0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-10 03:38:34 +00:00
MarlinFirmware/Marlin/src/module/probe.cpp

768 lines
23 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* probe.cpp
*/
#include "../inc/MarlinConfig.h"
#if HAS_BED_PROBE
#include "../libs/buzzer.h"
#include "probe.h"
#include "motion.h"
#include "temperature.h"
#include "endstops.h"
#include "../gcode/gcode.h"
#include "../lcd/ultralcd.h"
#include "../Marlin.h" // for stop(), disable_e_steppers, wait_for_user
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(DELTA)
#include "delta.h"
#endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
#include "planner.h"
#endif
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
#include "../feature/backlash.h"
#endif
float zprobe_zoffset; // Initialized by settings.load()
#if ENABLED(BLTOUCH)
#include "../feature/bltouch.h"
#endif
#if ENABLED(HOST_PROMPT_SUPPORT)
#include "../feature/host_actions.h" // for PROMPT_USER_CONTINUE
#endif
#if HAS_Z_SERVO_PROBE
#include "servo.h"
#endif
#if ENABLED(SENSORLESS_PROBING)
#include "stepper.h"
#include "../feature/tmc_util.h"
#endif
#if QUIET_PROBING
#include "stepper/indirection.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../lcd/extensible_ui/ui_api.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../core/debug_out.h"
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* stow[in] If false, move to MAX_X and engage the solenoid
* If true, move to MAX_X and release the solenoid
*/
static void dock_sled(bool stow) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("dock_sled(", stow, ")");
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
WRITE(SOL1_PIN, !stow); // switch solenoid
#endif
}
#elif ENABLED(TOUCH_MI_PROBE)
// Move to the magnet to unlock the probe
void run_deploy_moves_script() {
#if TOUCH_MI_DEPLOY_XPOS > X_MAX_BED
TemporaryGlobalEndstopsState unlock_x(false);
#endif
#if TOUCH_MI_DEPLOY_YPOS > Y_MAX_BED
TemporaryGlobalEndstopsState unlock_y(false);
#endif
#if ENABLED(TOUCH_MI_MANUAL_DEPLOY)
const screenFunc_t prev_screen = ui.currentScreen;
LCD_MESSAGEPGM(MSG_MANUAL_DEPLOY_TOUCHMI);
ui.return_to_status();
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true; // LCD click or M108 will clear this
#if ENABLED(HOST_PROMPT_SUPPORT)
host_prompt_do(PROMPT_USER_CONTINUE, PSTR("Deploy TouchMI probe."), PSTR("Continue"));
#endif
while (wait_for_user) idle();
ui.reset_status();
ui.goto_screen(prev_screen);
#elif defined(TOUCH_MI_DEPLOY_XPOS) && defined(TOUCH_MI_DEPLOY_YPOS)
do_blocking_move_to_xy(TOUCH_MI_DEPLOY_XPOS, TOUCH_MI_DEPLOY_YPOS);
#elif defined(TOUCH_MI_DEPLOY_XPOS)
do_blocking_move_to_x(TOUCH_MI_DEPLOY_XPOS);
#elif defined(TOUCH_MI_DEPLOY_YPOS)
do_blocking_move_to_y(TOUCH_MI_DEPLOY_YPOS);
#endif
}
// Move down to the bed to stow the probe
void run_stow_moves_script() {
const float old_pos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
endstops.enable_z_probe(false);
do_blocking_move_to_z(TOUCH_MI_RETRACT_Z, MMM_TO_MMS(HOMING_FEEDRATE_Z));
do_blocking_move_to(old_pos, MMM_TO_MMS(HOMING_FEEDRATE_Z));
}
#elif ENABLED(Z_PROBE_ALLEN_KEY)
void run_deploy_moves_script() {
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_1
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
#endif
constexpr float deploy_1[] = Z_PROBE_ALLEN_KEY_DEPLOY_1;
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_2
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
#endif
constexpr float deploy_2[] = Z_PROBE_ALLEN_KEY_DEPLOY_2;
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
#endif
constexpr float deploy_3[] = Z_PROBE_ALLEN_KEY_DEPLOY_3;
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_4
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
#endif
constexpr float deploy_4[] = Z_PROBE_ALLEN_KEY_DEPLOY_4;
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_5
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
#endif
constexpr float deploy_5[] = Z_PROBE_ALLEN_KEY_DEPLOY_5;
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
#endif
}
void run_stow_moves_script() {
#ifdef Z_PROBE_ALLEN_KEY_STOW_1
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
#endif
constexpr float stow_1[] = Z_PROBE_ALLEN_KEY_STOW_1;
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_2
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
#endif
constexpr float stow_2[] = Z_PROBE_ALLEN_KEY_STOW_2;
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_3
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
#endif
constexpr float stow_3[] = Z_PROBE_ALLEN_KEY_STOW_3;
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_4
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
#endif
constexpr float stow_4[] = Z_PROBE_ALLEN_KEY_STOW_4;
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
#endif
#ifdef Z_PROBE_ALLEN_KEY_STOW_5
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
#endif
constexpr float stow_5[] = Z_PROBE_ALLEN_KEY_STOW_5;
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
#endif
}
#endif // Z_PROBE_ALLEN_KEY
#if QUIET_PROBING
void probing_pause(const bool p) {
#if ENABLED(PROBING_HEATERS_OFF)
thermalManager.pause(p);
#endif
#if ENABLED(PROBING_FANS_OFF)
thermalManager.set_fans_paused(p);
#endif
#if ENABLED(PROBING_STEPPERS_OFF)
disable_e_steppers();
#if NONE(DELTA, HOME_AFTER_DEACTIVATE)
disable_X(); disable_Y();
#endif
#endif
if (p) safe_delay(
#if DELAY_BEFORE_PROBING > 25
DELAY_BEFORE_PROBING
#else
25
#endif
);
}
#endif // QUIET_PROBING
/**
* Raise Z to a minimum height to make room for a probe to move
*/
inline void do_probe_raise(const float z_raise) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("do_probe_raise(", z_raise, ")");
float z_dest = z_raise;
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
NOMORE(z_dest, Z_MAX_POS);
if (z_dest > current_position[Z_AXIS])
do_blocking_move_to_z(z_dest);
}
FORCE_INLINE void probe_specific_action(const bool deploy) {
#if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)
do {
#if ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED)
if (deploy == (READ(Z_MIN_PROBE_PIN) == Z_MIN_PROBE_ENDSTOP_INVERTING)) break;
#endif
BUZZ(100, 659);
BUZZ(100, 698);
PGM_P const ds_str = deploy ? PSTR(MSG_MANUAL_DEPLOY) : PSTR(MSG_MANUAL_STOW);
ui.return_to_status(); // To display the new status message
ui.set_status_P(ds_str, 99);
serialprintPGM(ds_str);
SERIAL_EOL();
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true;
#if ENABLED(HOST_PROMPT_SUPPORT)
host_prompt_do(PROMPT_USER_CONTINUE, PSTR("Stow Probe"), PSTR("Continue"));
#endif
#if ENABLED(EXTENSIBLE_UI)
ExtUI::onUserConfirmRequired(PSTR("Stow Probe"));
#endif
while (wait_for_user) idle();
ui.reset_status();
} while(
#if ENABLED(PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED)
true
#else
false
#endif
);
#endif // PAUSE_BEFORE_DEPLOY_STOW
#if ENABLED(SOLENOID_PROBE)
#if HAS_SOLENOID_1
WRITE(SOL1_PIN, deploy);
#endif
#elif ENABLED(Z_PROBE_SLED)
dock_sled(!deploy);
#elif HAS_Z_SERVO_PROBE
#if DISABLED(BLTOUCH)
MOVE_SERVO(Z_PROBE_SERVO_NR, servo_angles[Z_PROBE_SERVO_NR][deploy ? 0 : 1]);
#elif ENABLED(BLTOUCH_HS_MODE)
// In HIGH SPEED MODE, use the normal retractable probe logic in this code
// i.e. no intermediate STOWs and DEPLOYs in between individual probe actions
if (deploy) bltouch.deploy(); else bltouch.stow();
#endif
#elif EITHER(TOUCH_MI_PROBE, Z_PROBE_ALLEN_KEY)
deploy ? run_deploy_moves_script() : run_stow_moves_script();
#elif ENABLED(RACK_AND_PINION_PROBE)
do_blocking_move_to_x(deploy ? Z_PROBE_DEPLOY_X : Z_PROBE_RETRACT_X);
#elif DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
UNUSED(deploy);
#endif
}
// returns false for ok and true for failure
bool set_probe_deployed(const bool deploy) {
if (DEBUGGING(LEVELING)) {
DEBUG_POS("set_probe_deployed", current_position);
DEBUG_ECHOLNPAIR("deploy: ", deploy);
}
if (endstops.z_probe_enabled == deploy) return false;
// Make room for probe to deploy (or stow)
// Fix-mounted probe should only raise for deploy
// unless PAUSE_BEFORE_DEPLOY_STOW is enabled
#if ENABLED(FIX_MOUNTED_PROBE) && DISABLED(PAUSE_BEFORE_DEPLOY_STOW)
const bool deploy_stow_condition = deploy;
#else
constexpr bool deploy_stow_condition = true;
#endif
// For beds that fall when Z is powered off only raise for trusted Z
#if ENABLED(UNKNOWN_Z_NO_RAISE)
const bool unknown_condition = TEST(axis_known_position, Z_AXIS);
#else
constexpr float unknown_condition = true;
#endif
if (deploy_stow_condition && unknown_condition)
do_probe_raise(_MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_CLEARANCE_DEPLOY_PROBE));
#if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY)
#if ENABLED(Z_PROBE_SLED)
#define _AUE_ARGS true, false, false
#else
#define _AUE_ARGS
#endif
if (axis_unhomed_error(_AUE_ARGS)) {
SERIAL_ERROR_MSG(MSG_STOP_UNHOMED);
stop();
return true;
}
#endif
const float oldXpos = current_position[X_AXIS],
oldYpos = current_position[Y_AXIS];
#if ENABLED(PROBE_TRIGGERED_WHEN_STOWED_TEST)
#if USES_Z_MIN_PROBE_ENDSTOP
#define PROBE_STOWED() (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
#else
#define PROBE_STOWED() (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
#endif
#endif
#ifdef PROBE_STOWED
// Only deploy/stow if needed
if (PROBE_STOWED() == deploy) {
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
// otherwise an Allen-Key probe can't be stowed.
probe_specific_action(deploy);
}
if (PROBE_STOWED() == deploy) { // Unchanged after deploy/stow action?
if (IsRunning()) {
SERIAL_ERROR_MSG("Z-Probe failed");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
stop();
return true;
}
#else
probe_specific_action(deploy);
#endif
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
endstops.enable_z_probe(deploy);
return false;
}
#ifdef Z_AFTER_PROBING
// After probing move to a preferred Z position
void move_z_after_probing() {
if (current_position[Z_AXIS] != Z_AFTER_PROBING) {
do_blocking_move_to_z(Z_AFTER_PROBING);
current_position[Z_AXIS] = Z_AFTER_PROBING;
}
}
#endif
/**
* @brief Used by run_z_probe to do a single Z probe move.
*
* @param z Z destination
* @param fr_mm_s Feedrate in mm/s
* @return true to indicate an error
*/
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
const char msg_wait_for_bed_heating[25] PROGMEM = "Wait for bed heating...\n";
#endif
static bool do_probe_move(const float z, const float fr_mm_s) {
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
// Wait for bed to heat back up between probing points
if (thermalManager.isHeatingBed()) {
serialprintPGM(msg_wait_for_bed_heating);
LCD_MESSAGEPGM(MSG_BED_HEATING);
thermalManager.wait_for_bed();
ui.reset_status();
}
#endif
#if ENABLED(BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
if (bltouch.deploy()) return true; // DEPLOY in LOW SPEED MODE on every probe action
#endif
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_PROBING)
sensorless_t stealth_states { false };
#if ENABLED(DELTA)
stealth_states.x = tmc_enable_stallguard(stepperX);
stealth_states.y = tmc_enable_stallguard(stepperY);
#endif
stealth_states.z = tmc_enable_stallguard(stepperZ);
endstops.enable(true);
#endif
#if QUIET_PROBING
probing_pause(true);
#endif
// Move down until the probe is triggered
do_blocking_move_to_z(z, fr_mm_s);
// Check to see if the probe was triggered
const bool probe_triggered =
#if BOTH(DELTA, SENSORLESS_PROBING)
endstops.trigger_state() & (_BV(X_MIN) | _BV(Y_MIN) | _BV(Z_MIN))
#else
TEST(endstops.trigger_state(),
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
Z_MIN
#else
Z_MIN_PROBE
#endif
)
#endif
;
#if QUIET_PROBING
probing_pause(false);
#endif
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_PROBING)
endstops.not_homing();
#if ENABLED(DELTA)
tmc_disable_stallguard(stepperX, stealth_states.x);
tmc_disable_stallguard(stepperY, stealth_states.y);
#endif
tmc_disable_stallguard(stepperZ, stealth_states.z);
#endif
#if ENABLED(BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
if (probe_triggered && bltouch.stow()) return true; // STOW in LOW SPEED MODE on trigger on every probe action
#endif
// Clear endstop flags
endstops.hit_on_purpose();
// Get Z where the steppers were interrupted
set_current_from_steppers_for_axis(Z_AXIS);
// Tell the planner where we actually are
sync_plan_position();
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
return !probe_triggered;
}
/**
* @brief Probe at the current XY (possibly more than once) to find the bed Z.
*
* @details Used by probe_pt to get the bed Z height at the current XY.
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
*
* @return The Z position of the bed at the current XY or NAN on error.
*/
static float run_z_probe() {
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
// Stop the probe before it goes too low to prevent damage.
// If Z isn't known then probe to -10mm.
const float z_probe_low_point = TEST(axis_known_position, Z_AXIS) ? -zprobe_zoffset + Z_PROBE_LOW_POINT : -10.0;
// Double-probing does a fast probe followed by a slow probe
#if TOTAL_PROBING == 2
// Do a first probe at the fast speed
if (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_FAST))) {
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPGM("FAST Probe fail!");
DEBUG_POS("<<< run_z_probe", current_position);
}
return NAN;
}
const float first_probe_z = current_position[Z_AXIS];
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("1st Probe Z:", first_probe_z);
// Raise to give the probe clearance
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
#elif Z_PROBE_SPEED_FAST != Z_PROBE_SPEED_SLOW
// If the nozzle is well over the travel height then
// move down quickly before doing the slow probe
const float z = Z_CLEARANCE_DEPLOY_PROBE + 5.0 + (zprobe_zoffset < 0 ? -zprobe_zoffset : 0);
if (current_position[Z_AXIS] > z) {
// Probe down fast. If the probe never triggered, raise for probe clearance
if (!do_probe_move(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST)))
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
}
#endif
#ifdef EXTRA_PROBING
float probes[TOTAL_PROBING];
#endif
#if TOTAL_PROBING > 2
float probes_total = 0;
for (
#if EXTRA_PROBING
uint8_t p = 0; p < TOTAL_PROBING; p++
#else
uint8_t p = TOTAL_PROBING; p--;
#endif
)
#endif
{
// Probe downward slowly to find the bed
if (do_probe_move(z_probe_low_point, MMM_TO_MMS(Z_PROBE_SPEED_SLOW))) {
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPGM("SLOW Probe fail!");
DEBUG_POS("<<< run_z_probe", current_position);
}
return NAN;
}
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
backlash.measure_with_probe();
#endif
const float z = current_position[Z_AXIS];
#if EXTRA_PROBING
// Insert Z measurement into probes[]. Keep it sorted ascending.
for (uint8_t i = 0; i <= p; i++) { // Iterate the saved Zs to insert the new Z
if (i == p || probes[i] > z) { // Last index or new Z is smaller than this Z
for (int8_t m = p; --m >= i;) probes[m + 1] = probes[m]; // Shift items down after the insertion point
probes[i] = z; // Insert the new Z measurement
break; // Only one to insert. Done!
}
}
#elif TOTAL_PROBING > 2
probes_total += z;
#else
UNUSED(z);
#endif
#if TOTAL_PROBING > 2
// Small Z raise after all but the last probe
if (p
#if EXTRA_PROBING
< TOTAL_PROBING - 1
#endif
) do_blocking_move_to_z(z + Z_CLEARANCE_MULTI_PROBE, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
#endif
}
#if TOTAL_PROBING > 2
#if EXTRA_PROBING
// Take the center value (or average the two middle values) as the median
static constexpr int PHALF = (TOTAL_PROBING - 1) / 2;
const float middle = probes[PHALF],
median = ((TOTAL_PROBING) & 1) ? middle : (middle + probes[PHALF + 1]) * 0.5f;
// Remove values farthest from the median
uint8_t min_avg_idx = 0, max_avg_idx = TOTAL_PROBING - 1;
for (uint8_t i = EXTRA_PROBING; i--;)
if (ABS(probes[max_avg_idx] - median) > ABS(probes[min_avg_idx] - median))
max_avg_idx--; else min_avg_idx++;
// Return the average value of all remaining probes.
for (uint8_t i = min_avg_idx; i <= max_avg_idx; i++)
probes_total += probes[i];
#endif
const float measured_z = probes_total * RECIPROCAL(MULTIPLE_PROBING);
#elif TOTAL_PROBING == 2
const float z2 = current_position[Z_AXIS];
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("2nd Probe Z:", z2, " Discrepancy:", first_probe_z - z2);
// Return a weighted average of the fast and slow probes
const float measured_z = (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
#else
// Return the single probe result
const float measured_z = current_position[Z_AXIS];
#endif
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
return measured_z;
}
/**
* - Move to the given XY
* - Deploy the probe, if not already deployed
* - Probe the bed, get the Z position
* - Depending on the 'stow' flag
* - Stow the probe, or
* - Raise to the BETWEEN height
* - Return the probed Z position
*/
float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after/*=PROBE_PT_NONE*/, const uint8_t verbose_level/*=0*/, const bool probe_relative/*=true*/) {
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPAIR(
">>> probe_pt(", LOGICAL_X_POSITION(rx), ", ", LOGICAL_Y_POSITION(ry),
", ", raise_after == PROBE_PT_RAISE ? "raise" : raise_after == PROBE_PT_STOW ? "stow" : "none",
", ", int(verbose_level),
", ", probe_relative ? "probe" : "nozzle", "_relative)"
);
DEBUG_POS("", current_position);
}
// TODO: Adapt for SCARA, where the offset rotates
float nx = rx, ny = ry;
if (probe_relative) {
if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
}
else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
const float nz =
#if ENABLED(DELTA)
// Move below clip height or xy move will be aborted by do_blocking_move_to
_MIN(current_position[Z_AXIS], delta_clip_start_height)
#else
current_position[Z_AXIS]
#endif
;
const float old_feedrate_mm_s = feedrate_mm_s;
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
// Move the probe to the starting XYZ
do_blocking_move_to(nx, ny, nz);
float measured_z = NAN;
if (!DEPLOY_PROBE()) {
measured_z = run_z_probe() + zprobe_zoffset;
const bool big_raise = raise_after == PROBE_PT_BIG_RAISE;
if (big_raise || raise_after == PROBE_PT_RAISE)
do_blocking_move_to_z(current_position[Z_AXIS] + (big_raise ? 25 : Z_CLEARANCE_BETWEEN_PROBES), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
else if (raise_after == PROBE_PT_STOW)
if (STOW_PROBE()) measured_z = NAN;
}
if (verbose_level > 2) {
SERIAL_ECHOPAIR_F("Bed X: ", LOGICAL_X_POSITION(rx), 3);
SERIAL_ECHOPAIR_F(" Y: ", LOGICAL_Y_POSITION(ry), 3);
SERIAL_ECHOLNPAIR_F(" Z: ", measured_z, 3);
}
feedrate_mm_s = old_feedrate_mm_s;
if (isnan(measured_z)) {
STOW_PROBE();
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
SERIAL_ERROR_MSG(MSG_ERR_PROBING_FAILED);
}
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< probe_pt");
return measured_z;
}
#if HAS_Z_SERVO_PROBE
void servo_probe_init() {
/**
* Set position of Z Servo Endstop
*
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board.
* There's no way to know where the nozzle is positioned until
* homing has been done - no homing with z-probe without init!
*
*/
STOW_Z_SERVO();
}
#endif // HAS_Z_SERVO_PROBE
#endif // HAS_BED_PROBE