0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-18 07:29:33 +00:00
MarlinFirmware/Marlin/planner.h
Scott Lahteine 6398d497b3 Ultimate followup to Stepper/Planner patch
- Search all symbols and apply prefixes where needed
- Encapsulate some private methods
- Inline some setters
- Make `microstep_mode` a public method
2016-05-03 17:07:37 -07:00

319 lines
11 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* planner.h
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*/
#ifndef PLANNER_H
#define PLANNER_H
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#include "vector_3.h"
#endif
class Planner;
extern Planner planner;
/**
* struct block_t
*
* A single entry in the planner buffer.
* Tracks linear movement over multiple axes.
*
* The "nominal" values are as-specified by gcode, and
* may never actually be reached due to acceleration limits.
*/
typedef struct {
unsigned char active_extruder; // The extruder to move (if E move)
// Fields used by the bresenham algorithm for tracing the line
long steps[NUM_AXIS]; // Step count along each axis
unsigned long step_event_count; // The number of step events required to complete this block
long accelerate_until; // The index of the step event on which to stop acceleration
long decelerate_after; // The index of the step event on which to start decelerating
long acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
#if ENABLED(ADVANCE)
long advance_rate;
volatile long initial_advance;
volatile long final_advance;
float advance;
#endif
// Fields used by the motion planner to manage acceleration
float nominal_speed; // The nominal speed for this block in mm/sec
float entry_speed; // Entry speed at previous-current junction in mm/sec
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
float millimeters; // The total travel of this block in mm
float acceleration; // acceleration mm/sec^2
unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction
unsigned char nominal_length_flag; // Planner flag for nominal speed always reached
// Settings for the trapezoid generator
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
unsigned long initial_rate; // The jerk-adjusted step rate at start of block
unsigned long final_rate; // The minimal rate at exit
unsigned long acceleration_st; // acceleration steps/sec^2
#if FAN_COUNT > 0
unsigned long fan_speed[FAN_COUNT];
#endif
#if ENABLED(BARICUDA)
unsigned long valve_pressure;
unsigned long e_to_p_pressure;
#endif
volatile char busy;
} block_t;
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
class Planner {
public:
/**
* A ring buffer of moves described in steps
*/
block_t block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t block_buffer_head = 0; // Index of the next block to be pushed
volatile uint8_t block_buffer_tail = 0;
float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
float axis_steps_per_unit[NUM_AXIS];
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
millis_t min_segment_time;
float min_feedrate;
float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
float max_xy_jerk; // The largest speed change requiring no acceleration
float max_z_jerk;
float max_e_jerk;
float min_travel_feedrate;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
#endif
private:
/**
* The current position of the tool in absolute steps
* Reclculated if any axis_steps_per_unit are changed by gcode
*/
long position[NUM_AXIS] = { 0 };
/**
* Speed of previous path line segment
*/
float previous_speed[NUM_AXIS];
/**
* Nominal speed of previous path line segment
*/
float previous_nominal_speed;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
/**
* Counters to manage disabling inactive extruders
*/
uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
#endif // DISABLE_INACTIVE_EXTRUDER
#ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
// Old direction bits. Used for speed calculations
static unsigned char old_direction_bits = 0;
// Segment times (in µs). Used for speed calculations
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
#endif
#if ENABLED(DUAL_X_CARRIAGE)
extern bool extruder_duplication_enabled;
#endif
public:
Planner();
void init();
void reset_acceleration_rates();
// Manage fans, paste pressure, etc.
void check_axes_activity();
/**
* Number of moves currently in the planner
*/
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
/**
* The corrected position, applying the bed level matrix
*/
vector_3 adjusted_position();
#endif
/**
* Add a new linear movement to the buffer.
*
* x,y,z,e - target position in mm
* feed_rate - (target) speed of the move
* extruder - target extruder
*/
void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder);
/**
* Set the planner.position and individual stepper positions.
* Used by G92, G28, G29, and other procedures.
*
* Multiplies by axis_steps_per_unit[] and does necessary conversion
* for COREXY / COREXZ to set the corresponding stepper positions.
*
* Clears previous speed values.
*/
void set_position(float x, float y, float z, const float& e);
#else
void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder);
void set_position(const float& x, const float& y, const float& z, const float& e);
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
/**
* Set the E position (mm) of the planner (and the E stepper)
*/
void set_e_position(const float& e);
/**
* Does the buffer have any blocks queued?
*/
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
/**
* "Discards" the block and "releases" the memory.
* Called when the current block is no longer needed.
*/
FORCE_INLINE void discard_current_block() {
if (blocks_queued())
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}
/**
* The current block. NULL if the buffer is empty.
* This also marks the block as busy.
*/
FORCE_INLINE block_t* get_current_block() {
if (blocks_queued()) {
block_t* block = &block_buffer[block_buffer_tail];
block->busy = true;
return block;
}
else
return NULL;
}
#if ENABLED(AUTOTEMP)
float autotemp_max = 250;
float autotemp_min = 210;
float autotemp_factor = 0.1;
bool autotemp_enabled = false;
void getHighESpeed();
void autotemp_M109();
#endif
private:
/**
* Get the index of the next / previous block in the ring buffer
*/
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
/**
* Calculate the distance (not time) it takes to accelerate
* from initial_rate to target_rate using the given acceleration:
*/
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
}
/**
* Return the point at which you must start braking (at the rate of -'acceleration') if
* you start at 'initial_rate', accelerate (until reaching the point), and want to end at
* 'final_rate' after traveling 'distance'.
*
* This is used to compute the intersection point between acceleration and deceleration
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
*/
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
}
/**
* Calculate the maximum allowable speed at this point, in order
* to reach 'target_velocity' using 'acceleration' within a given
* 'distance'.
*/
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
}
void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
void reverse_pass_kernel(block_t* previous, block_t* current, block_t* next);
void forward_pass_kernel(block_t* previous, block_t* current, block_t* next);
void reverse_pass();
void forward_pass();
void recalculate_trapezoids();
void recalculate();
};
#endif // PLANNER_H