1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-24 04:29:34 +00:00
MarlinFirmware/Marlin/stepper.cpp

1468 lines
42 KiB
C++

/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "cardreader.h"
#include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
#include <SPI.h>
#endif
//===========================================================================
//=============================public variables ============================
//===========================================================================
block_t *current_block; // A pointer to the block currently being traced
//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE
static long advance_rate, advance, final_advance = 0;
static long old_advance = 0;
static long e_steps[4];
#endif
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point
static char step_loops;
static unsigned short OCR1A_nominal;
static unsigned short step_loops_nominal;
volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone;
static volatile bool endstop_x_hit=false;
static volatile bool endstop_y_hit=false;
static volatile bool endstop_z_hit=false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
#endif
static bool old_x_min_endstop=false;
static bool old_x_max_endstop=false;
static bool old_y_min_endstop=false;
static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false;
static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
// Stepper objects of TMC steppers are used
#ifdef X_IS_TMC
TMC26XStepper stepperX(200,X_ENABLE_PIN,X_STEP_PIN,X_DIR_PIN,X_MAX_CURRENT,X_SENSE_RESISTOR);
#endif
#ifdef X2_IS_TMC
TMC26XStepper stepperX2(200,X2_ENABLE_PIN,X2_STEP_PIN,X2_DIR_PIN,X2_MAX_CURRENT,X2_SENSE_RESISTOR);
#endif
#ifdef Y_IS_TMC
TMC26XStepper stepperY(200,Y_ENABLE_PIN,Y_STEP_PIN,Y_DIR_PIN,Y_MAX_CURRENT,Y_SENSE_RESISTOR);
#endif
#ifdef Y2_IS_TMC
TMC26XStepper stepperY2(200,Y2_ENABLE_PIN,Y2_STEP_PIN,Y2_DIR_PIN,Y2_MAX_CURRENT,Y2_SENSE_RESISTOR);
#endif
#ifdef Z_IS_TMC
TMC26XStepper stepperZ(200,Z_ENABLE_PIN,Z_STEP_PIN,Z_DIR_PIN,Z_MAX_CURRENT,Z_SENSE_RESISTOR);
#endif
#ifdef Z2_IS_TMC
TMC26XStepper stepperZ2(200,Z2_ENABLE_PIN,Z2_STEP_PIN,Z2_DIR_PIN,Z2_MAX_CURRENT,Z2_SENSE_RESISTOR);
#endif
#ifdef E0_IS_TMC
TMC26XStepper stepperE0(200,E0_ENABLE_PIN,E0_STEP_PIN,E0_DIR_PIN,E0_MAX_CURRENT,E0_SENSE_RESISTOR);
#endif
#ifdef E1_IS_TMC
TMC26XStepper stepperE1(200,E1_ENABLE_PIN,E1_STEP_PIN,E1_DIR_PIN,E1_MAX_CURRENT,E1_SENSE_RESISTOR);
#endif
#ifdef E2_IS_TMC
TMC26XStepper stepperE2(200,E2_ENABLE_PIN,E2_STEP_PIN,E2_DIR_PIN,E2_MAX_CURRENT,E2_SENSE_RESISTOR);
#endif
#ifdef E3_IS_TMC
TMC26XStepper stepperE3(200,E3_ENABLE_PIN,E3_STEP_PIN,E3_DIR_PIN,E3_MAX_CURRENT,E3_SENSE_RESISTOR);
#endif
//===========================================================================
//=============================functions ============================
//===========================================================================
#define CHECK_ENDSTOPS if(check_endstops)
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
void checkHitEndstops()
{
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if(endstop_x_hit) {
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
}
if(endstop_y_hit) {
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
}
if(endstop_z_hit) {
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_ECHOLN("");
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit)
{
card.sdprinting = false;
card.closefile();
quickStop();
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetHotend3(0);
setTargetBed(0);
}
#endif
}
}
void endstops_hit_on_purpose()
{
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
}
void enable_endstops(bool check)
{
check_endstops = check;
}
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset() {
#ifdef ADVANCE
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect)
{
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
current_block->busy = true;
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
#ifdef Z_LATE_ENABLE
if(current_block->steps_z > 0) {
enable_z();
OCR1A = 2000; //1ms wait
return;
}
#endif
// #ifdef ADVANCE
// e_steps[current_block->active_extruder] = 0;
// #endif
}
else {
OCR1A=2000; // 1kHz.
}
}
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_DIR_WRITE(INVERT_X_DIR);
X2_DIR_WRITE(INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(INVERT_X_DIR);
else
X_DIR_WRITE(INVERT_X_DIR);
}
#else
X_DIR_WRITE(INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1;
}
else{
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_DIR_WRITE(!INVERT_X_DIR);
X2_DIR_WRITE( !INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(!INVERT_X_DIR);
else
X_DIR_WRITE(!INVERT_X_DIR);
}
#else
X_DIR_WRITE(!INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
Y_DIR_WRITE(INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_DIR_WRITE(!(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=-1;
}
else{
Y_DIR_WRITE(!INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_DIR_WRITE((INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=1;
}
// Set direction en check limit switches
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
#else
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
#endif
{
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
}
}
}
else
{ // +direction
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif
}
}
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
#endif
{
CHECK_ENDSTOPS
{
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_min_endstop = y_min_endstop;
#endif
}
}
else
{ // +direction
CHECK_ENDSTOPS
{
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif
}
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
Z_DIR_WRITE(INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(INVERT_Z_DIR);
#endif
count_direction[Z_AXIS]=-1;
CHECK_ENDSTOPS
{
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_min_endstop = z_min_endstop;
#endif
}
}
else { // +direction
Z_DIR_WRITE(!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(!INVERT_Z_DIR);
#endif
count_direction[Z_AXIS]=1;
CHECK_ENDSTOPS
{
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_max_endstop = z_max_endstop;
#endif
}
}
#ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
REV_E_DIR();
count_direction[E_AXIS]=-1;
}
else { // +direction
NORM_E_DIR();
count_direction[E_AXIS]=1;
}
#endif //!ADVANCE
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
#ifndef AT90USB
MSerial.checkRx(); // Check for serial chars.
#endif
#ifdef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
e_steps[current_block->active_extruder]--;
}
else {
e_steps[current_block->active_extruder]++;
}
}
#endif //ADVANCE
counter_x += current_block->steps_x;
#ifdef CONFIG_STEPPERS_TOSHIBA
/* The toshiba stepper controller require much longer pulses
* tjerfore we 'stage' decompose the pulses between high, and
* low instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs */
if (counter_x > 0) {
X_STEP_WRITE(HIGH);
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
Y_STEP_WRITE( HIGH);
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
Z_STEP_WRITE( HIGH);
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE_E_STEP(HIGH);
}
#endif //!ADVANCE
if (counter_x > 0) {
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
X_STEP_WRITE(LOW);
}
if (counter_y > 0) {
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
Y_STEP_WRITE( LOW);
}
if (counter_z > 0) {
counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
Z_STEP_WRITE(LOW);
}
#ifndef ADVANCE
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
count_position[E_AXIS]+=count_direction[E_AXIS];
WRITE_E_STEP(LOW);
}
#endif //!ADVANCE
#else
if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(!INVERT_X_STEP_PIN);
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
}
#else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(INVERT_X_STEP_PIN);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
X2_STEP_WRITE(INVERT_X_STEP_PIN);
else
X_STEP_WRITE(INVERT_X_STEP_PIN);
}
#else
X_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_STEP_WRITE( INVERT_Y_STEP_PIN);
#endif
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
Z_STEP_WRITE( !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE(!INVERT_Z_STEP_PIN);
#endif
counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS];
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count;
count_position[E_AXIS]+=count_direction[E_AXIS];
WRITE_E_STEP(INVERT_E_STEP_PIN);
}
#endif //!ADVANCE
#endif // CONFIG_STEPPERS_TOSHIBA
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
}
// Calculare new timer value
unsigned short timer;
unsigned short step_rate;
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
// upper limit
if(acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
OCR1A = timer;
acceleration_time += timer;
#ifdef ADVANCE
for(int8_t i=0; i < step_loops; i++) {
advance += advance_rate;
}
//if(advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
}
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < current_block->final_rate)
step_rate = current_block->final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
OCR1A = timer;
deceleration_time += timer;
#ifdef ADVANCE
for(int8_t i=0; i < step_loops; i++) {
advance -= advance_rate;
}
if(advance < final_advance) advance = final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif //ADVANCE
}
else {
OCR1A = OCR1A_nominal;
// ensure we're running at the correct step rate, even if we just came off an acceleration
step_loops = step_loops_nominal;
}
// If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) {
current_block = NULL;
plan_discard_current_block();
}
}
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A;
// Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;i++) {
if (e_steps[0] != 0) {
E0_STEP_WRITE( INVERT_E_STEP_PIN);
if (e_steps[0] < 0) {
E0_DIR_WRITE(INVERT_E0_DIR);
e_steps[0]++;
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[0] > 0) {
E0_DIR_WRITE(!INVERT_E0_DIR);
e_steps[0]--;
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#if EXTRUDERS > 1
if (e_steps[1] != 0) {
E1_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[1] < 0) {
E1_DIR_WRITE(INVERT_E1_DIR);
e_steps[1]++;
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[1] > 0) {
E1_DIR_WRITE(!INVERT_E1_DIR);
e_steps[1]--;
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
#if EXTRUDERS > 2
if (e_steps[2] != 0) {
E2_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[2] < 0) {
E2_DIR_WRITE(INVERT_E2_DIR);
e_steps[2]++;
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[2] > 0) {
E2_DIR_WRITE(!INVERT_E2_DIR);
e_steps[2]--;
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
#if EXTRUDERS > 3
if (e_steps[3] != 0) {
E3_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[3] < 0) {
E3_DIR_WRITE(INVERT_E3_DIR);
e_steps[3]++;
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[3] > 0) {
E3_DIR_WRITE(!INVERT_E3_DIR);
e_steps[3]--;
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
}
}
#endif // ADVANCE
void st_init()
{
digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins
// initialise TMC Steppers
#ifdef HAVE_TMCDRIVER
tmc_init();
#endif
//Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
X_DIR_INIT;
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
X2_DIR_INIT;
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
Y_DIR_INIT;
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
Y2_DIR_INIT;
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
Z_DIR_INIT;
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
Z2_DIR_INIT;
#endif
#endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
E0_DIR_INIT;
#endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
E1_DIR_INIT;
#endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
E2_DIR_INIT;
#endif
#if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
E3_DIR_INIT;
#endif
//Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
X_ENABLE_INIT;
if(!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
X2_ENABLE_INIT;
if(!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
Y_ENABLE_INIT;
if(!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
Y2_ENABLE_INIT;
if(!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
Z_ENABLE_INIT;
if(!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
Z2_ENABLE_INIT;
if(!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif
#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
E0_ENABLE_INIT;
if(!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
E1_ENABLE_INIT;
if(!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
E2_ENABLE_INIT;
if(!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif
#if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
E3_ENABLE_INIT;
if(!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif
//endstops and pullups
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
//Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
X_STEP_INIT;
X_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
X2_STEP_INIT;
X2_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
Y_STEP_INIT;
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
Y2_STEP_INIT;
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
disable_y();
#endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
Z_STEP_INIT;
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
Z2_STEP_INIT;
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
disable_z();
#endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
E0_STEP_INIT;
E0_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e0();
#endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
E1_STEP_INIT;
E1_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e1();
#endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
E2_STEP_INIT;
E2_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e2();
#endif
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
E3_STEP_INIT;
E3_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e3();
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
OCR1A = 0x4000;
TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE
#if defined(TCCR0A) && defined(WGM01)
TCCR0A &= ~(1<<WGM01);
TCCR0A &= ~(1<<WGM00);
#endif
e_steps[0] = 0;
e_steps[1] = 0;
e_steps[2] = 0;
e_steps[3] = 0;
TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE
enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei();
}
// Block until all buffered steps are executed
void st_synchronize()
{
while( blocks_queued()) {
manage_heater();
manage_inactivity();
lcd_update();
}
}
void st_set_position(const long &x, const long &y, const long &z, const long &e)
{
CRITICAL_SECTION_START;
count_position[X_AXIS] = x;
count_position[Y_AXIS] = y;
count_position[Z_AXIS] = z;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
void st_set_e_position(const long &e)
{
CRITICAL_SECTION_START;
count_position[E_AXIS] = e;
CRITICAL_SECTION_END;
}
long st_get_position(uint8_t axis)
{
long count_pos;
CRITICAL_SECTION_START;
count_pos = count_position[axis];
CRITICAL_SECTION_END;
return count_pos;
}
#ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm(uint8_t axis)
{
float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / axis_steps_per_unit[axis];
}
#endif // ENABLE_AUTO_BED_LEVELING
void finishAndDisableSteppers()
{
st_synchronize();
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
void quickStop()
{
DISABLE_STEPPER_DRIVER_INTERRUPT();
while(blocks_queued())
plan_discard_current_block();
current_block = NULL;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
#ifdef BABYSTEPPING
void babystep(const uint8_t axis,const bool direction)
{
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
//store initial pin states
switch(axis)
{
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin= X_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction);
#ifdef DUAL_X_CARRIAGE
X2_DIR_WRITE((INVERT_X_DIR)^direction);
#endif
//perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
X_STEP_WRITE(INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
#ifdef DUAL_X_CARRIAGE
X2_DIR_WRITE(old_x_dir_pin);
#endif
}
break;
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin= Y_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Y_DIR_WRITE((INVERT_Y_DIR)^direction);
#ifdef DUAL_Y_CARRIAGE
Y2_DIR_WRITE((INVERT_Y_DIR)^direction);
#endif
//perform step
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
//get old pin state back.
Y_DIR_WRITE(old_y_dir_pin);
#ifdef DUAL_Y_CARRIAGE
Y2_DIR_WRITE(old_y_dir_pin);
#endif
}
break;
#ifndef DELTA
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= Z_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE( !INVERT_Z_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
//get old pin state back.
Z_DIR_WRITE(old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(old_z_dir_pin);
#endif
}
break;
#else //DELTA
case Z_AXIS:
{
enable_x();
enable_y();
enable_z();
uint8_t old_x_dir_pin= X_DIR_READ;
uint8_t old_y_dir_pin= Y_DIR_READ;
uint8_t old_z_dir_pin= Z_DIR_READ;
//setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
Y_DIR_WRITE((INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
//perform step
X_STEP_WRITE( !INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U); // wait 1 microsecond
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
}
break;
#endif
default: break;
}
}
#endif //BABYSTEPPING
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value);
digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
//delay(10);
#endif
}
void digipot_init() //Initialize Digipot Motor Current
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin();
pinMode(DIGIPOTSS_PIN, OUTPUT);
for(int i=0;i<=4;i++)
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i,digipot_motor_current[i]);
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
digipot_current(0, motor_current_setting[0]);
digipot_current(1, motor_current_setting[1]);
digipot_current(2, motor_current_setting[2]);
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
#endif
}
void digipot_current(uint8_t driver, int current)
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current);
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
#endif
}
void microstep_init()
{
const uint8_t microstep_modes[] = MICROSTEP_MODES;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT);
#endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT);
pinMode(Y_MS2_PIN,OUTPUT);
pinMode(Z_MS1_PIN,OUTPUT);
pinMode(Z_MS2_PIN,OUTPUT);
pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT);
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
#endif
}
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
{
if(ms1 > -1) switch(driver)
{
case 0: digitalWrite( X_MS1_PIN,ms1); break;
case 1: digitalWrite( Y_MS1_PIN,ms1); break;
case 2: digitalWrite( Z_MS1_PIN,ms1); break;
case 3: digitalWrite(E0_MS1_PIN,ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
case 4: digitalWrite(E1_MS1_PIN,ms1); break;
#endif
}
if(ms2 > -1) switch(driver)
{
case 0: digitalWrite( X_MS2_PIN,ms2); break;
case 1: digitalWrite( Y_MS2_PIN,ms2); break;
case 2: digitalWrite( Z_MS2_PIN,ms2); break;
case 3: digitalWrite(E0_MS2_PIN,ms2); break;
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
case 4: digitalWrite(E1_MS2_PIN,ms2); break;
#endif
}
}
void microstep_mode(uint8_t driver, uint8_t stepping_mode)
{
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break;
case 8: microstep_ms(driver,MICROSTEP8); break;
case 16: microstep_ms(driver,MICROSTEP16); break;
}
}
void microstep_readings()
{
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
SERIAL_PROTOCOLPGM("Y: ");
SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
SERIAL_PROTOCOLPGM("Z: ");
SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
#endif
}
#ifdef HAVE_TMCDRIVER
void tmc_init()
{
#ifdef X_IS_TMC
stepperX.setMicrosteps(X_MICROSTEPS);
stepperX.start();
#endif
#ifdef X2_IS_TMC
stepperX2.setMicrosteps(X2_MICROSTEPS);
stepperX2.start();
#endif
#ifdef Y_IS_TMC
stepperY.setMicrosteps(Y_MICROSTEPS);
stepperY.start();
#endif
#ifdef Y2_IS_TMC
stepperY2.setMicrosteps(Y2_MICROSTEPS);
stepperY2.start();
#endif
#ifdef Z_IS_TMC
stepperZ.setMicrosteps(Z_MICROSTEPS);
stepperZ.start();
#endif
#ifdef Z2_IS_TMC
stepperZ2.setMicrosteps(Z2_MICROSTEPS);
stepperZ2.start();
#endif
#ifdef E0_IS_TMC
stepperE0.setMicrosteps(E0_MICROSTEPS);
stepperE0.start();
#endif
#ifdef E1_IS_TMC
stepperE1.setMicrosteps(E1_MICROSTEPS);
stepperE1.start();
#endif
#ifdef E2_IS_TMC
stepperE2.setMicrosteps(E2_MICROSTEPS);
stepperE2.start();
#endif
#ifdef E3_IS_TMC
stepperE3.setMicrosteps(E3_MICROSTEPS);
stepperE3.start();
#endif
}
#endif