0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-19 16:16:13 +00:00
MarlinFirmware/Marlin/Marlin.h
Roxy-3D 8282d732c1 Make G26 work with all mesh leveling.
Example Configuration.h files are not updated yet.   You need to cross
your settings over to the default Configuration.h file in the \Marlin
directory.   (UBL_G26_MESH_VALIDATION enablement has moved to a new
location in the file.)
2017-11-23 21:41:27 -06:00

515 lines
16 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef MARLIN_H
#define MARLIN_H
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include "MarlinConfig.h"
#ifdef DEBUG_GCODE_PARSER
#include "gcode.h"
#endif
#include "enum.h"
#include "types.h"
#include "fastio.h"
#include "utility.h"
#include "serial.h"
#if ENABLED(PRINTCOUNTER)
#include "printcounter.h"
#else
#include "stopwatch.h"
#endif
void idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
#endif
);
void manage_inactivity(bool ignore_stepper_queue = false);
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled;
#endif
#if HAS_X2_ENABLE
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#elif HAS_X_ENABLE
#define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#else
#define enable_X() NOOP
#define disable_X() NOOP
#endif
#if HAS_Y2_ENABLE
#define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#elif HAS_Y_ENABLE
#define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#else
#define enable_Y() NOOP
#define disable_Y() NOOP
#endif
#if HAS_Z2_ENABLE
#define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#elif HAS_Z_ENABLE
#define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#else
#define enable_Z() NOOP
#define disable_Z() NOOP
#endif
#if ENABLED(MIXING_EXTRUDER)
/**
* Mixing steppers synchronize their enable (and direction) together
*/
#if MIXING_STEPPERS > 3
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
#elif MIXING_STEPPERS > 2
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
#else
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
#endif
#define enable_E1() NOOP
#define disable_E1() NOOP
#define enable_E2() NOOP
#define disable_E2() NOOP
#define enable_E3() NOOP
#define disable_E3() NOOP
#define enable_E4() NOOP
#define disable_E4() NOOP
#else // !MIXING_EXTRUDER
#if HAS_E0_ENABLE
#define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E0() NOOP
#define disable_E0() NOOP
#endif
#if E_STEPPERS > 1 && HAS_E1_ENABLE
#define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E1() NOOP
#define disable_E1() NOOP
#endif
#if E_STEPPERS > 2 && HAS_E2_ENABLE
#define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E2() NOOP
#define disable_E2() NOOP
#endif
#if E_STEPPERS > 3 && HAS_E3_ENABLE
#define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E3() NOOP
#define disable_E3() NOOP
#endif
#if E_STEPPERS > 4 && HAS_E4_ENABLE
#define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E4() NOOP
#define disable_E4() NOOP
#endif
#endif // !MIXING_EXTRUDER
#if ENABLED(G38_PROBE_TARGET)
extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
#endif
/**
* The axis order in all axis related arrays is X, Y, Z, E
*/
#define _AXIS(AXIS) AXIS ##_AXIS
void enable_all_steppers();
void disable_e_steppers();
void disable_all_steppers();
void FlushSerialRequestResend();
void ok_to_send();
void kill(const char*);
void quickstop_stepper();
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
void handle_filament_runout();
#endif
extern uint8_t marlin_debug_flags;
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
extern bool Running;
inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; }
bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure.
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
void clear_command_queue();
extern millis_t previous_cmd_ms;
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
#if ENABLED(FAST_PWM_FAN)
void setPwmFrequency(uint8_t pin, int val);
#endif
/**
* Feedrate scaling and conversion
*/
extern int16_t feedrate_percentage;
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern bool axis_relative_modes[];
extern bool axis_known_position[XYZ];
extern bool axis_homed[XYZ];
extern volatile bool wait_for_heatup;
#if HAS_RESUME_CONTINUE
extern volatile bool wait_for_user;
#endif
extern float current_position[NUM_AXIS];
// Workspace offsets
#if HAS_WORKSPACE_OFFSET
#if HAS_HOME_OFFSET
extern float home_offset[XYZ];
#endif
#if HAS_POSITION_SHIFT
extern float position_shift[XYZ];
#endif
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern float workspace_offset[XYZ];
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
#elif HAS_HOME_OFFSET
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
#elif HAS_POSITION_SHIFT
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
#else
#define WORKSPACE_OFFSET(AXIS) 0
#endif
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
#if HAS_POSITION_SHIFT || DISABLED(DELTA)
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
#else
#define LOGICAL_X_POSITION(POS) (POS)
#define LOGICAL_Y_POSITION(POS) (POS)
#define RAW_X_POSITION(POS) (POS)
#define RAW_Y_POSITION(POS) (POS)
#endif
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
// Hotend Offsets
#if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS];
#endif
// Software Endstops
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
#if HAS_SOFTWARE_ENDSTOPS
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else
#define soft_endstops_enabled false
#define clamp_to_software_endstops(x) NOOP
#endif
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
void update_software_endstops(const AxisEnum axis);
#endif
#if ENABLED(CNC_COORDINATE_SYSTEMS)
#define MAX_COORDINATE_SYSTEMS 9
extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
bool select_coordinate_system(const int8_t _new);
#endif
void report_current_position();
#if IS_KINEMATIC
extern float delta[ABC];
void inverse_kinematics(const float raw[XYZ]);
#endif
#if ENABLED(DELTA)
extern float delta_height,
delta_endstop_adj[ABC],
delta_radius,
delta_diagonal_rod,
delta_calibration_radius,
delta_segments_per_second,
delta_tower_angle_trim[ABC],
delta_clip_start_height;
void recalc_delta_settings();
#elif IS_SCARA
void forward_kinematics_SCARA(const float &a, const float &b);
#endif
#if ENABLED(G26_MESH_VALIDATION)
extern bool g26_debug_flag;
#elif ENABLED(AUTO_BED_LEVELING_UBL)
constexpr bool g26_debug_flag = false;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
#define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
#elif ENABLED(MESH_BED_LEVELING)
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
extern int bilinear_grid_spacing[2], bilinear_start[2];
extern float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float bilinear_z_offset(const float raw[XYZ]);
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
typedef struct { double A, B, D; } linear_fit;
linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int);
#endif
#if HAS_LEVELING
bool leveling_is_valid();
void set_bed_leveling_enabled(const bool enable=true);
void reset_bed_level();
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh);
#endif
#if ENABLED(X_DUAL_ENDSTOPS)
extern float x_endstop_adj;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
extern float y_endstop_adj;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj;
#endif
#if HAS_BED_PROBE
extern float zprobe_zoffset;
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
#else
#define DEPLOY_PROBE()
#define STOW_PROBE()
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
extern MarlinBusyState busy_state;
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else
#define KEEPALIVE_STATE(n) NOOP
#endif
#if FAN_COUNT > 0
extern int16_t fanSpeeds[FAN_COUNT];
#if ENABLED(EXTRA_FAN_SPEED)
extern int16_t old_fanSpeeds[FAN_COUNT],
new_fanSpeeds[FAN_COUNT];
#endif
#if ENABLED(PROBING_FANS_OFF)
extern bool fans_paused;
extern int16_t paused_fanSpeeds[FAN_COUNT];
#endif
#endif
#if ENABLED(BARICUDA)
extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
extern bool filament_sensor; // Flag that filament sensor readings should control extrusion
extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
filament_width_meas; // Measured filament diameter
extern uint8_t meas_delay_cm, // Delay distance
measurement_delay[]; // Ring buffer to delay measurement
extern int8_t filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
extern AdvancedPauseMenuResponse advanced_pause_menu_response;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
extern int lpq_len;
#endif
#if ENABLED(FWRETRACT)
extern bool autoretract_enabled; // M209 S - Autoretract switch
extern float retract_length, // M207 S - G10 Retract length
retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
retract_zlift, // M207 Z - G10 Retract hop size
retract_recover_length, // M208 S - G11 Recover length
retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
swap_retract_length, // M207 W - G10 Swap Retract length
swap_retract_recover_length, // M208 W - G11 Swap Recover length
swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
#endif
// Print job timer
#if ENABLED(PRINTCOUNTER)
extern PrintCounter print_job_timer;
#else
extern Stopwatch print_job_timer;
#endif
// Handling multiple extruders pins
extern uint8_t active_extruder;
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heaterstates();
#endif
#if ENABLED(MIXING_EXTRUDER)
extern float mixing_factor[MIXING_STEPPERS];
#endif
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
#define HAS_AXIS_UNHOMED_ERR ( \
ENABLED(Z_PROBE_ALLEN_KEY) \
|| ENABLED(Z_PROBE_SLED) \
|| HAS_PROBING_PROCEDURE \
|| HOTENDS > 1 \
|| ENABLED(NOZZLE_CLEAN_FEATURE) \
|| ENABLED(NOZZLE_PARK_FEATURE) \
|| (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
|| HAS_M206_COMMAND \
) || ENABLED(NO_MOTION_BEFORE_HOMING)
#if HAS_AXIS_UNHOMED_ERR
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
#endif
/**
* position_is_reachable family of functions
*/
#if IS_KINEMATIC // (DELTA or SCARA)
#if IS_SCARA
extern const float L1, L2;
#endif
inline bool position_is_reachable(const float &rx, const float &ry) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS);
#elif IS_SCARA
#if MIDDLE_DEAD_ZONE_R > 0
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
#else
return HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y) <= sq(L1 + L2);
#endif
#else // CARTESIAN
// To be migrated from MakerArm branch in future
#endif
}
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
// Both the nozzle and the probe must be able to reach the point.
// This won't work on SCARA since the probe offset rotates with the arm.
return position_is_reachable(rx, ry)
&& position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER));
}
#else // CARTESIAN
inline bool position_is_reachable(const float &rx, const float &ry) {
// Add 0.001 margin to deal with float imprecision
return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001)
&& WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001);
}
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
// Add 0.001 margin to deal with float imprecision
return WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001)
&& WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001);
}
#endif // CARTESIAN
#endif // MARLIN_H