1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-23 20:18:52 +00:00
MarlinFirmware/Marlin/ubl_G29.cpp
2017-06-16 14:18:19 -05:00

1841 lines
78 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#include "Marlin.h"
#include "hex_print_routines.h"
#include "configuration_store.h"
#include "ultralcd.h"
#include "stepper.h"
#include "planner.h"
#include "gcode.h"
#include <math.h>
#include "least_squares_fit.h"
#define UBL_G29_P31
extern float destination[XYZE], current_position[XYZE];
#if ENABLED(NEWPANEL)
void lcd_return_to_status();
void lcd_mesh_edit_setup(float initial);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
#if ENABLED(DOGLCD)
extern void _lcd_ubl_output_map_lcd();
#endif
float lcd_z_offset_edit();
#endif
extern float meshedit_done;
extern long babysteps_done;
extern float probe_pt(const float &x, const float &y, bool, int);
extern bool set_probe_deployed(bool);
extern void set_bed_leveling_enabled(bool);
extern bool ubl_lcd_map_control;
typedef void (*screenFunc_t)();
extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
#define SIZE_OF_LITTLE_RAISE 1
#define BIG_RAISE_NOT_NEEDED 0
int unified_bed_leveling::g29_verbose_level,
unified_bed_leveling::g29_phase_value,
unified_bed_leveling::g29_repetition_cnt,
unified_bed_leveling::g29_storage_slot = 0,
unified_bed_leveling::g29_map_type,
unified_bed_leveling::g29_grid_size;
bool unified_bed_leveling::g29_c_flag,
unified_bed_leveling::g29_x_flag,
unified_bed_leveling::g29_y_flag;
float unified_bed_leveling::g29_x_pos,
unified_bed_leveling::g29_y_pos,
unified_bed_leveling::g29_card_thickness = 0.0,
unified_bed_leveling::g29_constant = 0.0;
/**
* G29: Unified Bed Leveling by Roxy
*
* Parameters understood by this leveling system:
*
* A Activate Activate the Unified Bed Leveling system.
*
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
* G29 P2 B. The mode of G29 P2 allows you to use a business card or recipe card
* as a shim that the nozzle will pinch as it is lowered. The idea is that you
* can easily feel the nozzle getting to the same height by the amount of resistance
* the business card exhibits to movement. You should try to achieve the same amount
* of resistance on each probed point to facilitate accurate and repeatable measurements.
* You should be very careful not to drive the nozzle into the business card with a
* lot of force as it is very possible to cause damage to your printer if your are
* careless. If you use the B option with G29 P2 B you can omit the numeric value
* on first use to measure the business card's thickness. Subsequent usage of 'B'
* will apply the previously-measured thickness as the default.
* Note: A non-compressible Spark Gap feeler gauge is recommended over a Business Card.
*
* C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
* further refine the behaviour of several other commands. Issuing a G29 P1 C will
* continue the generation of a partially constructed Mesh without invalidating what has
* been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
* location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
* it indicates to use the current location instead of defaulting to the center of the print bed.
*
* D Disable Disable the Unified Bed Leveling system.
*
* E Stow_probe Stow the probe after each sampled point.
*
* F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
* specified height, no correction is applied and natural printer kenimatics take over. If no
* number is specified for the command, 10mm is assumed to be reasonable.
*
* H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
* default is 5mm.
*
* I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
* the X and Y parameter are used. If no number is specified, only the closest Mesh
* point to the location is invalidated. The 'T' parameter is also available to produce
* a map after the operation. This command is useful to invalidate a portion of the
* Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
* attempting to invalidate an isolated bad point in the mesh, the 'T' option will indicate
* where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
* the bed and use this feature to select the center of the area (or cell) you want to
* invalidate.
*
* J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
* Not specifying a grid size will invoke the 3-Point leveling function.
*
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
* command literally performs a diff between two Meshes.
*
* L Load Load Mesh from the previously activated location in the EEPROM.
*
* L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
* for subsequent Load and Store operations.
*
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
* each additional Phase that processes it.
*
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
* was turned on. Setting the entire Mesh to Zero is a special case that allows
* a subsequent G or T leveling operation for backward compatibility.
*
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
* the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
* Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
* area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
* and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
*
* These points will be handled in Phase 2 and Phase 3. If the Phase 1 command is given the
* C (Continue) parameter it does not invalidate the Mesh prior to automatically
* probing needed locations. This allows you to invalidate portions of the Mesh but still
* use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
* parameter can be given to prioritize where the command should be trying to measure points.
* If the X and Y parameters are not specified the current probe position is used.
* P1 accepts a 'T' (Topology) parameter so you can observe mesh generation.
* P1 also watches for the LCD Panel Encoder Switch to be held down (assuming you have one),
* and will suspend generation of the Mesh in that case. (Note: This check is only done
* between probe points, so you must press and hold the switch until the Phase 1 command
* detects it.)
*
* P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
* parameter to control the height between Mesh points. The default height for movement
* between Mesh points is 5mm. A smaller number can be used to make this part of the
* calibration less time consuming. You will be running the nozzle down until it just barely
* touches the glass. You should have the nozzle clean with no plastic obstructing your view.
* Use caution and move slowly. It is possible to damage your printer if you are careless.
* Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
* nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
*
* The H parameter can be set negative if your Mesh dips in a large area. You can press
* and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
* can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
* area you are manually probing. Note that the command tries to start you in a corner
* of the bed where movement will be predictable. You can force the location to be used in
* the distance calculations by using the X and Y parameters. You may find it is helpful to
* print out a Mesh Map (G29 T) to understand where the mesh is invalidated and where
* the nozzle will need to move in order to complete the command. The C parameter is
* available on the Phase 2 command also and indicates the search for points to measure should
* be done based on the current location of the nozzle.
*
* A B parameter is also available for this command and described up above. It places the
* manual probe subsystem into Business Card mode where the thickness of a business card is
* measured and then used to accurately set the nozzle height in all manual probing for the
* duration of the command. (S for Shim mode would be a better parameter name, but S is needed
* for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
* better results if you use a flexible Shim that does not compress very much. That makes it
* easier for you to get the nozzle to press with similar amounts of force against the shim so you
* can get accurate measurements. As you are starting to touch the nozzle against the shim try
* to get it to grasp the shim with the same force as when you measured the thickness of the
* shim at the start of the command.
*
* Phase 2 allows the T (Map) parameter to be specified. This helps the user see the progression
* of the Mesh being built.
*
* NOTE: P2 is not available unless you have LCD support enabled!
*
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
* user can go down. If the user specifies the value using the C parameter, the closest invalid
* mesh points to the nozzle will be filled. The user can specify a repeat count using the R
* parameter with the C version of the command.
*
* A second version of the fill command is available if no C constant is specified. Not
* specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
* from the edges of the mesh inward looking for invalid mesh points. It will look at the next
* several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
* upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
* If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
* puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
* usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
* Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
* numbers. You should use some scrutiny and caution.
*
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel using
* G42 and M421; see the UBL documentation for further details.
*
* The System will search for the closest Mesh Point to the nozzle. It will move the
* nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
* so it is just barely touching the bed. When the user clicks the control, the System
* will lock in that height for that point in the Mesh Compensation System.
*
* Phase 4 has several additional parameters that the user may find helpful. Phase 4
* can be started at a specific location by specifying an X and Y parameter. Phase 4
* can be requested to continue the adjustment of Mesh Points by using the R(epeat)
* parameter. If the Repetition count is not specified, it is assumed the user wishes
* to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
* The command can be terminated early (or after the area of interest has been edited) by
* pressing and holding the encoder wheel until the system recognizes the exit request.
* Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
*
* Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
* information left on the printer's bed from the G26 command it is very straight forward
* and easy to fine tune the Mesh. One concept that is important to remember and that
* will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
* If you have too little clearance and not much plastic was extruded in an area, you want to
* LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
* RAISE the Mesh Point at that location.
*
* NOTE: P4 is not available unless you have LCD support enabled!
*
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
* execute a G29 P6 C <mean height>.
*
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
* 0.000 at the Z Home location.
*
* Q Test Load specified Test Pattern to assist in checking correct operation of system. This
* command is not anticipated to be of much value to the typical user. It is intended
* for developers to help them verify correct operation of the Unified Bed Leveling System.
*
* R # Repeat Repeat this command the specified number of times. If no number is specified the
* command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
*
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
* current state of the Unified Bed Leveling system in the EEPROM.
*
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
* for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
* extend to a limit related to the available EEPROM storage.
*
* S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
* at a later date. The GCode output can be saved and later replayed by the host software
* to reconstruct the current mesh on another machine.
*
* T Topology Display the Mesh Map Topology.
* 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
* This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
* This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
* is suitable to paste into a spreadsheet for a 3D graph of the mesh.
*
* U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
* Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
* when the entire bed doesn't need to be probed because it will be adjusted.
*
* V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
*
* W What? Display valuable Unified Bed Leveling System data.
*
* X # X Location for this command
*
* Y # Y Location for this command
*
*
* Release Notes:
* You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
* kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
* of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
* respectively.)
*
* When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
* the Unified Bed Leveling probes points further and further away from the starting location. (The
* starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
* a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
* allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
* perform a small print and check out your settings quicker. You do not need to populate the
* entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
* you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
* gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
*
* The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
* to get this Mesh data correct for a user's printer. We do not want this data destroyed as
* new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
* the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
* other data stored in the EEPROM. (For sure the developers are going to complain about this, but
* this is going to be helpful to the users!)
*
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
* we now have the functionality and features of all three systems combined.
*/
void unified_bed_leveling::G29() {
if (!settings.calc_num_meshes()) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
return;
}
// Check for commands that require the printer to be homed
if (axis_unhomed_error()) {
const int8_t p_val = parser.seen('P') && parser.has_value() ? parser.value_int() : -1;
if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'))
home_all_axes();
}
if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
// Invalidate Mesh Points. This command is a little bit asymmetrical because
// it directly specifies the repetition count and does not use the 'R' parameter.
if (parser.seen('I')) {
uint8_t cnt = 0;
g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
if (g29_repetition_cnt >= GRID_MAX_POINTS) {
set_all_mesh_points_to_value(NAN);
} else {
while (g29_repetition_cnt--) {
if (cnt > 20) { cnt = 0; idle(); }
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
if (location.x_index < 0) {
// No more REACHABLE mesh points to invalidate, so we ASSUME the user
// meant to invalidate the ENTIRE mesh, which cannot be done with
// find_closest_mesh_point loop which only returns REACHABLE points.
set_all_mesh_points_to_value(NAN);
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate
}
z_values[location.x_index][location.y_index] = NAN;
cnt++;
}
}
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
}
if (parser.seen('Q')) {
const int test_pattern = parser.has_value() ? parser.value_int() : -99;
if (!WITHIN(test_pattern, -1, 2)) {
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
return;
}
SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
switch (test_pattern) {
case -1:
g29_eeprom_dump();
break;
case 0:
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
z_values[x][y] += 2.0 * HYPOT(p1, p2);
}
}
break;
case 1:
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
z_values[x][x] += 9.999;
z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
}
break;
case 2:
// Allow the user to specify the height because 10mm is a little extreme in some cases.
for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
z_values[x][y] += parser.seen('C') ? g29_constant : 9.99;
break;
}
}
if (parser.seen('J')) {
if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
save_ubl_active_state_and_disable();
tilt_mesh_based_on_probed_grid(parser.seen('T'));
restore_ubl_active_state_and_leave();
}
else { // grid_size == 0 : A 3-Point leveling has been requested
float z3, z2, z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level);
if (!isnan(z1)) {
z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level);
if (!isnan(z2))
z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
}
if (isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
goto LEAVE;
}
// Adjust z1, z2, z3 by the Mesh Height at these points. Just because they're non-zero
// doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
// its height is.)
save_ubl_active_state_and_disable();
z1 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
z2 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
z3 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
tilt_mesh_based_on_3pts(z1, z2, z3);
restore_ubl_active_state_and_leave();
}
}
if (parser.seen('P')) {
if (WITHIN(g29_phase_value, 0, 1) && state.storage_slot == -1) {
state.storage_slot = 0;
SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
}
switch (g29_phase_value) {
case 0:
//
// Zero Mesh Data
//
reset();
SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
break;
case 1:
//
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
if (!parser.seen('C')) {
invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
}
if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL(g29_y_pos);
SERIAL_PROTOCOLLNPGM(").\n");
}
probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
parser.seen('T'), parser.seen('E'), parser.seen('U'));
break;
case 2: {
#if ENABLED(NEWPANEL)
//
// Manually Probe Mesh in areas that can't be reached by the probe
//
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!g29_x_flag && !g29_y_flag) {
/**
* Use a good default location for the path.
* The flipped > and < operators in these comparisons is intentional.
* It should cause the probed points to follow a nice path on Cartesian printers.
* It may make sense to have Delta printers default to the center of the bed.
* Until that is decided, this can be forced with the X and Y parameters.
*/
#if IS_KINEMATIC
g29_x_pos = X_HOME_POS;
g29_y_pos = Y_HOME_POS;
#else // cartesian
g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
#endif
}
if (parser.seen('C')) {
g29_x_pos = current_position[X_AXIS];
g29_y_pos = current_position[Y_AXIS];
}
float height = Z_CLEARANCE_BETWEEN_PROBES;
if (parser.seen('B')) {
g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(height);
if (fabs(g29_card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
return;
}
}
if (parser.seen('H') && parser.has_value()) height = parser.value_float();
if (!position_is_reachable_xy(g29_x_pos, g29_y_pos)) {
SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
return;
}
manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
#else
SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
return;
#endif
} break;
case 3: {
/**
* Populate invalid mesh areas. Proceed with caution.
* Two choices are available:
* - Specify a constant with the 'C' parameter.
* - Allow 'G29 P3' to choose a 'reasonable' constant.
*/
if (g29_c_flag) {
if (g29_repetition_cnt >= GRID_MAX_POINTS) {
set_all_mesh_points_to_value(g29_constant);
}
else {
while (g29_repetition_cnt--) { // this only populates reachable mesh points near
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
if (location.x_index < 0) {
// No more REACHABLE INVALID mesh points to populate, so we ASSUME
// user meant to populate ALL INVALID mesh points to value
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
if ( isnan(z_values[x][y])) {
z_values[x][y] = g29_constant;
}
}
}
break; // No more invalid Mesh Points to populate
}
z_values[location.x_index][location.y_index] = g29_constant;
}
}
} else {
const float cvf = parser.value_float();
switch((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
#if ENABLED(UBL_G29_P31)
case 1: {
// P3.1 use least squares fit to fill missing mesh values
// P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
// P3.11 10X weighting for nearest grid points versus farthest grid points
// P3.12 100X distance weighting
// P3.13 1000X distance weighting, approaches simple average of nearest points
const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
weight_factor = weight_power ? pow(10.0, weight_power) : 0;
smart_fill_wlsf(weight_factor);
}
break;
#endif
case 0: // P3 or P3.0
default: // and anything P3.x that's not P3.1
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
break;
}
}
break;
}
case 4: // Fine Tune (i.e., Edit) the Mesh
#if ENABLED(NEWPANEL)
fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
#else
SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
return;
#endif
break;
case 5: find_mean_mesh_height(); break;
case 6: shift_mesh_height(); break;
}
}
//
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
// good to have the extra information. Soon... we prune this to just a few items
//
if (parser.seen('W')) g29_what_command();
//
// When we are fully debugged, this may go away. But there are some valid
// use cases for the users. So we can wait and see what to do with it.
//
if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
g29_compare_current_mesh_to_stored_mesh();
//
// Load a Mesh from the EEPROM
//
if (parser.seen('L')) { // Load Current Mesh Data
g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot;
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
return;
}
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
settings.load_mesh(g29_storage_slot);
state.storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done.");
}
//
// Store a Mesh in the EEPROM
//
if (parser.seen('S')) { // Store (or Save) Current Mesh Data
g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot;
if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y])) {
SERIAL_ECHOPAIR("M421 I ", x);
SERIAL_ECHOPAIR(" J ", y);
SERIAL_ECHOPGM(" Z ");
SERIAL_ECHO_F(z_values[x][y], 6);
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(mesh_index_to_xpos(x)));
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(mesh_index_to_ypos(y)));
SERIAL_EOL();
}
return;
}
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
goto LEAVE;
}
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
goto LEAVE;
}
settings.store_mesh(g29_storage_slot);
state.storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done.");
}
if (parser.seen('T'))
display_map(parser.has_value() ? parser.value_int() : 0);
/**
* This code may not be needed... Prepare for its removal...
*
*/
#if 0
if (parser.seen('Z')) {
if (parser.has_value())
state.z_offset = parser.value_float(); // do the simple case. Just lock in the specified value
else {
save_ubl_active_state_and_disable();
//float measured_z = probe_pt(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
has_control_of_lcd_panel = true; // Grab the LCD Hardware
float measured_z = 1.5;
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
// The user is not going to be locking in a new Z-Offset very often so
// it won't be that painful to spin the Encoder Wheel for 1.5mm
lcd_refresh();
lcd_z_offset_edit_setup(measured_z);
KEEPALIVE_STATE(PAUSED_FOR_USER);
do {
measured_z = lcd_z_offset_edit();
idle();
do_blocking_move_to_z(measured_z);
} while (!ubl_lcd_clicked());
has_control_of_lcd_panel = true; // There is a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
// or here. So, until we are done looking for a long encoder press,
// we need to take control of the panel
KEEPALIVE_STATE(IN_HANDLER);
lcd_return_to_status();
const millis_t nxt = millis() + 1500UL;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
LCD_MESSAGEPGM(MSG_UBL_Z_OFFSET_STOPPED);
restore_ubl_active_state_and_leave();
goto LEAVE;
}
}
has_control_of_lcd_panel = false;
safe_delay(20); // We don't want any switch noise.
state.z_offset = measured_z;
lcd_refresh();
restore_ubl_active_state_and_leave();
}
}
#endif
LEAVE:
#if ENABLED(NEWPANEL)
lcd_reset_alert_level();
LCD_MESSAGEPGM("");
lcd_quick_feedback();
has_control_of_lcd_panel = false;
#endif
return;
}
void unified_bed_leveling::find_mean_mesh_height() {
float sum = 0.0;
int n = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y])) {
sum += z_values[x][y];
n++;
}
const float mean = sum / n;
//
// Sum the squares of difference from mean
//
float sum_of_diff_squared = 0.0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y]))
sum_of_diff_squared += sq(z_values[x][y] - mean);
SERIAL_ECHOLNPAIR("# of samples: ", n);
SERIAL_ECHOPGM("Mean Mesh Height: ");
SERIAL_ECHO_F(mean, 6);
SERIAL_EOL();
const float sigma = sqrt(sum_of_diff_squared / (n + 1));
SERIAL_ECHOPGM("Standard Deviation: ");
SERIAL_ECHO_F(sigma, 6);
SERIAL_EOL();
if (g29_c_flag)
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y]))
z_values[x][y] -= mean + g29_constant;
}
void unified_bed_leveling::shift_mesh_height() {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y]))
z_values[x][y] += g29_constant;
}
/**
* Probe all invalidated locations of the mesh that can be reached by the probe.
* This attempts to fill in locations closest to the nozzle's start location first.
*/
void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
mesh_index_pair location;
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE();
uint16_t max_iterations = GRID_MAX_POINTS;
do {
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
lcd_quick_feedback();
STOW_PROBE();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave();
safe_delay(50); // Debounce the Encoder wheel
return;
}
#endif
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
if (location.x_index >= 0) { // mesh point found and is reachable by probe
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); // TODO: Needs error handling
z_values[location.x_index][location.y_index] = measured_z;
}
if (do_ubl_mesh_map) display_map(g29_map_type);
} while (location.x_index >= 0 && --max_iterations);
STOW_PROBE();
restore_ubl_active_state_and_leave();
do_blocking_move_to_xy(
constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
);
}
void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
matrix_3x3 rotation;
vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
(UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
(z1 - z2) ),
v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
(UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
(z3 - z2) ),
normal = vector_3::cross(v1, v2);
normal = normal.get_normal();
/**
* This vector is normal to the tilted plane.
* However, we don't know its direction. We need it to point up. So if
* Z is negative, we need to invert the sign of all components of the vector
*/
if (normal.z < 0.0) {
normal.x = -normal.x;
normal.y = -normal.y;
normal.z = -normal.z;
}
rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
if (g29_verbose_level > 2) {
SERIAL_ECHOPGM("bed plane normal = [");
SERIAL_PROTOCOL_F(normal.x, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.y, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.z, 7);
SERIAL_ECHOLNPGM("]");
rotation.debug(PSTR("rotation matrix:"));
}
//
// All of 3 of these points should give us the same d constant
//
float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
d = t + normal.z * z1;
if (g29_verbose_level>2) {
SERIAL_ECHOPGM("D constant: ");
SERIAL_PROTOCOL_F(d, 7);
SERIAL_ECHOLNPGM(" ");
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("d from 1st point: ");
SERIAL_ECHO_F(d, 6);
SERIAL_EOL();
t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
d = t + normal.z * z2;
SERIAL_ECHOPGM("d from 2nd point: ");
SERIAL_ECHO_F(d, 6);
SERIAL_EOL();
t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
d = t + normal.z * z3;
SERIAL_ECHOPGM("d from 3rd point: ");
SERIAL_ECHO_F(d, 6);
SERIAL_EOL();
}
#endif
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
float x_tmp = mesh_index_to_xpos(i),
y_tmp = mesh_index_to_ypos(j),
z_tmp = z_values[i][j];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("before rotation = [");
SERIAL_PROTOCOL_F(x_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(y_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(z_tmp, 7);
SERIAL_ECHOPGM("] ---> ");
safe_delay(20);
}
#endif
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("after rotation = [");
SERIAL_PROTOCOL_F(x_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(y_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(z_tmp, 7);
SERIAL_ECHOLNPGM("]");
safe_delay(55);
}
#endif
z_values[i][j] += z_tmp - d;
}
}
}
#if ENABLED(NEWPANEL)
float unified_bed_leveling::measure_point_with_encoder() {
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
encoder_diff = 0;
}
}
KEEPALIVE_STATE(IN_HANDLER);
return current_position[Z_AXIS];
}
static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
float unified_bed_leveling::measure_business_card_thickness(float &in_height) {
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
do_blocking_move_to_z(in_height);
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
stepper.synchronize();
SERIAL_PROTOCOLPGM("Place shim under nozzle");
LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
lcd_return_to_status();
echo_and_take_a_measurement();
const float z1 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
stepper.synchronize();
SERIAL_PROTOCOLPGM("Remove shim");
LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
echo_and_take_a_measurement();
const float z2 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
const float thickness = abs(z1 - z2);
if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPGM("Business Card is ");
SERIAL_PROTOCOL_F(thickness, 4);
SERIAL_PROTOCOLLNPGM("mm thick.");
}
in_height = current_position[Z_AXIS]; // do manual probing at lower height
has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave();
return thickness;
}
void unified_bed_leveling::manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
lcd_return_to_status();
mesh_index_pair location;
do {
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index),
xProbe = LOGICAL_X_POSITION(rawx),
yProbe = LOGICAL_Y_POSITION(rawy);
if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
do_blocking_move_to_xy(xProbe, yProbe);
do_blocking_move_to_z(z_clearance);
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
//const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
encoder_diff = 0;
}
}
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500L;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
#if ENABLED(NEWPANEL)
lcd_quick_feedback();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
#endif
KEEPALIVE_STATE(IN_HANDLER);
restore_ubl_active_state_and_leave();
return;
}
}
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
if (g29_verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL();
}
} while (location.x_index >= 0 && location.y_index >= 0);
if (do_ubl_mesh_map) display_map(g29_map_type);
restore_ubl_active_state_and_leave();
KEEPALIVE_STATE(IN_HANDLER);
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(lx, ly);
}
#endif
bool unified_bed_leveling::g29_parameter_parsing() {
bool err_flag = false;
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
lcd_quick_feedback();
#endif
g29_constant = 0.0;
g29_repetition_cnt = 0;
g29_x_flag = parser.seen('X') && parser.has_value();
g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
g29_y_flag = parser.seen('Y') && parser.has_value();
g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
if (parser.seen('R')) {
g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
if (g29_repetition_cnt < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
return UBL_ERR;
}
}
g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
if (!WITHIN(g29_verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
err_flag = true;
}
if (parser.seen('P')) {
g29_phase_value = parser.value_int();
if (!WITHIN(g29_phase_value, 0, 6)) {
SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
err_flag = true;
}
}
if (parser.seen('J')) {
g29_grid_size = parser.has_value() ? parser.value_int() : 0;
if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
err_flag = true;
}
}
if (g29_x_flag != g29_y_flag) {
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
err_flag = true;
}
if (!WITHIN(RAW_X_POSITION(g29_x_pos), X_MIN_POS, X_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
err_flag = true;
}
if (!WITHIN(RAW_Y_POSITION(g29_y_pos), Y_MIN_POS, Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
err_flag = true;
}
if (err_flag) return UBL_ERR;
/**
* Activate or deactivate UBL
* Note: UBL's G29 restores the state set here when done.
* Leveling is being enabled here with old data, possibly
* none. Error handling should disable for safety...
*/
if (parser.seen('A')) {
if (parser.seen('D')) {
SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
return UBL_ERR;
}
set_bed_leveling_enabled(true);
report_state();
}
else if (parser.seen('D')) {
set_bed_leveling_enabled(false);
report_state();
}
// Set global 'C' flag and its value
if ((g29_c_flag = parser.seen('C')))
g29_constant = parser.value_float();
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (parser.seen('F') && parser.has_value()) {
const float fh = parser.value_float();
if (!WITHIN(fh, 0.0, 100.0)) {
SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
return UBL_ERR;
}
set_z_fade_height(fh);
}
#endif
g29_map_type = parser.seen('T') && parser.has_value() ? parser.value_int() : 0;
if (!WITHIN(g29_map_type, 0, 2)) {
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
return UBL_ERR;
}
return UBL_OK;
}
static int ubl_state_at_invocation = 0,
ubl_state_recursion_chk = 0;
void unified_bed_leveling::save_ubl_active_state_and_disable() {
ubl_state_recursion_chk++;
if (ubl_state_recursion_chk != 1) {
SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
lcd_quick_feedback();
#endif
return;
}
ubl_state_at_invocation = state.active;
set_bed_leveling_enabled(false);
}
void unified_bed_leveling::restore_ubl_active_state_and_leave() {
if (--ubl_state_recursion_chk) {
SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
lcd_quick_feedback();
#endif
return;
}
set_bed_leveling_enabled(ubl_state_at_invocation);
}
/**
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
* good to have the extra information. Soon... we prune this to just a few items
*/
void unified_bed_leveling::g29_what_command() {
report_state();
if (state.storage_slot == -1)
SERIAL_PROTOCOLPGM("No Mesh Loaded.");
else {
SERIAL_PROTOCOLPAIR("Mesh ", state.storage_slot);
SERIAL_PROTOCOLPGM(" Loaded.");
}
SERIAL_EOL();
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_PROTOCOL("planner.z_fade_height : ");
SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
SERIAL_EOL();
#endif
#if HAS_BED_PROBE
SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
SERIAL_EOL();
#endif
SERIAL_ECHOLNPAIR("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X) "=", UBL_MESH_MIN_X);
SERIAL_ECHOLNPAIR("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y) "=", UBL_MESH_MIN_Y);
safe_delay(25);
SERIAL_ECHOLNPAIR("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X) "=", UBL_MESH_MAX_X);
SERIAL_ECHOLNPAIR("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y) "=", UBL_MESH_MAX_Y);
safe_delay(25);
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
safe_delay(25);
SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
safe_delay(25);
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
SERIAL_PROTOCOLPGM(" ");
safe_delay(25);
}
SERIAL_EOL();
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
SERIAL_PROTOCOLPGM(" ");
safe_delay(25);
}
SERIAL_EOL();
#if HAS_KILL
SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
#endif
SERIAL_EOL();
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
SERIAL_EOL();
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
SERIAL_EOL();
safe_delay(50);
SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
SERIAL_EOL();
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
SERIAL_EOL();
safe_delay(25);
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
safe_delay(50);
SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
SERIAL_PROTOCOLLNPGM(" meshes.\n");
safe_delay(25);
if (!sanity_check()) {
echo_name();
SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
}
}
/**
* When we are fully debugged, the EEPROM dump command will get deleted also. But
* right now, it is good to have the extra information. Soon... we prune this.
*/
void unified_bed_leveling::g29_eeprom_dump() {
unsigned char cccc;
uint16_t kkkk;
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("EEPROM Dump:");
for (uint16_t i = 0; i < E2END + 1; i += 16) {
if (!(i & 0x3)) idle();
print_hex_word(i);
SERIAL_ECHOPGM(": ");
for (uint16_t j = 0; j < 16; j++) {
kkkk = i + j;
eeprom_read_block(&cccc, (void *)kkkk, 1);
print_hex_byte(cccc);
SERIAL_ECHO(' ');
}
SERIAL_EOL();
}
SERIAL_EOL();
}
/**
* When we are fully debugged, this may go away. But there are some valid
* use cases for the users. So we can wait and see what to do with it.
*/
void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
return;
}
if (!parser.has_value()) {
SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
g29_storage_slot = parser.value_int();
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
settings.load_mesh(g29_storage_slot, &tmp_z_values);
SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
SERIAL_PROTOCOLLNPGM(" from current mesh.");
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] -= tmp_z_values[x][y];
}
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
mesh_index_pair out_mesh;
out_mesh.x_index = out_mesh.y_index = -1;
// Get our reference position. Either the nozzle or probe location.
const float px = RAW_X_POSITION(lx) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
py = RAW_Y_POSITION(ly) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
float best_so_far = far_flag ? -99999.99 : 99999.99;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(z_values[i][j]))
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
) {
// We only get here if we found a Mesh Point of the specified type
float raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y);
const float mx = mesh_index_to_xpos(i),
my = mesh_index_to_ypos(j);
// If using the probe as the reference there are some unreachable locations.
// Also for round beds, there are grid points outside the bed the nozzle can't reach.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
if (probe_as_reference ? !position_is_reachable_by_probe_raw_xy(mx, my) : !position_is_reachable_raw_xy(mx, my))
continue;
// Reachable. Check if it's the best_so_far location to the nozzle.
// Add in a weighting factor that considers the current location of the nozzle.
float distance = HYPOT(px - mx, py - my);
/**
* If doing the far_flag action, we want to be as far as possible
* from the starting point and from any other probed points. We
* want the next point spread out and filling in any blank spaces
* in the mesh. So we add in some of the distance to every probed
* point we can find.
*/
if (far_flag) {
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
if (i != k && j != l && !isnan(z_values[k][l])) {
//distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here
distance += HYPOT(MESH_X_DIST, MESH_Y_DIST) / log(HYPOT((i - k) * (MESH_X_DIST) + .001, (j - l) * (MESH_Y_DIST)) + .001);
}
}
}
}
else
// factor in the distance from the current location for the normal case
// so the nozzle isn't running all over the bed.
distance += HYPOT(raw_x - mx, raw_y - my) * 0.1;
// if far_flag, look for farthest point
if (far_flag == (distance > best_so_far) && distance != best_so_far) {
best_so_far = distance; // We found a closer/farther location with
out_mesh.x_index = i; // the specified type of mesh value.
out_mesh.y_index = j;
out_mesh.distance = best_so_far;
}
}
} // for j
} // for i
return out_mesh;
}
#if ENABLED(NEWPANEL)
void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
mesh_index_pair location;
uint16_t not_done[16];
if (!position_is_reachable_xy(lx, ly)) {
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
return;
}
save_ubl_active_state_and_disable();
memset(not_done, 0xFF, sizeof(not_done));
LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
do {
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
if (location.x_index < 0) break; // stop when we can't find any more reachable points.
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
break;
float new_z = z_values[location.x_index][location.y_index];
if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
new_z = 0.0;
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
lcd_refresh();
lcd_mesh_edit_setup(new_z);
do {
new_z = lcd_mesh_edit();
#ifdef UBL_MESH_EDIT_MOVES_Z
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES + new_z); // Move the nozzle as the point is edited
#endif
idle();
} while (!ubl_lcd_clicked());
lcd_return_to_status();
// The technique used here generates a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
// Let's work on specifying a proper API for the LCD ASAP, OK?
has_control_of_lcd_panel = true;
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500UL;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
ubl_lcd_map_control = false;
lcd_return_to_status();
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
while (ubl_lcd_clicked()) idle();
goto FINE_TUNE_EXIT;
}
}
safe_delay(20); // We don't want any switch noise.
z_values[location.x_index][location.y_index] = new_z;
lcd_refresh();
} while (location.x_index >= 0 && --g29_repetition_cnt > 0);
FINE_TUNE_EXIT:
has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
if (do_ubl_mesh_map) display_map(g29_map_type);
restore_ubl_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
SERIAL_ECHOLNPGM("Done Editing Mesh");
if (ubl_lcd_map_control) {
#if ENABLED(DOGLCD)
lcd_goto_screen(_lcd_ubl_output_map_lcd);
#endif
}
else lcd_return_to_status();
}
#endif
/**
* 'Smart Fill': Scan from the outward edges of the mesh towards the center.
* If an invalid location is found, use the next two points (if valid) to
* calculate a 'reasonable' value for the unprobed mesh point.
*/
bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
const int8_t x1 = x + xdir, x2 = x1 + xdir,
y1 = y + ydir, y2 = y1 + ydir;
// A NAN next to a pair of real values?
if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
else
z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
return true;
}
return false;
}
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
void unified_bed_leveling::smart_fill_mesh() {
static const smart_fill_info
info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
// static const smart_fill_info info[] PROGMEM = {
// { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false } PROGMEM, // Bottom of the mesh looking up
// { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false } PROGMEM, // Top of the mesh looking down
// { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true } PROGMEM, // Left side of the mesh looking right
// { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } PROGMEM // Right side of the mesh looking left
// };
for (uint8_t i = 0; i < COUNT(info); ++i) {
const smart_fill_info *f = (smart_fill_info*)pgm_read_word(&info[i]);
const int8_t sx = pgm_read_word(&f->sx), sy = pgm_read_word(&f->sy),
ex = pgm_read_word(&f->ex), ey = pgm_read_word(&f->ey);
if (pgm_read_byte(&f->yfirst)) {
const int8_t dir = ex > sx ? 1 : -1;
for (uint8_t y = sy; y != ey; ++y)
for (uint8_t x = sx; x != ex; x += dir)
if (smart_fill_one(x, y, dir, 0)) break;
}
else {
const int8_t dir = ey > sy ? 1 : -1;
for (uint8_t x = sx; x != ex; ++x)
for (uint8_t y = sy; y != ey; y += dir)
if (smart_fill_one(x, y, 0, dir)) break;
}
}
}
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
const float dx = float(x_max - x_min) / (g29_grid_size - 1.0),
dy = float(y_max - y_min) / (g29_grid_size - 1.0);
struct linear_fit_data lsf_results;
incremental_LSF_reset(&lsf_results);
bool zig_zag = false;
for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
const float x = float(x_min) + ix * dx;
for (int8_t iy = 0; iy < g29_grid_size; iy++) {
const float y = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), parser.seen('E'), g29_verbose_level); // TODO: Needs error handling
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_CHAR('(');
SERIAL_PROTOCOL_F(x, 7);
SERIAL_CHAR(',');
SERIAL_PROTOCOL_F(y, 7);
SERIAL_ECHOPGM(") logical: ");
SERIAL_CHAR('(');
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
SERIAL_CHAR(',');
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
SERIAL_ECHOPGM(") measured: ");
SERIAL_PROTOCOL_F(measured_z, 7);
SERIAL_ECHOPGM(" correction: ");
SERIAL_PROTOCOL_F(get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
}
#endif
measured_z -= get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM(" final >>>---> ");
SERIAL_PROTOCOL_F(measured_z, 7);
SERIAL_EOL();
}
#endif
incremental_LSF(&lsf_results, x, y, measured_z);
}
zig_zag ^= true;
}
if (finish_incremental_LSF(&lsf_results)) {
SERIAL_ECHOPGM("Could not complete LSF!");
return;
}
if (g29_verbose_level > 3) {
SERIAL_ECHOPGM("LSF Results A=");
SERIAL_PROTOCOL_F(lsf_results.A, 7);
SERIAL_ECHOPGM(" B=");
SERIAL_PROTOCOL_F(lsf_results.B, 7);
SERIAL_ECHOPGM(" D=");
SERIAL_PROTOCOL_F(lsf_results.D, 7);
SERIAL_EOL();
}
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
if (g29_verbose_level > 2) {
SERIAL_ECHOPGM("bed plane normal = [");
SERIAL_PROTOCOL_F(normal.x, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.y, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.z, 7);
SERIAL_ECHOLNPGM("]");
}
matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
float x_tmp = mesh_index_to_xpos(i),
y_tmp = mesh_index_to_ypos(j),
z_tmp = z_values[i][j];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("before rotation = [");
SERIAL_PROTOCOL_F(x_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(y_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(z_tmp, 7);
SERIAL_ECHOPGM("] ---> ");
safe_delay(20);
}
#endif
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("after rotation = [");
SERIAL_PROTOCOL_F(x_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(y_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(z_tmp, 7);
SERIAL_ECHOLNPGM("]");
safe_delay(55);
}
#endif
z_values[i][j] += z_tmp - lsf_results.D;
}
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
rotation.debug(PSTR("rotation matrix:"));
SERIAL_ECHOPGM("LSF Results A=");
SERIAL_PROTOCOL_F(lsf_results.A, 7);
SERIAL_ECHOPGM(" B=");
SERIAL_PROTOCOL_F(lsf_results.B, 7);
SERIAL_ECHOPGM(" D=");
SERIAL_PROTOCOL_F(lsf_results.D, 7);
SERIAL_EOL();
safe_delay(55);
SERIAL_ECHOPGM("bed plane normal = [");
SERIAL_PROTOCOL_F(normal.x, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.y, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.z, 7);
SERIAL_ECHOPGM("]\n");
SERIAL_EOL();
}
#endif
if (do_ubl_mesh_map) display_map(g29_map_type);
}
#if ENABLED(UBL_G29_P31)
void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
// For each undefined mesh point, compute a distance-weighted least squares fit
// from all the originally populated mesh points, weighted toward the point
// being extrapolated so that nearby points will have greater influence on
// the point being extrapolated. Then extrapolate the mesh point from WLSF.
static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
struct linear_fit_data lsf_results;
SERIAL_ECHOPGM("Extrapolating mesh...");
const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
if (!isnan(z_values[jx][jy]))
SBI(bitmap[jx], jy);
for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
const float px = mesh_index_to_xpos(ix);
for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
const float py = mesh_index_to_ypos(iy);
if (isnan(z_values[ix][iy])) {
// undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
incremental_LSF_reset(&lsf_results);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
const float rx = mesh_index_to_xpos(jx);
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
if (TEST(bitmap[jx], jy)) {
const float ry = mesh_index_to_ypos(jy),
rz = z_values[jx][jy],
w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py));
incremental_WLSF(&lsf_results, rx, ry, rz, w);
}
}
}
if (finish_incremental_LSF(&lsf_results)) {
SERIAL_ECHOLNPGM("Insufficient data");
return;
}
const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
z_values[ix][iy] = ez;
idle(); // housekeeping
}
}
}
SERIAL_ECHOLNPGM("done");
}
#endif // UBL_G29_P31
#endif // AUTO_BED_LEVELING_UBL