#else
0,
#endif
#if Z_IS_TRINAMIC
stepperZ.getCurrent(),
#else
0,
#endif
#if X2_IS_TRINAMIC
stepperX2.getCurrent(),
#else
0,
#endif
#if Y2_IS_TRINAMIC
stepperY2.getCurrent(),
#else
0,
#endif
#if Z2_IS_TRINAMIC
stepperZ2.getCurrent(),
#else
0,
#endif
#if E0_IS_TRINAMIC
stepperE0.getCurrent(),
#else
0,
#endif
#if E1_IS_TRINAMIC
stepperE1.getCurrent(),
#else
0,
#endif
#if E2_IS_TRINAMIC
stepperE2.getCurrent(),
#else
0,
#endif
#if E3_IS_TRINAMIC
stepperE3.getCurrent(),
#else
0,
#endif
#if E4_IS_TRINAMIC
stepperE4.getCurrent()
#else
0
#endif
#else
0
#endif
};
EEPROM_WRITE(currents);
//
// TMC2130 Sensorless homing threshold
//
int16_t thrs[XYZ] = {
#if ENABLED(SENSORLESS_HOMING)
#if ENABLED(X_IS_TMC2130) && defined(X_HOMING_SENSITIVITY)
stepperX.sgt(),
#else
0,
#endif
#if ENABLED(Y_IS_TMC2130) && defined(Y_HOMING_SENSITIVITY)
stepperY.sgt(),
#else
0
#endif
#if ENABLED(Z_IS_TMC2130) && defined(Z_HOMING_SENSITIVITY)
stepperZ.sgt()
#else
0
#endif
#else
0
#endif
};
EEPROM_WRITE(thrs);
//
// Linear Advance
//
_FIELD_TEST(planner_extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
EEPROM_WRITE(planner.extruder_advance_K);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif
_FIELD_TEST(motor_current_setting);
#if HAS_MOTOR_CURRENT_PWM
for (uint8_t q = XYZ; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
#else
const uint32_t dummyui32[XYZ] = { 0 };
EEPROM_WRITE(dummyui32);
#endif
//
// CNC Coordinate Systems
//
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS)
EEPROM_WRITE(coordinate_system); // 27 floats
#else
dummy = 0.0f;
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy);
#endif
//
// Skew correction factors
//
_FIELD_TEST(planner_xy_skew_factor);
#if ENABLED(SKEW_CORRECTION)
EEPROM_WRITE(planner.xy_skew_factor);
EEPROM_WRITE(planner.xz_skew_factor);
EEPROM_WRITE(planner.yz_skew_factor);
#else
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#endif
//
// Advanced Pause filament load & unload lengths
//
_FIELD_TEST(filament_change_unload_length);
#if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q];
EEPROM_WRITE(dummy);
}
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_change_load_length)) dummy = filament_change_load_length[q];
EEPROM_WRITE(dummy);
}
#else
dummy = 0.0f;
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy);
#endif
//
// Validate CRC and Data Size
//
if (!eeprom_error) {
const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
final_crc = working_crc;
// Write the EEPROM header
eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE(version);
EEPROM_WRITE(final_crc);
// Report storage size
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
SERIAL_ECHOLNPGM(")");
#endif
eeprom_error |= size_error(eeprom_size);
}
//
// UBL Mesh
//
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
if (ubl.storage_slot >= 0)
store_mesh(ubl.storage_slot);
#endif
return !eeprom_error;
}
/**
* M501 - Retrieve Configuration
*/
bool MarlinSettings::_load() {
uint16_t working_crc = 0;
EEPROM_START();
char stored_ver[4];
EEPROM_READ_ALWAYS(stored_ver);
uint16_t stored_crc;
EEPROM_READ_ALWAYS(stored_crc);
// Version has to match or defaults are used
if (strncmp(version, stored_ver, 3) != 0) {
if (stored_ver[3] != '\0') {
stored_ver[0] = '?';
stored_ver[1] = '\0';
}
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHOPGM("EEPROM version mismatch ");
SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
#endif
if (!validating) reset();
eeprom_error = true;
}
else {
float dummy = 0;
#if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || ENABLED(NO_VOLUMETRICS)
bool dummyb;
#endif
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
_FIELD_TEST(esteppers);
// Number of esteppers may change
uint8_t esteppers;
EEPROM_READ_ALWAYS(esteppers);
//
// Planner Motion
//
// Get only the number of E stepper parameters previously stored
// Any steppers added later are set to their defaults
const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
uint32_t tmp3[XYZ + esteppers];
EEPROM_READ(tmp1);
EEPROM_READ(tmp2);
EEPROM_READ(tmp3);
if (!validating) LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
}
EEPROM_READ(planner.acceleration);
EEPROM_READ(planner.retract_acceleration);
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time_us);
EEPROM_READ(planner.max_jerk);
//
// Home Offset (M206)
//
_FIELD_TEST(home_offset);
#if !HAS_HOME_OFFSET
float home_offset[XYZ];
#endif
EEPROM_READ(home_offset);
//
// Hotend Offsets, if any
//
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
EEPROM_READ(new_z_fade_height);
#else
EEPROM_READ(dummy);
#endif
//
// Mesh (Manual) Bed Leveling
//
uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(dummy);
EEPROM_READ_ALWAYS(mesh_num_x);
EEPROM_READ_ALWAYS(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
if (!validating) mbl.z_offset = dummy;
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
}
else {
// EEPROM data is stale
if (!validating) mbl.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
}
#else
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE
float zprobe_zoffset;
#endif
EEPROM_READ(zprobe_zoffset);
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix);
#else
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
#endif
//
// Bilinear Auto Bed Leveling
//
uint8_t grid_max_x, grid_max_y;
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
if (!validating) set_bed_leveling_enabled(false);
EEPROM_READ(bilinear_grid_spacing); // 2 ints
EEPROM_READ(bilinear_start); // 2 ints
EEPROM_READ(z_values); // 9 to 256 floats
}
else // EEPROM data is stale
#endif // AUTO_BED_LEVELING_BILINEAR
{
// Skip past disabled (or stale) Bilinear Grid data
int bgs[2], bs[2];
EEPROM_READ(bgs);
EEPROM_READ(bs);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
}
//
// Unified Bed Leveling active state
//
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_READ(planner.leveling_active);
EEPROM_READ(ubl.storage_slot);
#else
uint8_t dummyui8;
EEPROM_READ(dummyb);
EEPROM_READ(dummyui8);
#endif // AUTO_BED_LEVELING_UBL
//
// DELTA Geometry or Dual Endstops offsets
//
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_READ(delta_height); // 1 float
EEPROM_READ(delta_endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_calibration_radius); // 1 float
EEPROM_READ(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
_FIELD_TEST(x_endstop_adj);
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_READ(x_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_READ(y_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(z_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#endif
//
// LCD Preheat settings
//
_FIELD_TEST(lcd_preheat_hotend_temp);
#if DISABLED(ULTIPANEL)
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
#endif
EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
//EEPROM_ASSERT(
// WITHIN(lcd_preheat_fan_speed, 0, 255),
// "lcd_preheat_fan_speed out of range"
//);
//
// Hotend PID
//
#if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
if (!validating) PID_PARAM(Kp, e) = dummy;
EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(PID_PARAM(Kc, e));
#else
EEPROM_READ(dummy);
#endif
}
else {
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP
//
// PID Extrusion Scaling
//
_FIELD_TEST(lpq_len);
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len;
#endif
EEPROM_READ(lpq_len);
//
// Heated Bed PID
//
#if ENABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
if (!validating) thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
#endif
//
// LCD Contrast
//
_FIELD_TEST(lcd_contrast);
#if !HAS_LCD_CONTRAST
int16_t lcd_contrast;
#endif
EEPROM_READ(lcd_contrast);
//
// Firmware Retraction
//
#if ENABLED(FWRETRACT)
EEPROM_READ(fwretract.autoretract_enabled);
EEPROM_READ(fwretract.retract_length);
EEPROM_READ(fwretract.retract_feedrate_mm_s);
EEPROM_READ(fwretract.retract_zlift);
EEPROM_READ(fwretract.retract_recover_length);
EEPROM_READ(fwretract.retract_recover_feedrate_mm_s);
EEPROM_READ(fwretract.swap_retract_length);
EEPROM_READ(fwretract.swap_retract_recover_length);
EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s);
#else
EEPROM_READ(dummyb);
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
#endif
//
// Volumetric & Filament Size
//
_FIELD_TEST(parser_volumetric_enabled);
#if DISABLED(NO_VOLUMETRICS)
EEPROM_READ(parser.volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (!validating && q < COUNT(planner.filament_size))
planner.filament_size[q] = dummy;
}
#else
EEPROM_READ(dummyb);
for (uint8_t q=MAX_EXTRUDERS; q--;) EEPROM_READ(dummy);
#endif
//
// TMC2130 Stepper Current
//
_FIELD_TEST(tmc_stepper_current);
#if HAS_TRINAMIC
#define SET_CURR(N,Q) stepper##Q.setCurrent(currents[N] ? currents[N] : Q##_CURRENT, R_SENSE, HOLD_MULTIPLIER)
uint16_t currents[11];
EEPROM_READ(currents);
if (!validating) {
#if X_IS_TRINAMIC
SET_CURR(0, X);
#endif
#if Y_IS_TRINAMIC
SET_CURR(1, Y);
#endif
#if Z_IS_TRINAMIC
SET_CURR(2, Z);
#endif
#if X2_IS_TRINAMIC
SET_CURR(3, X2);
#endif
#if Y2_IS_TRINAMIC
SET_CURR(4, Y2);
#endif
#if Z2_IS_TRINAMIC
SET_CURR(5, Z2);
#endif
#if E0_IS_TRINAMIC
SET_CURR(6, E0);
#endif
#if E1_IS_TRINAMIC
SET_CURR(7, E1);
#endif
#if E2_IS_TRINAMIC
SET_CURR(8, E2);
#endif
#if E3_IS_TRINAMIC
SET_CURR(9, E3);
#endif
#if E4_IS_TRINAMIC
SET_CURR(10, E4);
#endif
}
#else
uint16_t val;
for (uint8_t q=11; q--;) EEPROM_READ(val);
#endif
/*
* TMC2130 Sensorless homing threshold.
* X and X2 use the same value
* Y and Y2 use the same value
* Z and Z2 use the same value
*/
int16_t thrs[XYZ];
EEPROM_READ(thrs);
#if ENABLED(SENSORLESS_HOMING)
if (!validating) {
#ifdef X_HOMING_SENSITIVITY
#if ENABLED(X_IS_TMC2130)
stepperX.sgt(thrs[0]);
#endif
#if ENABLED(X2_IS_TMC2130)
stepperX2.sgt(thrs[0]);
#endif
#endif
#ifdef Y_HOMING_SENSITIVITY
#if ENABLED(Y_IS_TMC2130)
stepperY.sgt(thrs[1]);
#endif
#if ENABLED(Y2_IS_TMC2130)
stepperY2.sgt(thrs[1]);
#endif
#endif
#ifdef Z_HOMING_SENSITIVITY
#if ENABLED(Z_IS_TMC2130)
stepperZ.sgt(thrs[2]);
#endif
#if ENABLED(Z2_IS_TMC2130)
stepperZ2.sgt(thrs[2]);
#endif
#endif
}
#endif
//
// Linear Advance
//
_FIELD_TEST(planner_extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
EEPROM_READ(planner.extruder_advance_K);
#else
EEPROM_READ(dummy);
#endif
//
// Motor Current PWM
//
_FIELD_TEST(motor_current_setting);
#if HAS_MOTOR_CURRENT_PWM
for (uint8_t q = XYZ; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
#else
uint32_t dummyui32[XYZ];
EEPROM_READ(dummyui32);
#endif
//
// CNC Coordinate System
//
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS)
if (!validating) (void)select_coordinate_system(-1); // Go back to machine space
EEPROM_READ(coordinate_system); // 27 floats
#else
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy);
#endif
//
// Skew correction factors
//
_FIELD_TEST(planner_xy_skew_factor);
#if ENABLED(SKEW_CORRECTION_GCODE)
EEPROM_READ(planner.xy_skew_factor);
#if ENABLED(SKEW_CORRECTION_FOR_Z)
EEPROM_READ(planner.xz_skew_factor);
EEPROM_READ(planner.yz_skew_factor);
#else
EEPROM_READ(dummy);
EEPROM_READ(dummy);
#endif
#else
for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
#endif
//
// Advanced Pause filament load & unload lengths
//
_FIELD_TEST(filament_change_unload_length);
#if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy;
}
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy;
}
#else
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy);
#endif
eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
if (eeprom_error) {
SERIAL_ECHO_START();
SERIAL_ECHOPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)));
SERIAL_ECHOLNPAIR(" Size: ", datasize());
}
else if (working_crc != stored_crc) {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START();
SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
SERIAL_ERROR(stored_crc);
SERIAL_ERRORPGM(" != ");
SERIAL_ERROR(working_crc);
SERIAL_ERRORLNPGM(" (calculated)!");
#endif
}
else if (!validating) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHO(version);
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
SERIAL_ECHOLNPGM(")");
#endif
}
if (!validating) {
if (eeprom_error) reset(); else postprocess();
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.report_state();
if (!validating) {
if (!ubl.sanity_check()) {
SERIAL_EOL();
#if ENABLED(EEPROM_CHITCHAT)
ubl.echo_name();
SERIAL_ECHOLNPGM(" initialized.\n");
#endif
}
else {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_PROTOCOLPGM("?Can't enable ");
ubl.echo_name();
SERIAL_PROTOCOLLNPGM(".");
#endif
ubl.reset();
}
if (ubl.storage_slot >= 0) {
load_mesh(ubl.storage_slot);
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
SERIAL_ECHOLNPGM(" loaded from storage.");
#endif
}
else {
ubl.reset();
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOLNPGM("UBL System reset()");
#endif
}
}
#endif
}
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
if (!validating) report();
#endif
return !eeprom_error;
}
bool MarlinSettings::validate() {
validating = true;
const bool success = _load();
validating = false;
return success;
}
bool MarlinSettings::load() {
if (validate()) return _load();
reset();
return true;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(EEPROM_CHITCHAT)
void ubl_invalid_slot(const int s) {
SERIAL_PROTOCOLLNPGM("?Invalid slot.");
SERIAL_PROTOCOL(s);
SERIAL_PROTOCOLLNPGM(" mesh slots available.");
}
#endif
int16_t MarlinSettings::meshes_start_index() {
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
// or down a little bit without disrupting the mesh data
}
uint16_t MarlinSettings::calc_num_meshes() {
return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
}
void MarlinSettings::store_mesh(const int8_t slot) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
SERIAL_PROTOCOLPAIR("E2END=", E2END);
SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
SERIAL_PROTOCOLLNPAIR(" slot=", slot);
SERIAL_EOL();
#endif
return;
}
uint16_t crc = 0;
int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
// Write crc to MAT along with other data, or just tack on to the beginning or end
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
#endif
#else
// Other mesh types
#endif
}
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = settings.calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
#endif
return;
}
uint16_t crc = 0;
int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
read_data(pos, dest, sizeof(ubl.z_values), &crc);
// Compare crc with crc from MAT, or read from end
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
#endif
#else
// Other mesh types
#endif
}
//void MarlinSettings::delete_mesh() { return; }
//void MarlinSettings::defrag_meshes() { return; }
#endif // AUTO_BED_LEVELING_UBL
#else // !EEPROM_SETTINGS
bool MarlinSettings::save() {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("EEPROM disabled");
return false;
}
#endif // !EEPROM_SETTINGS
/**
* M502 - Reset Configuration
*/
void MarlinSettings::reset() {
static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
}
planner.acceleration = DEFAULT_ACCELERATION;
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#if HAS_HOME_OFFSET
ZERO(home_offset);
#endif
#if HOTENDS > 1
constexpr float tmp4[XYZ][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#else
, { 0 }
#endif
};
static_assert(
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
"Offsets for the first hotend must be 0.0."
);
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
new_z_fade_height = 0.0;
#endif
#if HAS_LEVELING
reset_bed_level();
#endif
#if HAS_BED_PROBE
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
delta_height = DELTA_HEIGHT;
COPY(delta_endstop_adj, adj);
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
COPY(delta_tower_angle_trim, dta);
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
#if ENABLED(X_DUAL_ENDSTOPS)
x_endstop_adj = (
#ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
X_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
y_endstop_adj = (
#ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
Y_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
z_endstop_adj = (
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
Z_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#endif
#if ENABLED(ULTIPANEL)
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
HOTEND_LOOP()
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#if ENABLED(PID_EXTRUSION_SCALING)
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
#if ENABLED(PID_EXTRUSION_SCALING)
lpq_len = 20; // default last-position-queue size
#endif
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
thermalManager.bedKp = DEFAULT_bedKp;
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
#endif
#if HAS_LCD_CONTRAST
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#if ENABLED(FWRETRACT)
fwretract.reset();
#endif
#if DISABLED(NO_VOLUMETRICS)
parser.volumetric_enabled =
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
true
#else
false
#endif
;
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
true
#else
false
#endif
);
#if X_IS_TRINAMIC
stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Y_IS_TRINAMIC
stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Z_IS_TRINAMIC
stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if X2_IS_TRINAMIC
stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Y2_IS_TRINAMIC
stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if Z2_IS_TRINAMIC
stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E0_IS_TRINAMIC
stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E1_IS_TRINAMIC
stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E2_IS_TRINAMIC
stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E3_IS_TRINAMIC
stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if E4_IS_TRINAMIC
stepperE4.setCurrent(E4_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(SENSORLESS_HOMING)
#ifdef X_HOMING_SENSITIVITY
#if ENABLED(X_IS_TMC2130)
stepperX.sgt(X_HOMING_SENSITIVITY);
#endif
#if ENABLED(X2_IS_TMC2130)
stepperX2.sgt(X_HOMING_SENSITIVITY);
#endif
#endif
#ifdef Y_HOMING_SENSITIVITY
#if ENABLED(Y_IS_TMC2130)
stepperY.sgt(Y_HOMING_SENSITIVITY);
#endif
#if ENABLED(Y2_IS_TMC2130)
stepperY2.sgt(Y_HOMING_SENSITIVITY);
#endif
#endif
#ifdef Z_HOMING_SENSITIVITY
#if ENABLED(Z_IS_TMC2130)
stepperZ.sgt(Z_HOMING_SENSITIVITY);
#endif
#if ENABLED(Z2_IS_TMC2130)
stepperZ2.sgt(Z_HOMING_SENSITIVITY);
#endif
#endif
#endif
#if ENABLED(LIN_ADVANCE)
planner.extruder_advance_K = LIN_ADVANCE_K;
#endif
#if HAS_MOTOR_CURRENT_PWM
uint32_t tmp_motor_current_setting[XYZ] = PWM_MOTOR_CURRENT;
for (uint8_t q = XYZ; q--;)
stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
#endif
#if ENABLED(SKEW_CORRECTION_GCODE)
planner.xy_skew_factor = XY_SKEW_FACTOR;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
planner.xz_skew_factor = XZ_SKEW_FACTOR;
planner.yz_skew_factor = YZ_SKEW_FACTOR;
#endif
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t e = 0; e < E_STEPPERS; e++) {
filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH;
filament_change_load_length[e] = FILAMENT_CHANGE_LOAD_LENGTH;
}
#endif
postprocess();
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
#endif
}
#if DISABLED(DISABLE_M503)
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
/**
* M503 - Report current settings in RAM
*
* Unless specifically disabled, M503 is available even without EEPROM
*/
void MarlinSettings::report(const bool forReplay) {
/**
* Announce current units, in case inches are being displayed
*/
CONFIG_ECHO_START;
#if ENABLED(INCH_MODE_SUPPORT)
#define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
#define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
SERIAL_ECHOPGM(" G2");
SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
SERIAL_ECHOPGM(" ; Units in ");
serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
#else
#define LINEAR_UNIT(N) (N)
#define VOLUMETRIC_UNIT(N) (N)
SERIAL_ECHOLNPGM(" G21 ; Units in mm");
#endif
#if ENABLED(ULTIPANEL)
// Temperature units - for Ultipanel temperature options
CONFIG_ECHO_START;
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
#define TEMP_UNIT(N) parser.to_temp_units(N)
SERIAL_ECHOPGM(" M149 ");
SERIAL_CHAR(parser.temp_units_code());
SERIAL_ECHOPGM(" ; Units in ");
serialprintPGM(parser.temp_units_name());
#else
#define TEMP_UNIT(N) (N)
SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
#endif
#endif
SERIAL_EOL();
#if DISABLED(NO_VOLUMETRICS)
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM("Filament settings:");
if (parser.volumetric_enabled)
SERIAL_EOL();
else
SERIAL_ECHOLNPGM(" Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
SERIAL_EOL();
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
SERIAL_EOL();
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
SERIAL_EOL();
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
SERIAL_EOL();
#if EXTRUDERS > 4
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
SERIAL_EOL();
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
if (!parser.volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0");
}
#endif // !NO_VOLUMETRICS
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Steps per unit:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
#endif
SERIAL_EOL();
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M92 T", (int)i);
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
#endif
SERIAL_EOL();
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M203 T", (int)i);
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
#endif
SERIAL_EOL();
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M201 T", (int)i);
SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
SERIAL_ECHOPAIR(" B", planner.min_segment_time_us);
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
#if HAS_M206_COMMAND
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Home offset:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
#endif
#if HOTENDS > 1
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Hotend offsets:");
}
CONFIG_ECHO_START;
for (uint8_t e = 1; e < HOTENDS; e++) {
SERIAL_ECHOPAIR(" M218 T", (int)e);
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
#endif
SERIAL_EOL();
}
#endif
/**
* Bed Leveling
*/
#if HAS_LEVELING
#if ENABLED(MESH_BED_LEVELING)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
CONFIG_ECHO_START;
ubl.echo_name();
SERIAL_ECHOLNPGM(":");
}
#elif HAS_ABL
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Auto Bed Leveling:");
}
#endif
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
#endif
SERIAL_EOL();
#if ENABLED(MESH_BED_LEVELING)
if (leveling_is_valid()) {
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
SERIAL_ECHOPAIR(" Y", (int)py + 1);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
SERIAL_EOL();
}
}
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
SERIAL_EOL();
ubl.report_state();
SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
SERIAL_ECHOLNPGM(" meshes.\n");
}
ubl.report_current_mesh();
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (leveling_is_valid()) {
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" G29 W I", (int)px + 1);
SERIAL_ECHOPAIR(" J", (int)py + 1);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(LINEAR_UNIT(z_values[px][py]), 5);
SERIAL_EOL();
}
}
}
#endif
#endif // HAS_LEVELING
#if ENABLED(DELTA)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Endstop adjustment:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
SERIAL_EOL();
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Endstop adjustment:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM(" M666");
#if ENABLED(X_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" X", LINEAR_UNIT(x_endstop_adj));
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(y_endstop_adj));
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(z_endstop_adj));
#endif
SERIAL_EOL();
#endif // DELTA
#if ENABLED(ULTIPANEL)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Material heatup parameters:");
}
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M145 S", (int)i);
SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
}
#endif // ULTIPANEL
#if HAS_PID_HEATING
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 E", e);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL();
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL();
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
SERIAL_EOL();
#endif
#endif // PIDTEMP || PIDTEMPBED
#if HAS_LCD_CONTRAST
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("LCD Contrast:");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
#endif
#if ENABLED(FWRETRACT)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(fwretract.retract_length));
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_length));
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s)));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(fwretract.retract_zlift));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(fwretract.retract_recover_length));
SERIAL_ECHOPAIR(" W", LINEAR_UNIT(fwretract.swap_retract_recover_length));
SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s)));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
#endif // FWRETRACT
/**
* Probe Offset
*/
#if HAS_BED_PROBE
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
#endif
/**
* Bed Skew Correction
*/
#if ENABLED(SKEW_CORRECTION_GCODE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Skew Factor: ");
}
CONFIG_ECHO_START;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
SERIAL_ECHOPGM(" M852 I");
SERIAL_ECHO_F(LINEAR_UNIT(planner.xy_skew_factor), 6);
SERIAL_ECHOPGM(" J");
SERIAL_ECHO_F(LINEAR_UNIT(planner.xz_skew_factor), 6);
SERIAL_ECHOPGM(" K");
SERIAL_ECHO_F(LINEAR_UNIT(planner.yz_skew_factor), 6);
SERIAL_EOL();
#else
SERIAL_ECHOPGM(" M852 S");
SERIAL_ECHO_F(LINEAR_UNIT(planner.xy_skew_factor), 6);
SERIAL_EOL();
#endif
#endif
/**
* TMC2130 stepper driver current
*/
#if HAS_TRINAMIC
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Stepper driver current:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM(" M906");
#if ENABLED(X_IS_TMC2130) || ENABLED(X_IS_TMC2208)
SERIAL_ECHOPAIR(" X ", stepperX.getCurrent());
#endif
#if ENABLED(Y_IS_TMC2130) || ENABLED(Y_IS_TMC2208)
SERIAL_ECHOPAIR(" Y ", stepperY.getCurrent());
#endif
#if ENABLED(Z_IS_TMC2130) || ENABLED(Z_IS_TMC2208)
SERIAL_ECHOPAIR(" Z ", stepperZ.getCurrent());
#endif
#if ENABLED(X2_IS_TMC2130) || ENABLED(X2_IS_TMC2208)
SERIAL_ECHOPAIR(" X2 ", stepperX2.getCurrent());
#endif
#if ENABLED(Y2_IS_TMC2130) || ENABLED(Y2_IS_TMC2208)
SERIAL_ECHOPAIR(" Y2 ", stepperY2.getCurrent());
#endif
#if ENABLED(Z2_IS_TMC2130) || ENABLED(Z2_IS_TMC2208)
SERIAL_ECHOPAIR(" Z2 ", stepperZ2.getCurrent());
#endif
#if ENABLED(E0_IS_TMC2130) || ENABLED(E0_IS_TMC2208)
SERIAL_ECHOPAIR(" E0 ", stepperE0.getCurrent());
#endif
#if ENABLED(E1_IS_TMC2130) || ENABLED(E1_IS_TMC2208)
SERIAL_ECHOPAIR(" E1 ", stepperE1.getCurrent());
#endif
#if ENABLED(E2_IS_TMC2130) || ENABLED(E2_IS_TMC2208)
SERIAL_ECHOPAIR(" E2 ", stepperE2.getCurrent());
#endif
#if ENABLED(E3_IS_TMC2130) || ENABLED(E3_IS_TMC2208)
SERIAL_ECHOPAIR(" E3 ", stepperE3.getCurrent());
#endif
#if ENABLED(E4_IS_TMC2130) || ENABLED(E4_IS_TMC2208)
SERIAL_ECHOPAIR(" E4 ", stepperE4.getCurrent());
#endif
SERIAL_EOL();
#endif
/**
* TMC2130 Sensorless homing thresholds
*/
#if ENABLED(SENSORLESS_HOMING)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Sensorless homing threshold:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM(" M914");
#ifdef X_HOMING_SENSITIVITY
#if ENABLED(X_IS_TMC2130)
SERIAL_ECHOPAIR(" X", stepperX.sgt());
#endif
#if ENABLED(X2_IS_TMC2130)
SERIAL_ECHOPAIR(" X2 ", stepperX2.sgt());
#endif
#endif
#ifdef Y_HOMING_SENSITIVITY
#if ENABLED(Y_IS_TMC2130)
SERIAL_ECHOPAIR(" Y", stepperY.sgt());
#endif
#if ENABLED(X2_IS_TMC2130)
SERIAL_ECHOPAIR(" Y2 ", stepperY2.sgt());
#endif
#endif
#ifdef Z_HOMING_SENSITIVITY
#if ENABLED(Z_IS_TMC2130)
SERIAL_ECHOPAIR(" Z", stepperZ.sgt());
#endif
#if ENABLED(Z2_IS_TMC2130)
SERIAL_ECHOPAIR(" Z2 ", stepperZ2.sgt());
#endif
#endif
SERIAL_EOL();
#endif
/**
* Linear Advance
*/
#if ENABLED(LIN_ADVANCE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Linear Advance:");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K);
#endif
#if HAS_MOTOR_CURRENT_PWM
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Stepper motor currents:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
SERIAL_EOL();
#endif
/**
* Advanced Pause filament load & unload lengths
*/
#if ENABLED(ADVANCED_PAUSE_FEATURE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Filament load/unload lengths:");
}
CONFIG_ECHO_START;
#if EXTRUDERS == 1
SERIAL_ECHOPAIR(" M603 L", LINEAR_UNIT(filament_change_load_length[0]));
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[0]));
#else
SERIAL_ECHOPAIR(" M603 T0 L", LINEAR_UNIT(filament_change_load_length[0]));
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[0]));
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M603 T1 L", LINEAR_UNIT(filament_change_load_length[1]));
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[1]));
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M603 T2 L", LINEAR_UNIT(filament_change_load_length[2]));
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[2]));
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M603 T3 L", LINEAR_UNIT(filament_change_load_length[3]));
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[3]));
#if EXTRUDERS > 4
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M603 T4 L", LINEAR_UNIT(filament_change_load_length[4]));
SERIAL_ECHOLNPAIR(" U", LINEAR_UNIT(filament_change_unload_length[4]));
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS == 1
#endif // ADVANCED_PAUSE_FEATURE
}
#endif // !DISABLE_M503