mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-08 10:42:30 +00:00
749f19e502
- And implement the `backtrace()` function call
1129 lines
35 KiB
C++
1129 lines
35 KiB
C++
/***************************************************************************
|
||
* ARM Stack Unwinder, Michael.McTernan.2001@cs.bris.ac.uk
|
||
* Updated, adapted and several bug fixes on 2018 by Eduardo José Tagle
|
||
*
|
||
* This program is PUBLIC DOMAIN.
|
||
* This means that there is no copyright and anyone is able to take a copy
|
||
* for free and use it as they wish, with or without modifications, and in
|
||
* any context, commercially or otherwise. The only limitation is that I
|
||
* don't guarantee that the software is fit for any purpose or accept any
|
||
* liability for it's use or misuse - this software is without warranty.
|
||
***************************************************************************
|
||
* File Description: Abstract interpretation for Thumb mode.
|
||
**************************************************************************/
|
||
|
||
#if defined(__arm__) || defined(__thumb__)
|
||
|
||
#define MODULE_NAME "UNWARM_THUMB"
|
||
|
||
#include <stdio.h>
|
||
#include "unwarm.h"
|
||
|
||
/** Sign extend an 11 bit value.
|
||
* This function simply inspects bit 11 of the input \a value, and if
|
||
* set, the top 5 bits are set to give a 2's compliment signed value.
|
||
* \param value The value to sign extend.
|
||
* \return The signed-11 bit value stored in a 16bit data type.
|
||
*/
|
||
static int32_t signExtend11(uint16_t value) {
|
||
|
||
if(value & 0x400) {
|
||
value |= 0xfffff800;
|
||
}
|
||
|
||
return value;
|
||
}
|
||
|
||
UnwResult UnwStartThumb(UnwState * const state) {
|
||
|
||
bool found = false;
|
||
uint16_t t = UNW_MAX_INSTR_COUNT;
|
||
uint32_t lastJumpAddr = 0; // Last JUMP address, to try to detect infinite loops
|
||
bool loopDetected = false; // If a loop was detected
|
||
|
||
do {
|
||
uint16_t instr;
|
||
|
||
/* Attempt to read the instruction */
|
||
if(!state->cb->readH(state->regData[15].v & (~0x1), &instr)) {
|
||
return UNWIND_IREAD_H_FAIL;
|
||
}
|
||
|
||
UnwPrintd4("T %x %x %04x:", state->regData[13].v, state->regData[15].v, instr);
|
||
|
||
/* Check that the PC is still on Thumb alignment */
|
||
if(!(state->regData[15].v & 0x1)) {
|
||
UnwPrintd1("\nError: PC misalignment\n");
|
||
return UNWIND_INCONSISTENT;
|
||
}
|
||
|
||
/* Check that the SP and PC have not been invalidated */
|
||
if(!M_IsOriginValid(state->regData[13].o) || !M_IsOriginValid(state->regData[15].o)) {
|
||
UnwPrintd1("\nError: PC or SP invalidated\n");
|
||
return UNWIND_INCONSISTENT;
|
||
}
|
||
|
||
/*
|
||
* Detect 32bit thumb instructions
|
||
*/
|
||
if ((instr & 0xe000) == 0xe000 && (instr & 0x1800) != 0) {
|
||
uint16_t instr2;
|
||
|
||
/* Check next address */
|
||
state->regData[15].v += 2;
|
||
|
||
/* Attempt to read the 2nd part of the instruction */
|
||
if(!state->cb->readH(state->regData[15].v & (~0x1), &instr2)) {
|
||
return UNWIND_IREAD_H_FAIL;
|
||
}
|
||
|
||
UnwPrintd3(" %x %04x:", state->regData[15].v, instr2);
|
||
|
||
/*
|
||
* Load/Store multiple: Only interpret
|
||
* PUSH and POP
|
||
*/
|
||
if ((instr & 0xfe6f) == 0xe82d) {
|
||
bool L = (instr & 0x10) ? true : false;
|
||
uint16_t rList = instr2;
|
||
|
||
if(L) {
|
||
uint8_t r;
|
||
|
||
/* Load from memory: POP */
|
||
UnwPrintd1("POP {Rlist}\n");
|
||
|
||
/* Load registers from stack */
|
||
for(r = 0; r < 16; r++) {
|
||
if(rList & (0x1 << r)) {
|
||
|
||
/* Read the word */
|
||
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
|
||
/* Alter the origin to be from the stack if it was valid */
|
||
if(M_IsOriginValid(state->regData[r].o)) {
|
||
|
||
state->regData[r].o = REG_VAL_FROM_STACK;
|
||
|
||
/* If restoring the PC */
|
||
if (r == 15) {
|
||
|
||
/* The bottom bit should have been set to indicate that
|
||
* the caller was from Thumb. This would allow return
|
||
* by BX for interworking APCS.
|
||
*/
|
||
if((state->regData[15].v & 0x1) == 0) {
|
||
UnwPrintd2("Warning: Return address not to Thumb: 0x%08x\n", state->regData[15].v);
|
||
|
||
/* Pop into the PC will not switch mode */
|
||
return UNWIND_INCONSISTENT;
|
||
}
|
||
|
||
/* Store the return address */
|
||
if(!UnwReportRetAddr(state, state->regData[15].v)) {
|
||
return UNWIND_TRUNCATED;
|
||
}
|
||
|
||
/* Now have the return address */
|
||
UnwPrintd2(" Return PC=%x\n", state->regData[15].v);
|
||
|
||
/* Compensate for the auto-increment, which isn't needed here */
|
||
state->regData[15].v -= 2;
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
if (r == 15) {
|
||
/* Return address is not valid */
|
||
UnwPrintd1("PC popped with invalid address\n");
|
||
return UNWIND_FAILURE;
|
||
}
|
||
}
|
||
|
||
state->regData[13].v += 4;
|
||
|
||
UnwPrintd3(" r%d = 0x%08x\n", r, state->regData[r].v);
|
||
}
|
||
}
|
||
}
|
||
else {
|
||
int8_t r;
|
||
|
||
/* Store to memory: PUSH */
|
||
UnwPrintd1("PUSH {Rlist}");
|
||
|
||
for(r = 15; r >= 0; r--) {
|
||
if(rList & (0x1 << r)) {
|
||
UnwPrintd4("\n r%d = 0x%08x\t; %s", r, state->regData[r].v, M_Origin2Str(state->regData[r].o));
|
||
|
||
state->regData[13].v -= 4;
|
||
|
||
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
|
||
return UNWIND_DWRITE_W_FAIL;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
* PUSH register
|
||
*/
|
||
else if (instr == 0xf84d && (instr2 & 0x0fff) == 0x0d04) {
|
||
uint8_t r = instr2 >> 12;
|
||
|
||
/* Store to memory: PUSH */
|
||
UnwPrintd2("PUSH {R%d}\n", r);
|
||
UnwPrintd4("\n r%d = 0x%08x\t; %s", r, state->regData[r].v, M_Origin2Str(state->regData[r].o));
|
||
|
||
state->regData[13].v -= 4;
|
||
|
||
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
|
||
return UNWIND_DWRITE_W_FAIL;
|
||
}
|
||
}
|
||
/*
|
||
* POP register
|
||
*/
|
||
else if (instr == 0xf85d && (instr2 & 0x0fff) == 0x0b04) {
|
||
uint8_t r = instr2 >> 12;
|
||
|
||
/* Load from memory: POP */
|
||
UnwPrintd2("POP {R%d}\n", r);
|
||
|
||
/* Read the word */
|
||
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
|
||
/* Alter the origin to be from the stack if it was valid */
|
||
if(M_IsOriginValid(state->regData[r].o)) {
|
||
|
||
state->regData[r].o = REG_VAL_FROM_STACK;
|
||
|
||
/* If restoring the PC */
|
||
if (r == 15) {
|
||
|
||
/* The bottom bit should have been set to indicate that
|
||
* the caller was from Thumb. This would allow return
|
||
* by BX for interworking APCS.
|
||
*/
|
||
if((state->regData[15].v & 0x1) == 0) {
|
||
UnwPrintd2("Warning: Return address not to Thumb: 0x%08x\n", state->regData[15].v);
|
||
|
||
/* Pop into the PC will not switch mode */
|
||
return UNWIND_INCONSISTENT;
|
||
}
|
||
|
||
/* Store the return address */
|
||
if(!UnwReportRetAddr(state, state->regData[15].v)) {
|
||
return UNWIND_TRUNCATED;
|
||
}
|
||
|
||
/* Now have the return address */
|
||
UnwPrintd2(" Return PC=%x\n", state->regData[15].v);
|
||
|
||
/* Compensate for the auto-increment, which isn't needed here */
|
||
state->regData[15].v -= 2;
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
if (r == 15) {
|
||
/* Return address is not valid */
|
||
UnwPrintd1("PC popped with invalid address\n");
|
||
return UNWIND_FAILURE;
|
||
}
|
||
}
|
||
|
||
state->regData[13].v += 4;
|
||
|
||
UnwPrintd3(" r%d = 0x%08x\n", r, state->regData[r].v);
|
||
}
|
||
/*
|
||
* TBB / TBH
|
||
*/
|
||
else if ((instr & 0xfff0) == 0xe8d0 && (instr2 & 0xffe0) == 0xf000) {
|
||
/* We are only interested in
|
||
* the forms
|
||
* TBB [PC, ...]
|
||
* TBH [PC, ..., LSL #1]
|
||
* as those are used by the C compiler to implement
|
||
* the switch clauses
|
||
*/
|
||
uint8_t rn = instr & 0xf;
|
||
uint8_t rm = instr2 & 0xf;
|
||
bool H = (instr2 & 0x10) ? true : false;
|
||
|
||
UnwPrintd5("TB%c [r%d,r%d%s]\n", H ? 'H' : 'B', rn, rm, H ? ",LSL #1" : "");
|
||
|
||
// We are only interested if the RN is the PC. Let´s choose the 1st destination
|
||
if (rn == 15) {
|
||
if (H) {
|
||
uint16_t rv;
|
||
if(!state->cb->readH((state->regData[15].v & (~1)) + 2, &rv)) {
|
||
return UNWIND_DREAD_H_FAIL;
|
||
}
|
||
state->regData[15].v += rv * 2;
|
||
} else {
|
||
uint8_t rv;
|
||
if(!state->cb->readB((state->regData[15].v & (~1)) + 2, &rv)) {
|
||
return UNWIND_DREAD_B_FAIL;
|
||
}
|
||
state->regData[15].v += rv * 2;
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
* Unconditional branch
|
||
*/
|
||
else if ((instr & 0xf800) == 0xf000 && (instr2 & 0xd000) == 0x9000) {
|
||
uint32_t v;
|
||
|
||
uint8_t S = (instr & 0x400) >> 10;
|
||
uint16_t imm10 = (instr & 0x3ff);
|
||
uint8_t J1 = (instr2 & 0x2000) >> 13;
|
||
uint8_t J2 = (instr2 & 0x0800) >> 11;
|
||
uint16_t imm11 = (instr2 & 0x7ff);
|
||
|
||
uint8_t I1 = J1 ^ S ^ 1;
|
||
uint8_t I2 = J2 ^ S ^ 1;
|
||
uint32_t imm32 = (S << 24) | (I1 << 23) | (I2 << 22) |(imm10 << 12) | (imm11 << 1);
|
||
if (S) imm32 |= 0xfe000000;
|
||
|
||
UnwPrintd2("B %d \n", imm32);
|
||
|
||
/* Update PC */
|
||
state->regData[15].v += imm32;
|
||
|
||
/* Need to advance by a word to account for pre-fetch.
|
||
* Advance by a half word here, allowing the normal address
|
||
* advance to account for the other half word.
|
||
*/
|
||
state->regData[15].v += 2;
|
||
|
||
/* Compute the jump address */
|
||
v = state->regData[15].v + 2;
|
||
|
||
/* Display PC of next instruction */
|
||
UnwPrintd2(" New PC=%x", v);
|
||
|
||
/* Did we detect an infinite loop ? */
|
||
loopDetected = lastJumpAddr == v;
|
||
|
||
/* Remember the last address we jumped to */
|
||
lastJumpAddr = v;
|
||
}
|
||
|
||
/*
|
||
* Branch with link
|
||
*/
|
||
else if ((instr & 0xf800) == 0xf000 && (instr2 & 0xd000) == 0xd000) {
|
||
|
||
uint8_t S = (instr & 0x400) >> 10;
|
||
uint16_t imm10 = (instr & 0x3ff);
|
||
uint8_t J1 = (instr2 & 0x2000) >> 13;
|
||
uint8_t J2 = (instr2 & 0x0800) >> 11;
|
||
uint16_t imm11 = (instr2 & 0x7ff);
|
||
|
||
uint8_t I1 = J1 ^ S ^ 1;
|
||
uint8_t I2 = J2 ^ S ^ 1;
|
||
uint32_t imm32 = (S << 24) | (I1 << 23) | (I2 << 22) |(imm10 << 12) | (imm11 << 1);
|
||
if (S) imm32 |= 0xfe000000;
|
||
|
||
UnwPrintd2("BL %d \n", imm32);
|
||
|
||
/* Never taken, as we are unwinding the stack */
|
||
if (0) {
|
||
|
||
/* Store return address in LR register */
|
||
state->regData[14].v = state->regData[15].v + 2;
|
||
state->regData[14].o = REG_VAL_FROM_CONST;
|
||
|
||
/* Update PC */
|
||
state->regData[15].v += imm32;
|
||
|
||
/* Need to advance by a word to account for pre-fetch.
|
||
* Advance by a half word here, allowing the normal address
|
||
* advance to account for the other half word.
|
||
*/
|
||
state->regData[15].v += 2;
|
||
|
||
/* Display PC of next instruction */
|
||
UnwPrintd2(" Return PC=%x", state->regData[15].v);
|
||
|
||
/* Report the return address, including mode bit */
|
||
if(!UnwReportRetAddr(state, state->regData[15].v)) {
|
||
return UNWIND_TRUNCATED;
|
||
}
|
||
|
||
/* Determine the new mode */
|
||
if(state->regData[15].v & 0x1) {
|
||
/* Branching to THUMB */
|
||
|
||
/* Account for the auto-increment which isn't needed */
|
||
state->regData[15].v -= 2;
|
||
}
|
||
else {
|
||
/* Branch to ARM */
|
||
return UnwStartArm(state);
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Conditional branches. Usually not taken, unless infinite loop is detected
|
||
*/
|
||
else if ((instr & 0xf800) == 0xf000 && (instr2 & 0xd000) == 0x8000) {
|
||
|
||
uint8_t S = (instr & 0x400) >> 10;
|
||
uint16_t imm6 = (instr & 0x3f);
|
||
uint8_t J1 = (instr2 & 0x2000) >> 13;
|
||
uint8_t J2 = (instr2 & 0x0800) >> 11;
|
||
uint16_t imm11 = (instr2 & 0x7ff);
|
||
|
||
uint8_t I1 = J1 ^ S ^ 1;
|
||
uint8_t I2 = J2 ^ S ^ 1;
|
||
uint32_t imm32 = (S << 20) | (I1 << 19) | (I2 << 18) |(imm6 << 12) | (imm11 << 1);
|
||
if (S) imm32 |= 0xffe00000;
|
||
|
||
UnwPrintd2("Bcond %d\n", imm32);
|
||
|
||
/* Take the jump only if a loop is detected */
|
||
if (loopDetected) {
|
||
|
||
/* Update PC */
|
||
state->regData[15].v += imm32;
|
||
|
||
/* Need to advance by a word to account for pre-fetch.
|
||
* Advance by a half word here, allowing the normal address
|
||
* advance to account for the other half word.
|
||
*/
|
||
state->regData[15].v += 2;
|
||
|
||
/* Display PC of next instruction */
|
||
UnwPrintd2(" New PC=%x", state->regData[15].v + 2);
|
||
}
|
||
}
|
||
/*
|
||
* PC-relative load
|
||
* LDR Rd,[PC, #+/-imm]
|
||
*/
|
||
else if((instr & 0xff7f) == 0xf85f) {
|
||
uint8_t rt = (instr2 & 0xf000) >> 12;
|
||
uint8_t imm12 = (instr2 & 0x0fff);
|
||
bool A = (instr & 0x80) ? true : false;
|
||
uint32_t address;
|
||
|
||
/* Compute load address, adding a word to account for prefetch */
|
||
address = (state->regData[15].v & (~0x3)) + 4;
|
||
if (A) address += imm12;
|
||
else address -= imm12;
|
||
|
||
UnwPrintd4("LDR r%d,[PC #%c0x%08x]", rt, A?'+':'-', address);
|
||
|
||
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
}
|
||
/*
|
||
* LDR immediate.
|
||
* We are only interested when destination is PC.
|
||
* LDR Rt,[Rn , #n]
|
||
*/
|
||
else if ((instr & 0xfff0) == 0xf8d0) {
|
||
uint8_t rn = (instr & 0xf);
|
||
uint8_t rt = (instr2 & 0xf000) >> 12;
|
||
uint16_t imm12 = (instr2 & 0xfff);
|
||
|
||
/* If destination is PC and we don't know the source value, then fail */
|
||
if (!M_IsOriginValid(state->regData[rn].o)) {
|
||
state->regData[rt].o = state->regData[rn].o;
|
||
} else {
|
||
uint32_t address = state->regData[rn].v + imm12;
|
||
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
* LDR immediate
|
||
* We are only interested when destination is PC.
|
||
* LDR Rt,[Rn , #-n]
|
||
* LDR Rt,[Rn], #+/-n]
|
||
* LDR Rt,[Rn, #+/-n]!
|
||
*/
|
||
else if ((instr & 0xfff0) == 0xf850 && (instr2 & 0x0800) == 0x0800) {
|
||
uint8_t rn = (instr & 0xf);
|
||
uint8_t rt = (instr2 & 0xf000) >> 12;
|
||
uint16_t imm8 = (instr2 & 0xff);
|
||
bool P = (instr2 & 0x400) ? true : false;
|
||
bool U = (instr2 & 0x200) ? true : false;
|
||
bool W = (instr2 & 0x100) ? true : false;
|
||
|
||
if (!M_IsOriginValid(state->regData[rn].o)) {
|
||
state->regData[rt].o = state->regData[rn].o;
|
||
} else {
|
||
uint32_t offaddress = state->regData[rn].v + imm8;
|
||
if (U) offaddress += imm8;
|
||
else offaddress -= imm8;
|
||
|
||
uint32_t address;
|
||
if (P) {
|
||
address = offaddress;
|
||
} else {
|
||
address = state->regData[rn].v;
|
||
}
|
||
|
||
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
|
||
if (W) {
|
||
state->regData[rn].v = offaddress;
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
* LDR (register).
|
||
* We are interested in the form
|
||
* ldr Rt, [Rn, Rm, lsl #x]
|
||
* Where Rt is PC, Rn value is known, Rm is not known or unknown
|
||
*/
|
||
else if ((instr & 0xfff0) == 0xf850 && (instr2 & 0x0fc0) == 0x0000) {
|
||
uint8_t rn = (instr & 0xf);
|
||
uint8_t rt = (instr2 & 0xf000) >> 12;
|
||
uint8_t rm = (instr2 & 0xf);
|
||
uint8_t imm2 = (instr2 & 0x30) >> 4;
|
||
|
||
if (!M_IsOriginValid(state->regData[rn].o) ||
|
||
!M_IsOriginValid(state->regData[rm].o)) {
|
||
|
||
/* If Rt is PC, and Rn is known, then do an exception and assume
|
||
Rm equals 0 => This takes the first case in a switch() */
|
||
if (rt == 15 && M_IsOriginValid(state->regData[rn].o)) {
|
||
uint32_t address = state->regData[rn].v;
|
||
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
} else {
|
||
/* Propagate unknown value */
|
||
state->regData[rt].o = state->regData[rn].o;
|
||
}
|
||
} else {
|
||
uint32_t address = state->regData[rn].v + (state->regData[rm].v << imm2);
|
||
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
}
|
||
}
|
||
else {
|
||
UnwPrintd1("???? (32)");
|
||
|
||
/* Unknown/undecoded. May alter some register, so invalidate file */
|
||
UnwInvalidateRegisterFile(state->regData);
|
||
}
|
||
/* End of thumb 32bit code */
|
||
|
||
}
|
||
/* Format 1: Move shifted register
|
||
* LSL Rd, Rs, #Offset5
|
||
* LSR Rd, Rs, #Offset5
|
||
* ASR Rd, Rs, #Offset5
|
||
*/
|
||
else if((instr & 0xe000) == 0x0000 && (instr & 0x1800) != 0x1800) {
|
||
bool signExtend;
|
||
uint8_t op = (instr & 0x1800) >> 11;
|
||
uint8_t offset5 = (instr & 0x07c0) >> 6;
|
||
uint8_t rs = (instr & 0x0038) >> 3;
|
||
uint8_t rd = (instr & 0x0007);
|
||
|
||
switch(op) {
|
||
case 0: /* LSL */
|
||
UnwPrintd6("LSL r%d, r%d, #%d\t; r%d %s", rd, rs, offset5, rs, M_Origin2Str(state->regData[rs].o));
|
||
state->regData[rd].v = state->regData[rs].v << offset5;
|
||
state->regData[rd].o = state->regData[rs].o;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
break;
|
||
|
||
case 1: /* LSR */
|
||
UnwPrintd6("LSR r%d, r%d, #%d\t; r%d %s", rd, rs, offset5, rs, M_Origin2Str(state->regData[rs].o));
|
||
state->regData[rd].v = state->regData[rs].v >> offset5;
|
||
state->regData[rd].o = state->regData[rs].o;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
break;
|
||
|
||
case 2: /* ASR */
|
||
UnwPrintd6("ASL r%d, r%d, #%d\t; r%d %s", rd, rs, offset5, rs, M_Origin2Str(state->regData[rs].o));
|
||
|
||
signExtend = (state->regData[rs].v & 0x8000) ? true : false;
|
||
state->regData[rd].v = state->regData[rs].v >> offset5;
|
||
if(signExtend) {
|
||
state->regData[rd].v |= 0xffffffff << (32 - offset5);
|
||
}
|
||
state->regData[rd].o = state->regData[rs].o;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
break;
|
||
}
|
||
}
|
||
/* Format 2: add/subtract
|
||
* ADD Rd, Rs, Rn
|
||
* ADD Rd, Rs, #Offset3
|
||
* SUB Rd, Rs, Rn
|
||
* SUB Rd, Rs, #Offset3
|
||
*/
|
||
else if((instr & 0xf800) == 0x1800) {
|
||
bool I = (instr & 0x0400) ? true : false;
|
||
bool op = (instr & 0x0200) ? true : false;
|
||
uint8_t rn = (instr & 0x01c0) >> 6;
|
||
uint8_t rs = (instr & 0x0038) >> 3;
|
||
uint8_t rd = (instr & 0x0007);
|
||
|
||
/* Print decoding */
|
||
UnwPrintd6("%s r%d, r%d, %c%d\t;",op ? "SUB" : "ADD",rd, rs,I ? '#' : 'r',rn);
|
||
UnwPrintd5("r%d %s, r%d %s",rd, M_Origin2Str(state->regData[rd].o),rs, M_Origin2Str(state->regData[rs].o));
|
||
if(!I) {
|
||
|
||
UnwPrintd3(", r%d %s", rn, M_Origin2Str(state->regData[rn].o));
|
||
|
||
/* Perform calculation */
|
||
if(op) {
|
||
state->regData[rd].v = state->regData[rs].v - state->regData[rn].v;
|
||
}
|
||
else {
|
||
state->regData[rd].v = state->regData[rs].v + state->regData[rn].v;
|
||
}
|
||
|
||
/* Propagate the origin */
|
||
if(M_IsOriginValid(state->regData[rs].o) &&
|
||
M_IsOriginValid(state->regData[rn].o)) {
|
||
state->regData[rd].o = state->regData[rs].o;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
}
|
||
else {
|
||
state->regData[rd].o = REG_VAL_INVALID;
|
||
}
|
||
}
|
||
else {
|
||
/* Perform calculation */
|
||
if(op) {
|
||
state->regData[rd].v = state->regData[rs].v - rn;
|
||
}
|
||
else {
|
||
state->regData[rd].v = state->regData[rs].v + rn;
|
||
}
|
||
|
||
/* Propagate the origin */
|
||
state->regData[rd].o = state->regData[rs].o;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
}
|
||
}
|
||
/* Format 3: move/compare/add/subtract immediate
|
||
* MOV Rd, #Offset8
|
||
* CMP Rd, #Offset8
|
||
* ADD Rd, #Offset8
|
||
* SUB Rd, #Offset8
|
||
*/
|
||
else if((instr & 0xe000) == 0x2000) {
|
||
|
||
uint8_t op = (instr & 0x1800) >> 11;
|
||
uint8_t rd = (instr & 0x0700) >> 8;
|
||
uint8_t offset8 = (instr & 0x00ff);
|
||
|
||
switch(op) {
|
||
case 0: /* MOV */
|
||
UnwPrintd3("MOV r%d, #0x%x", rd, offset8);
|
||
state->regData[rd].v = offset8;
|
||
state->regData[rd].o = REG_VAL_FROM_CONST;
|
||
break;
|
||
|
||
case 1: /* CMP */
|
||
/* Irrelevant to unwinding */
|
||
UnwPrintd1("CMP ???");
|
||
break;
|
||
|
||
case 2: /* ADD */
|
||
UnwPrintd5("ADD r%d, #0x%x\t; r%d %s", rd, offset8, rd, M_Origin2Str(state->regData[rd].o));
|
||
state->regData[rd].v += offset8;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
break;
|
||
|
||
case 3: /* SUB */
|
||
UnwPrintd5("SUB r%d, #0x%d\t; r%d %s", rd, offset8, rd, M_Origin2Str(state->regData[rd].o));
|
||
state->regData[rd].v -= offset8;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
break;
|
||
}
|
||
}
|
||
/* Format 4: ALU operations
|
||
* AND Rd, Rs
|
||
* EOR Rd, Rs
|
||
* LSL Rd, Rs
|
||
* LSR Rd, Rs
|
||
* ASR Rd, Rs
|
||
* ADC Rd, Rs
|
||
* SBC Rd, Rs
|
||
* ROR Rd, Rs
|
||
* TST Rd, Rs
|
||
* NEG Rd, Rs
|
||
* CMP Rd, Rs
|
||
* CMN Rd, Rs
|
||
* ORR Rd, Rs
|
||
* MUL Rd, Rs
|
||
* BIC Rd, Rs
|
||
* MVN Rd, Rs
|
||
*/
|
||
else if((instr & 0xfc00) == 0x4000) {
|
||
uint8_t op = (instr & 0x03c0) >> 6;
|
||
uint8_t rs = (instr & 0x0038) >> 3;
|
||
uint8_t rd = (instr & 0x0007);
|
||
|
||
#if defined(UNW_DEBUG)
|
||
static const char * const mnu[16] = {
|
||
"AND", "EOR", "LSL", "LSR",
|
||
"ASR", "ADC", "SBC", "ROR",
|
||
"TST", "NEG", "CMP", "CMN",
|
||
"ORR", "MUL", "BIC", "MVN" };
|
||
#endif
|
||
/* Print the mnemonic and registers */
|
||
switch(op) {
|
||
case 0: /* AND */
|
||
case 1: /* EOR */
|
||
case 2: /* LSL */
|
||
case 3: /* LSR */
|
||
case 4: /* ASR */
|
||
case 7: /* ROR */
|
||
case 9: /* NEG */
|
||
case 12: /* ORR */
|
||
case 13: /* MUL */
|
||
case 15: /* MVN */
|
||
UnwPrintd8("%s r%d ,r%d\t; r%d %s, r%d %s",mnu[op],rd, rs, rd, M_Origin2Str(state->regData[rd].o), rs, M_Origin2Str(state->regData[rs].o));
|
||
break;
|
||
|
||
case 5: /* ADC */
|
||
case 6: /* SBC */
|
||
UnwPrintd4("%s r%d, r%d", mnu[op], rd, rs);
|
||
break;
|
||
|
||
case 8: /* TST */
|
||
case 10: /* CMP */
|
||
case 11: /* CMN */
|
||
/* Irrelevant to unwinding */
|
||
UnwPrintd2("%s ???", mnu[op]);
|
||
break;
|
||
|
||
case 14: /* BIC */
|
||
UnwPrintd5("r%d ,r%d\t; r%d %s", rd, rs, rs, M_Origin2Str(state->regData[rs].o));
|
||
break;
|
||
}
|
||
|
||
/* Perform operation */
|
||
switch(op) {
|
||
case 0: /* AND */
|
||
state->regData[rd].v &= state->regData[rs].v;
|
||
break;
|
||
|
||
case 1: /* EOR */
|
||
state->regData[rd].v ^= state->regData[rs].v;
|
||
break;
|
||
|
||
case 2: /* LSL */
|
||
state->regData[rd].v <<= state->regData[rs].v;
|
||
break;
|
||
|
||
case 3: /* LSR */
|
||
state->regData[rd].v >>= state->regData[rs].v;
|
||
break;
|
||
|
||
case 4: /* ASR */
|
||
if(state->regData[rd].v & 0x80000000) {
|
||
state->regData[rd].v >>= state->regData[rs].v;
|
||
state->regData[rd].v |= 0xffffffff << (32 - state->regData[rs].v);
|
||
}
|
||
else {
|
||
state->regData[rd].v >>= state->regData[rs].v;
|
||
}
|
||
|
||
break;
|
||
|
||
case 5: /* ADC */
|
||
case 6: /* SBC */
|
||
case 8: /* TST */
|
||
case 10: /* CMP */
|
||
case 11: /* CMN */
|
||
break;
|
||
|
||
case 7: /* ROR */
|
||
state->regData[rd].v = (state->regData[rd].v >> state->regData[rs].v) |
|
||
(state->regData[rd].v << (32 - state->regData[rs].v));
|
||
break;
|
||
|
||
case 9: /* NEG */
|
||
state->regData[rd].v = -state->regData[rs].v;
|
||
break;
|
||
|
||
case 12: /* ORR */
|
||
state->regData[rd].v |= state->regData[rs].v;
|
||
break;
|
||
|
||
case 13: /* MUL */
|
||
state->regData[rd].v *= state->regData[rs].v;
|
||
break;
|
||
|
||
case 14: /* BIC */
|
||
state->regData[rd].v &= ~state->regData[rs].v;
|
||
break;
|
||
|
||
case 15: /* MVN */
|
||
state->regData[rd].v = ~state->regData[rs].v;
|
||
break;
|
||
}
|
||
|
||
/* Propagate data origins */
|
||
switch(op) {
|
||
case 0: /* AND */
|
||
case 1: /* EOR */
|
||
case 2: /* LSL */
|
||
case 3: /* LSR */
|
||
case 4: /* ASR */
|
||
case 7: /* ROR */
|
||
case 12: /* ORR */
|
||
case 13: /* MUL */
|
||
case 14: /* BIC */
|
||
if(M_IsOriginValid(state->regData[rd].o) && M_IsOriginValid(state->regData[rs].o)) {
|
||
state->regData[rd].o = state->regData[rs].o;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
}
|
||
else {
|
||
state->regData[rd].o = REG_VAL_INVALID;
|
||
}
|
||
break;
|
||
|
||
case 5: /* ADC */
|
||
case 6: /* SBC */
|
||
/* C-bit not tracked */
|
||
state->regData[rd].o = REG_VAL_INVALID;
|
||
break;
|
||
|
||
case 8: /* TST */
|
||
case 10: /* CMP */
|
||
case 11: /* CMN */
|
||
/* Nothing propagated */
|
||
break;
|
||
|
||
case 9: /* NEG */
|
||
case 15: /* MVN */
|
||
state->regData[rd].o = state->regData[rs].o;
|
||
state->regData[rd].o |= REG_VAL_ARITHMETIC;
|
||
break;
|
||
}
|
||
}
|
||
/* Format 5: Hi register operations/branch exchange
|
||
* ADD Rd, Hs
|
||
* CMP Hd, Rs
|
||
* MOV Hd, Hs
|
||
*/
|
||
else if((instr & 0xfc00) == 0x4400) {
|
||
uint8_t op = (instr & 0x0300) >> 8;
|
||
bool h1 = (instr & 0x0080) ? true: false;
|
||
bool h2 = (instr & 0x0040) ? true: false;
|
||
uint8_t rhs = (instr & 0x0038) >> 3;
|
||
uint8_t rhd = (instr & 0x0007);
|
||
|
||
/* Adjust the register numbers */
|
||
if(h2)
|
||
rhs += 8;
|
||
if(h1)
|
||
rhd += 8;
|
||
|
||
switch(op) {
|
||
case 0: /* ADD */
|
||
UnwPrintd5("ADD r%d, r%d\t; r%d %s", rhd, rhs, rhs, M_Origin2Str(state->regData[rhs].o));
|
||
state->regData[rhd].v += state->regData[rhs].v;
|
||
state->regData[rhd].o = state->regData[rhs].o;
|
||
state->regData[rhd].o |= REG_VAL_ARITHMETIC;
|
||
break;
|
||
|
||
case 1: /* CMP */
|
||
/* Irrelevant to unwinding */
|
||
UnwPrintd1("CMP ???");
|
||
break;
|
||
|
||
case 2: /* MOV */
|
||
UnwPrintd5("MOV r%d, r%d\t; r%d %s", rhd, rhs, rhd, M_Origin2Str(state->regData[rhs].o));
|
||
state->regData[rhd].v = state->regData[rhs].v;
|
||
state->regData[rhd].o = state->regData[rhd].o;
|
||
break;
|
||
|
||
case 3: /* BX */
|
||
UnwPrintd4("BX r%d\t; r%d %s\n", rhs, rhs, M_Origin2Str(state->regData[rhs].o));
|
||
|
||
/* Only follow BX if the data was from the stack or BX LR */
|
||
if(rhs == 14 || state->regData[rhs].o == REG_VAL_FROM_STACK) {
|
||
UnwPrintd2(" Return PC=0x%x\n", state->regData[rhs].v & (~0x1));
|
||
|
||
/* Report the return address, including mode bit */
|
||
if(!UnwReportRetAddr(state, state->regData[rhs].v)) {
|
||
return UNWIND_TRUNCATED;
|
||
}
|
||
|
||
/* Update the PC */
|
||
state->regData[15].v = state->regData[rhs].v;
|
||
|
||
/* Determine the new mode */
|
||
if(state->regData[rhs].v & 0x1) {
|
||
/* Branching to THUMB */
|
||
|
||
/* Account for the auto-increment which isn't needed */
|
||
state->regData[15].v -= 2;
|
||
}
|
||
else {
|
||
/* Branch to ARM */
|
||
return UnwStartArm(state);
|
||
}
|
||
}
|
||
else {
|
||
UnwPrintd4("\nError: BX to invalid register: r%d = 0x%x (%s)\n", rhs, state->regData[rhs].o, M_Origin2Str(state->regData[rhs].o));
|
||
return UNWIND_FAILURE;
|
||
}
|
||
}
|
||
}
|
||
/* Format 9: PC-relative load
|
||
* LDR Rd,[PC, #imm]
|
||
*/
|
||
else if((instr & 0xf800) == 0x4800) {
|
||
uint8_t rd = (instr & 0x0700) >> 8;
|
||
uint8_t word8 = (instr & 0x00ff);
|
||
uint32_t address;
|
||
|
||
/* Compute load address, adding a word to account for prefetch */
|
||
address = (state->regData[15].v & (~0x3)) + 4 + (word8 << 2);
|
||
|
||
UnwPrintd3("LDR r%d, 0x%08x", rd, address);
|
||
|
||
if(!UnwMemReadRegister(state, address, &state->regData[rd])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
}
|
||
/* Format 13: add offset to Stack Pointer
|
||
* ADD sp,#+imm
|
||
* ADD sp,#-imm
|
||
*/
|
||
else if((instr & 0xff00) == 0xB000) {
|
||
uint8_t value = (instr & 0x7f) * 4;
|
||
|
||
/* Check the negative bit */
|
||
if((instr & 0x80) != 0) {
|
||
UnwPrintd2("SUB sp,#0x%x", value);
|
||
state->regData[13].v -= value;
|
||
}
|
||
else {
|
||
UnwPrintd2("ADD sp,#0x%x", value);
|
||
state->regData[13].v += value;
|
||
}
|
||
}
|
||
/* Format 14: push/pop registers
|
||
* PUSH {Rlist}
|
||
* PUSH {Rlist, LR}
|
||
* POP {Rlist}
|
||
* POP {Rlist, PC}
|
||
*/
|
||
else if((instr & 0xf600) == 0xb400) {
|
||
bool L = (instr & 0x0800) ? true : false;
|
||
bool R = (instr & 0x0100) ? true : false;
|
||
uint8_t rList = (instr & 0x00ff);
|
||
|
||
if(L) {
|
||
uint8_t r;
|
||
|
||
/* Load from memory: POP */
|
||
UnwPrintd2("POP {Rlist%s}\n", R ? ", PC" : "");
|
||
|
||
for(r = 0; r < 8; r++) {
|
||
if(rList & (0x1 << r)) {
|
||
|
||
/* Read the word */
|
||
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
|
||
/* Alter the origin to be from the stack if it was valid */
|
||
if(M_IsOriginValid(state->regData[r].o)) {
|
||
state->regData[r].o = REG_VAL_FROM_STACK;
|
||
}
|
||
|
||
state->regData[13].v += 4;
|
||
|
||
UnwPrintd3(" r%d = 0x%08x\n", r, state->regData[r].v);
|
||
}
|
||
}
|
||
|
||
/* Check if the PC is to be popped */
|
||
if(R) {
|
||
/* Get the return address */
|
||
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[15])) {
|
||
return UNWIND_DREAD_W_FAIL;
|
||
}
|
||
|
||
/* Alter the origin to be from the stack if it was valid */
|
||
if(!M_IsOriginValid(state->regData[15].o)) {
|
||
/* Return address is not valid */
|
||
UnwPrintd1("PC popped with invalid address\n");
|
||
return UNWIND_FAILURE;
|
||
}
|
||
else {
|
||
/* The bottom bit should have been set to indicate that
|
||
* the caller was from Thumb. This would allow return
|
||
* by BX for interworking APCS.
|
||
*/
|
||
if((state->regData[15].v & 0x1) == 0) {
|
||
UnwPrintd2("Warning: Return address not to Thumb: 0x%08x\n", state->regData[15].v);
|
||
|
||
/* Pop into the PC will not switch mode */
|
||
return UNWIND_INCONSISTENT;
|
||
}
|
||
|
||
/* Store the return address */
|
||
if(!UnwReportRetAddr(state, state->regData[15].v)) {
|
||
return UNWIND_TRUNCATED;
|
||
}
|
||
|
||
/* Now have the return address */
|
||
UnwPrintd2(" Return PC=%x\n", state->regData[15].v);
|
||
|
||
/* Update the pc */
|
||
state->regData[13].v += 4;
|
||
|
||
/* Compensate for the auto-increment, which isn't needed here */
|
||
state->regData[15].v -= 2;
|
||
}
|
||
}
|
||
}
|
||
else {
|
||
int8_t r;
|
||
|
||
/* Store to memory: PUSH */
|
||
UnwPrintd2("PUSH {Rlist%s}", R ? ", LR" : "");
|
||
|
||
/* Check if the LR is to be pushed */
|
||
if(R) {
|
||
UnwPrintd3("\n lr = 0x%08x\t; %s", state->regData[14].v, M_Origin2Str(state->regData[14].o));
|
||
|
||
state->regData[13].v -= 4;
|
||
|
||
/* Write the register value to memory */
|
||
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[14])) {
|
||
return UNWIND_DWRITE_W_FAIL;
|
||
}
|
||
}
|
||
|
||
for(r = 7; r >= 0; r--) {
|
||
if(rList & (0x1 << r)) {
|
||
UnwPrintd4("\n r%d = 0x%08x\t; %s", r, state->regData[r].v, M_Origin2Str(state->regData[r].o));
|
||
|
||
state->regData[13].v -= 4;
|
||
|
||
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
|
||
return UNWIND_DWRITE_W_FAIL;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Conditional branches
|
||
* Bcond
|
||
*/
|
||
else if((instr & 0xf000) == 0xd000) {
|
||
int32_t branchValue = (instr & 0xff);
|
||
if (branchValue & 0x80) branchValue |= 0xffffff00;
|
||
|
||
/* Branch distance is twice that specified in the instruction. */
|
||
branchValue *= 2;
|
||
|
||
UnwPrintd2("Bcond %d \n", branchValue);
|
||
|
||
/* Only take the branch if a loop was detected */
|
||
if (loopDetected) {
|
||
|
||
/* Update PC */
|
||
state->regData[15].v += branchValue;
|
||
|
||
/* Need to advance by a word to account for pre-fetch.
|
||
* Advance by a half word here, allowing the normal address
|
||
* advance to account for the other half word.
|
||
*/
|
||
state->regData[15].v += 2;
|
||
|
||
/* Display PC of next instruction */
|
||
UnwPrintd2(" New PC=%x", state->regData[15].v + 2);
|
||
}
|
||
}
|
||
|
||
/* Format 18: unconditional branch
|
||
* B label
|
||
*/
|
||
else if((instr & 0xf800) == 0xe000) {
|
||
uint32_t v;
|
||
int32_t branchValue = signExtend11(instr & 0x07ff);
|
||
|
||
/* Branch distance is twice that specified in the instruction. */
|
||
branchValue *= 2;
|
||
|
||
UnwPrintd2("B %d \n", branchValue);
|
||
|
||
/* Update PC */
|
||
state->regData[15].v += branchValue;
|
||
|
||
/* Need to advance by a word to account for pre-fetch.
|
||
* Advance by a half word here, allowing the normal address
|
||
* advance to account for the other half word.
|
||
*/
|
||
state->regData[15].v += 2;
|
||
|
||
/* Compute the jump address */
|
||
v = state->regData[15].v + 2;
|
||
|
||
/* Display PC of next instruction */
|
||
UnwPrintd2(" New PC=%x", v);
|
||
|
||
/* Did we detect an infinite loop ? */
|
||
loopDetected = lastJumpAddr == v;
|
||
|
||
/* Remember the last address we jumped to */
|
||
lastJumpAddr = v;
|
||
}
|
||
else {
|
||
UnwPrintd1("????");
|
||
|
||
/* Unknown/undecoded. May alter some register, so invalidate file */
|
||
UnwInvalidateRegisterFile(state->regData);
|
||
}
|
||
|
||
UnwPrintd1("\n");
|
||
|
||
/* Should never hit the reset vector */
|
||
if(state->regData[15].v == 0)
|
||
return UNWIND_RESET;
|
||
|
||
/* Check next address */
|
||
state->regData[15].v += 2;
|
||
|
||
/* Garbage collect the memory hash (used only for the stack) */
|
||
UnwMemHashGC(state);
|
||
|
||
t--;
|
||
if(t == 0)
|
||
return UNWIND_EXHAUSTED;
|
||
|
||
} while(!found);
|
||
|
||
return UNWIND_SUCCESS;
|
||
}
|
||
|
||
#endif
|
||
|