mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-25 04:48:31 +00:00
1311 lines
40 KiB
C++
1311 lines
40 KiB
C++
/**
|
|
* stepper.cpp - stepper motor driver: executes motion plans using stepper motors
|
|
* Marlin Firmware
|
|
*
|
|
* Derived from Grbl
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
*
|
|
* Grbl is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Grbl is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
|
and Philipp Tiefenbacher. */
|
|
|
|
#include "Marlin.h"
|
|
#include "stepper.h"
|
|
#include "planner.h"
|
|
#include "temperature.h"
|
|
#include "ultralcd.h"
|
|
#include "language.h"
|
|
#include "cardreader.h"
|
|
#include "speed_lookuptable.h"
|
|
#if HAS_DIGIPOTSS
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//============================= public variables ============================
|
|
//===========================================================================
|
|
block_t* current_block; // A pointer to the block currently being traced
|
|
|
|
|
|
//===========================================================================
|
|
//============================= private variables ===========================
|
|
//===========================================================================
|
|
//static makes it impossible to be called from outside of this file by extern.!
|
|
|
|
// Variables used by The Stepper Driver Interrupt
|
|
static unsigned char out_bits = 0; // The next stepping-bits to be output
|
|
static unsigned int cleaning_buffer_counter;
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
static bool performing_homing = false,
|
|
locked_z_motor = false,
|
|
locked_z2_motor = false;
|
|
#endif
|
|
|
|
// Counter variables for the Bresenham line tracer
|
|
static long counter_x, counter_y, counter_z, counter_e;
|
|
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
|
|
|
#if ENABLED(ADVANCE)
|
|
static long advance_rate, advance, final_advance = 0;
|
|
static long old_advance = 0;
|
|
static long e_steps[4];
|
|
#endif
|
|
|
|
static long acceleration_time, deceleration_time;
|
|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
|
static unsigned short acc_step_rate; // needed for deceleration start point
|
|
static uint8_t step_loops;
|
|
static uint8_t step_loops_nominal;
|
|
static unsigned short OCR1A_nominal;
|
|
|
|
volatile long endstops_trigsteps[3] = { 0 };
|
|
volatile long endstops_stepsTotal, endstops_stepsDone;
|
|
static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
|
|
|
|
#if DISABLED(Z_DUAL_ENDSTOPS)
|
|
static byte
|
|
#else
|
|
static uint16_t
|
|
#endif
|
|
old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
bool abort_on_endstop_hit = false;
|
|
#endif
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
|
#endif
|
|
|
|
static bool check_endstops = true;
|
|
|
|
volatile long count_position[NUM_AXIS] = { 0 };
|
|
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
|
|
|
|
|
|
//===========================================================================
|
|
//================================ functions ================================
|
|
//===========================================================================
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
#define X_APPLY_DIR(v,ALWAYS) \
|
|
if (extruder_duplication_enabled || ALWAYS) { \
|
|
X_DIR_WRITE(v); \
|
|
X2_DIR_WRITE(v); \
|
|
} \
|
|
else { \
|
|
if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
|
|
}
|
|
#define X_APPLY_STEP(v,ALWAYS) \
|
|
if (extruder_duplication_enabled || ALWAYS) { \
|
|
X_STEP_WRITE(v); \
|
|
X2_STEP_WRITE(v); \
|
|
} \
|
|
else { \
|
|
if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
|
|
}
|
|
#else
|
|
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
|
|
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
|
|
#endif
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
#define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
|
|
#define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
|
|
#else
|
|
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
|
|
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
#define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
#define Z_APPLY_STEP(v,Q) \
|
|
if (performing_homing) { \
|
|
if (Z_HOME_DIR > 0) {\
|
|
if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
|
if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
|
} \
|
|
else { \
|
|
if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
|
|
if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
|
|
} \
|
|
} \
|
|
else { \
|
|
Z_STEP_WRITE(v); \
|
|
Z2_STEP_WRITE(v); \
|
|
}
|
|
#else
|
|
#define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
|
|
#endif
|
|
#else
|
|
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
|
|
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
|
|
#endif
|
|
|
|
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
|
|
|
|
// intRes = intIn1 * intIn2 >> 16
|
|
// uses:
|
|
// r26 to store 0
|
|
// r27 to store the byte 1 of the 24 bit result
|
|
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
|
asm volatile ( \
|
|
"clr r26 \n\t" \
|
|
"mul %A1, %B2 \n\t" \
|
|
"movw %A0, r0 \n\t" \
|
|
"mul %A1, %A2 \n\t" \
|
|
"add %A0, r1 \n\t" \
|
|
"adc %B0, r26 \n\t" \
|
|
"lsr r0 \n\t" \
|
|
"adc %A0, r26 \n\t" \
|
|
"adc %B0, r26 \n\t" \
|
|
"clr r1 \n\t" \
|
|
: \
|
|
"=&r" (intRes) \
|
|
: \
|
|
"d" (charIn1), \
|
|
"d" (intIn2) \
|
|
: \
|
|
"r26" \
|
|
)
|
|
|
|
// intRes = longIn1 * longIn2 >> 24
|
|
// uses:
|
|
// r26 to store 0
|
|
// r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
|
|
// note that the lower two bytes and the upper byte of the 48bit result are not calculated.
|
|
// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
|
|
// B0 A0 are bits 24-39 and are the returned value
|
|
// C1 B1 A1 is longIn1
|
|
// D2 C2 B2 A2 is longIn2
|
|
//
|
|
#define MultiU24X32toH16(intRes, longIn1, longIn2) \
|
|
asm volatile ( \
|
|
"clr r26 \n\t" \
|
|
"mul %A1, %B2 \n\t" \
|
|
"mov r27, r1 \n\t" \
|
|
"mul %B1, %C2 \n\t" \
|
|
"movw %A0, r0 \n\t" \
|
|
"mul %C1, %C2 \n\t" \
|
|
"add %B0, r0 \n\t" \
|
|
"mul %C1, %B2 \n\t" \
|
|
"add %A0, r0 \n\t" \
|
|
"adc %B0, r1 \n\t" \
|
|
"mul %A1, %C2 \n\t" \
|
|
"add r27, r0 \n\t" \
|
|
"adc %A0, r1 \n\t" \
|
|
"adc %B0, r26 \n\t" \
|
|
"mul %B1, %B2 \n\t" \
|
|
"add r27, r0 \n\t" \
|
|
"adc %A0, r1 \n\t" \
|
|
"adc %B0, r26 \n\t" \
|
|
"mul %C1, %A2 \n\t" \
|
|
"add r27, r0 \n\t" \
|
|
"adc %A0, r1 \n\t" \
|
|
"adc %B0, r26 \n\t" \
|
|
"mul %B1, %A2 \n\t" \
|
|
"add r27, r1 \n\t" \
|
|
"adc %A0, r26 \n\t" \
|
|
"adc %B0, r26 \n\t" \
|
|
"lsr r27 \n\t" \
|
|
"adc %A0, r26 \n\t" \
|
|
"adc %B0, r26 \n\t" \
|
|
"mul %D2, %A1 \n\t" \
|
|
"add %A0, r0 \n\t" \
|
|
"adc %B0, r1 \n\t" \
|
|
"mul %D2, %B1 \n\t" \
|
|
"add %B0, r0 \n\t" \
|
|
"clr r1 \n\t" \
|
|
: \
|
|
"=&r" (intRes) \
|
|
: \
|
|
"d" (longIn1), \
|
|
"d" (longIn2) \
|
|
: \
|
|
"r26" , "r27" \
|
|
)
|
|
|
|
// Some useful constants
|
|
|
|
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
|
|
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
|
|
|
|
void endstops_hit_on_purpose() {
|
|
endstop_hit_bits = 0;
|
|
}
|
|
|
|
void checkHitEndstops() {
|
|
if (endstop_hit_bits) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
|
|
if (endstop_hit_bits & BIT(X_MIN)) {
|
|
SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
|
|
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
|
|
}
|
|
if (endstop_hit_bits & BIT(Y_MIN)) {
|
|
SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
|
|
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
|
|
}
|
|
if (endstop_hit_bits & BIT(Z_MIN)) {
|
|
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
|
|
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
|
|
}
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
if (endstop_hit_bits & BIT(Z_MIN_PROBE)) {
|
|
SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
|
|
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
|
|
}
|
|
#endif
|
|
SERIAL_EOL;
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
|
|
if (abort_on_endstop_hit) {
|
|
card.sdprinting = false;
|
|
card.closefile();
|
|
quickStop();
|
|
disable_all_heaters(); // switch off all heaters.
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void enable_endstops(bool check) { check_endstops = check; }
|
|
|
|
// Check endstops
|
|
inline void update_endstops() {
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
uint16_t
|
|
#else
|
|
byte
|
|
#endif
|
|
current_endstop_bits = 0;
|
|
|
|
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
|
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
|
#define _AXIS(AXIS) AXIS ##_AXIS
|
|
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
|
|
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
|
|
|
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
|
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
|
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
|
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
|
|
// TEST_ENDSTOP: test the old and the current status of an endstop
|
|
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
|
|
|
|
#define UPDATE_ENDSTOP(AXIS,MINMAX) \
|
|
SET_ENDSTOP_BIT(AXIS, MINMAX); \
|
|
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
|
|
endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
|
|
_ENDSTOP_HIT(AXIS); \
|
|
step_events_completed = current_block->step_event_count; \
|
|
}
|
|
|
|
#if ENABLED(COREXY)
|
|
// Head direction in -X axis for CoreXY bots.
|
|
// If DeltaX == -DeltaY, the movement is only in Y axis
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
|
|
if (TEST(out_bits, X_HEAD))
|
|
#elif ENABLED(COREXZ)
|
|
// Head direction in -X axis for CoreXZ bots.
|
|
// If DeltaX == -DeltaZ, the movement is only in Z axis
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
|
|
if (TEST(out_bits, X_HEAD))
|
|
#else
|
|
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
|
#endif
|
|
{ // -direction
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
|
#endif
|
|
{
|
|
#if HAS_X_MIN
|
|
UPDATE_ENDSTOP(X, MIN);
|
|
#endif
|
|
}
|
|
}
|
|
else { // +direction
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
|
#endif
|
|
{
|
|
#if HAS_X_MAX
|
|
UPDATE_ENDSTOP(X, MAX);
|
|
#endif
|
|
}
|
|
}
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ)
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(COREXY)
|
|
// Head direction in -Y axis for CoreXY bots.
|
|
// If DeltaX == DeltaY, the movement is only in X axis
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
|
|
if (TEST(out_bits, Y_HEAD))
|
|
#else
|
|
if (TEST(out_bits, Y_AXIS)) // -direction
|
|
#endif
|
|
{ // -direction
|
|
#if HAS_Y_MIN
|
|
UPDATE_ENDSTOP(Y, MIN);
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_Y_MAX
|
|
UPDATE_ENDSTOP(Y, MAX);
|
|
#endif
|
|
}
|
|
#if ENABLED(COREXY)
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(COREXZ)
|
|
// Head direction in -Z axis for CoreXZ bots.
|
|
// If DeltaX == DeltaZ, the movement is only in X axis
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
|
|
if (TEST(out_bits, Z_HEAD))
|
|
#else
|
|
if (TEST(out_bits, Z_AXIS))
|
|
#endif
|
|
{ // z -direction
|
|
#if HAS_Z_MIN
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
SET_ENDSTOP_BIT(Z, MIN);
|
|
#if HAS_Z2_MIN
|
|
SET_ENDSTOP_BIT(Z2, MIN);
|
|
#else
|
|
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
|
#endif
|
|
|
|
byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
endstop_hit_bits |= BIT(Z_MIN);
|
|
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
|
step_events_completed = current_block->step_event_count;
|
|
}
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
UPDATE_ENDSTOP(Z, MIN);
|
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
#endif // Z_MIN_PIN
|
|
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
UPDATE_ENDSTOP(Z, MIN_PROBE);
|
|
|
|
if (TEST_ENDSTOP(Z_MIN_PROBE)) {
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
endstop_hit_bits |= BIT(Z_MIN_PROBE);
|
|
}
|
|
#endif
|
|
}
|
|
else { // z +direction
|
|
#if HAS_Z_MAX
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
SET_ENDSTOP_BIT(Z, MAX);
|
|
#if HAS_Z2_MAX
|
|
SET_ENDSTOP_BIT(Z2, MAX);
|
|
#else
|
|
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
|
|
#endif
|
|
|
|
byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
endstop_hit_bits |= BIT(Z_MIN);
|
|
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
|
step_events_completed = current_block->step_event_count;
|
|
}
|
|
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
UPDATE_ENDSTOP(Z, MAX);
|
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
#endif // Z_MAX_PIN
|
|
}
|
|
#if ENABLED(COREXZ)
|
|
}
|
|
#endif
|
|
old_endstop_bits = current_endstop_bits;
|
|
}
|
|
|
|
// __________________________
|
|
// /| |\ _________________ ^
|
|
// / | | \ /| |\ |
|
|
// / | | \ / | | \ s
|
|
// / | | | | | \ p
|
|
// / | | | | | \ e
|
|
// +-----+------------------------+---+--+---------------+----+ e
|
|
// | BLOCK 1 | BLOCK 2 | d
|
|
//
|
|
// time ----->
|
|
//
|
|
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
|
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
|
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
|
// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
|
|
|
|
void st_wake_up() {
|
|
// TCNT1 = 0;
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
}
|
|
|
|
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
|
unsigned short timer;
|
|
|
|
NOMORE(step_rate, MAX_STEP_FREQUENCY);
|
|
|
|
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
|
step_rate = (step_rate >> 2) & 0x3fff;
|
|
step_loops = 4;
|
|
}
|
|
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
|
step_rate = (step_rate >> 1) & 0x7fff;
|
|
step_loops = 2;
|
|
}
|
|
else {
|
|
step_loops = 1;
|
|
}
|
|
|
|
NOLESS(step_rate, F_CPU / 500000);
|
|
step_rate -= F_CPU / 500000; // Correct for minimal speed
|
|
if (step_rate >= (8 * 256)) { // higher step rate
|
|
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
|
|
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
|
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
|
|
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
|
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
|
}
|
|
else { // lower step rates
|
|
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
|
table_address += ((step_rate) >> 1) & 0xfffc;
|
|
timer = (unsigned short)pgm_read_word_near(table_address);
|
|
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
|
|
}
|
|
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
|
|
return timer;
|
|
}
|
|
|
|
/**
|
|
* Set the stepper direction of each axis
|
|
*
|
|
* X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
|
|
* X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
|
|
*/
|
|
void set_stepper_direction() {
|
|
|
|
if (TEST(out_bits, X_AXIS)) { // A_AXIS
|
|
X_APPLY_DIR(INVERT_X_DIR, 0);
|
|
count_direction[X_AXIS] = -1;
|
|
}
|
|
else {
|
|
X_APPLY_DIR(!INVERT_X_DIR, 0);
|
|
count_direction[X_AXIS] = 1;
|
|
}
|
|
|
|
if (TEST(out_bits, Y_AXIS)) { // B_AXIS
|
|
Y_APPLY_DIR(INVERT_Y_DIR, 0);
|
|
count_direction[Y_AXIS] = -1;
|
|
}
|
|
else {
|
|
Y_APPLY_DIR(!INVERT_Y_DIR, 0);
|
|
count_direction[Y_AXIS] = 1;
|
|
}
|
|
|
|
if (TEST(out_bits, Z_AXIS)) { // C_AXIS
|
|
Z_APPLY_DIR(INVERT_Z_DIR, 0);
|
|
count_direction[Z_AXIS] = -1;
|
|
}
|
|
else {
|
|
Z_APPLY_DIR(!INVERT_Z_DIR, 0);
|
|
count_direction[Z_AXIS] = 1;
|
|
}
|
|
|
|
#if DISABLED(ADVANCE)
|
|
if (TEST(out_bits, E_AXIS)) {
|
|
REV_E_DIR();
|
|
count_direction[E_AXIS] = -1;
|
|
}
|
|
else {
|
|
NORM_E_DIR();
|
|
count_direction[E_AXIS] = 1;
|
|
}
|
|
#endif //!ADVANCE
|
|
}
|
|
|
|
// Initializes the trapezoid generator from the current block. Called whenever a new
|
|
// block begins.
|
|
FORCE_INLINE void trapezoid_generator_reset() {
|
|
|
|
if (current_block->direction_bits != out_bits) {
|
|
out_bits = current_block->direction_bits;
|
|
set_stepper_direction();
|
|
}
|
|
|
|
#if ENABLED(ADVANCE)
|
|
advance = current_block->initial_advance;
|
|
final_advance = current_block->final_advance;
|
|
// Do E steps + advance steps
|
|
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
|
old_advance = advance >>8;
|
|
#endif
|
|
deceleration_time = 0;
|
|
// step_rate to timer interval
|
|
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
|
// make a note of the number of step loops required at nominal speed
|
|
step_loops_nominal = step_loops;
|
|
acc_step_rate = current_block->initial_rate;
|
|
acceleration_time = calc_timer(acc_step_rate);
|
|
OCR1A = acceleration_time;
|
|
|
|
// SERIAL_ECHO_START;
|
|
// SERIAL_ECHOPGM("advance :");
|
|
// SERIAL_ECHO(current_block->advance/256.0);
|
|
// SERIAL_ECHOPGM("advance rate :");
|
|
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
|
// SERIAL_ECHOPGM("initial advance :");
|
|
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
|
// SERIAL_ECHOPGM("final advance :");
|
|
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
|
}
|
|
|
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
|
ISR(TIMER1_COMPA_vect) {
|
|
|
|
if (cleaning_buffer_counter) {
|
|
current_block = NULL;
|
|
plan_discard_current_block();
|
|
#ifdef SD_FINISHED_RELEASECOMMAND
|
|
if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
|
|
#endif
|
|
cleaning_buffer_counter--;
|
|
OCR1A = 200;
|
|
return;
|
|
}
|
|
|
|
// If there is no current block, attempt to pop one from the buffer
|
|
if (!current_block) {
|
|
// Anything in the buffer?
|
|
current_block = plan_get_current_block();
|
|
if (current_block) {
|
|
current_block->busy = true;
|
|
trapezoid_generator_reset();
|
|
counter_x = -(current_block->step_event_count >> 1);
|
|
counter_y = counter_z = counter_e = counter_x;
|
|
step_events_completed = 0;
|
|
|
|
#if ENABLED(Z_LATE_ENABLE)
|
|
if (current_block->steps[Z_AXIS] > 0) {
|
|
enable_z();
|
|
OCR1A = 2000; //1ms wait
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// #if ENABLED(ADVANCE)
|
|
// e_steps[current_block->active_extruder] = 0;
|
|
// #endif
|
|
}
|
|
else {
|
|
OCR1A = 2000; // 1kHz.
|
|
}
|
|
}
|
|
|
|
if (current_block != NULL) {
|
|
|
|
// Update endstops state, if enabled
|
|
if (check_endstops) update_endstops();
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
for (int8_t i = 0; i < step_loops; i++) {
|
|
#ifndef USBCON
|
|
customizedSerial.checkRx(); // Check for serial chars.
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCE)
|
|
counter_e += current_block->steps[E_AXIS];
|
|
if (counter_e > 0) {
|
|
counter_e -= current_block->step_event_count;
|
|
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
|
|
}
|
|
#endif //ADVANCE
|
|
|
|
#define _COUNTER(axis) counter_## axis
|
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
|
|
|
#define STEP_ADD(axis, AXIS) \
|
|
_COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
|
|
if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
|
|
|
STEP_ADD(x,X);
|
|
STEP_ADD(y,Y);
|
|
STEP_ADD(z,Z);
|
|
#if DISABLED(ADVANCE)
|
|
STEP_ADD(e,E);
|
|
#endif
|
|
|
|
#define STEP_IF_COUNTER(axis, AXIS) \
|
|
if (_COUNTER(axis) > 0) { \
|
|
_COUNTER(axis) -= current_block->step_event_count; \
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
|
}
|
|
|
|
STEP_IF_COUNTER(x, X);
|
|
STEP_IF_COUNTER(y, Y);
|
|
STEP_IF_COUNTER(z, Z);
|
|
#if DISABLED(ADVANCE)
|
|
STEP_IF_COUNTER(e, E);
|
|
#endif
|
|
|
|
step_events_completed++;
|
|
if (step_events_completed >= current_block->step_event_count) break;
|
|
}
|
|
// Calculate new timer value
|
|
unsigned short timer;
|
|
unsigned short step_rate;
|
|
if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
|
|
|
|
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
|
acc_step_rate += current_block->initial_rate;
|
|
|
|
// upper limit
|
|
NOMORE(acc_step_rate, current_block->nominal_rate);
|
|
|
|
// step_rate to timer interval
|
|
timer = calc_timer(acc_step_rate);
|
|
OCR1A = timer;
|
|
acceleration_time += timer;
|
|
|
|
#if ENABLED(ADVANCE)
|
|
|
|
advance += advance_rate * step_loops;
|
|
//NOLESS(advance, current_block->advance);
|
|
|
|
// Do E steps + advance steps
|
|
e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
|
|
old_advance = advance >> 8;
|
|
|
|
#endif //ADVANCE
|
|
}
|
|
else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
|
|
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
|
|
|
if (step_rate <= acc_step_rate) { // Still decelerating?
|
|
step_rate = acc_step_rate - step_rate;
|
|
NOLESS(step_rate, current_block->final_rate);
|
|
}
|
|
else
|
|
step_rate = current_block->final_rate;
|
|
|
|
// step_rate to timer interval
|
|
timer = calc_timer(step_rate);
|
|
OCR1A = timer;
|
|
deceleration_time += timer;
|
|
|
|
#if ENABLED(ADVANCE)
|
|
advance -= advance_rate * step_loops;
|
|
NOLESS(advance, final_advance);
|
|
|
|
// Do E steps + advance steps
|
|
uint32_t advance_whole = advance >> 8;
|
|
e_steps[current_block->active_extruder] += advance_whole - old_advance;
|
|
old_advance = advance_whole;
|
|
#endif //ADVANCE
|
|
}
|
|
else {
|
|
OCR1A = OCR1A_nominal;
|
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
|
step_loops = step_loops_nominal;
|
|
}
|
|
|
|
OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
|
|
|
|
// If current block is finished, reset pointer
|
|
if (step_events_completed >= current_block->step_event_count) {
|
|
current_block = NULL;
|
|
plan_discard_current_block();
|
|
}
|
|
}
|
|
}
|
|
|
|
#if ENABLED(ADVANCE)
|
|
unsigned char old_OCR0A;
|
|
// Timer interrupt for E. e_steps is set in the main routine;
|
|
// Timer 0 is shared with millies
|
|
ISR(TIMER0_COMPA_vect) {
|
|
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
|
|
OCR0A = old_OCR0A;
|
|
// Set E direction (Depends on E direction + advance)
|
|
for (unsigned char i = 0; i < 4; i++) {
|
|
if (e_steps[0] != 0) {
|
|
E0_STEP_WRITE(INVERT_E_STEP_PIN);
|
|
if (e_steps[0] < 0) {
|
|
E0_DIR_WRITE(INVERT_E0_DIR);
|
|
e_steps[0]++;
|
|
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
else if (e_steps[0] > 0) {
|
|
E0_DIR_WRITE(!INVERT_E0_DIR);
|
|
e_steps[0]--;
|
|
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
}
|
|
#if EXTRUDERS > 1
|
|
if (e_steps[1] != 0) {
|
|
E1_STEP_WRITE(INVERT_E_STEP_PIN);
|
|
if (e_steps[1] < 0) {
|
|
E1_DIR_WRITE(INVERT_E1_DIR);
|
|
e_steps[1]++;
|
|
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
else if (e_steps[1] > 0) {
|
|
E1_DIR_WRITE(!INVERT_E1_DIR);
|
|
e_steps[1]--;
|
|
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
}
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
if (e_steps[2] != 0) {
|
|
E2_STEP_WRITE(INVERT_E_STEP_PIN);
|
|
if (e_steps[2] < 0) {
|
|
E2_DIR_WRITE(INVERT_E2_DIR);
|
|
e_steps[2]++;
|
|
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
else if (e_steps[2] > 0) {
|
|
E2_DIR_WRITE(!INVERT_E2_DIR);
|
|
e_steps[2]--;
|
|
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
}
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
if (e_steps[3] != 0) {
|
|
E3_STEP_WRITE(INVERT_E_STEP_PIN);
|
|
if (e_steps[3] < 0) {
|
|
E3_DIR_WRITE(INVERT_E3_DIR);
|
|
e_steps[3]++;
|
|
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
else if (e_steps[3] > 0) {
|
|
E3_DIR_WRITE(!INVERT_E3_DIR);
|
|
e_steps[3]--;
|
|
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#endif // ADVANCE
|
|
|
|
void st_init() {
|
|
digipot_init(); //Initialize Digipot Motor Current
|
|
microstep_init(); //Initialize Microstepping Pins
|
|
|
|
// initialise TMC Steppers
|
|
#if ENABLED(HAVE_TMCDRIVER)
|
|
tmc_init();
|
|
#endif
|
|
// initialise L6470 Steppers
|
|
#if ENABLED(HAVE_L6470DRIVER)
|
|
L6470_init();
|
|
#endif
|
|
|
|
// Initialize Dir Pins
|
|
#if HAS_X_DIR
|
|
X_DIR_INIT;
|
|
#endif
|
|
#if HAS_X2_DIR
|
|
X2_DIR_INIT;
|
|
#endif
|
|
#if HAS_Y_DIR
|
|
Y_DIR_INIT;
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
|
|
Y2_DIR_INIT;
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_DIR
|
|
Z_DIR_INIT;
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
|
|
Z2_DIR_INIT;
|
|
#endif
|
|
#endif
|
|
#if HAS_E0_DIR
|
|
E0_DIR_INIT;
|
|
#endif
|
|
#if HAS_E1_DIR
|
|
E1_DIR_INIT;
|
|
#endif
|
|
#if HAS_E2_DIR
|
|
E2_DIR_INIT;
|
|
#endif
|
|
#if HAS_E3_DIR
|
|
E3_DIR_INIT;
|
|
#endif
|
|
|
|
//Initialize Enable Pins - steppers default to disabled.
|
|
|
|
#if HAS_X_ENABLE
|
|
X_ENABLE_INIT;
|
|
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_X2_ENABLE
|
|
X2_ENABLE_INIT;
|
|
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_Y_ENABLE
|
|
Y_ENABLE_INIT;
|
|
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
|
|
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
|
|
Y2_ENABLE_INIT;
|
|
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_ENABLE
|
|
Z_ENABLE_INIT;
|
|
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
|
|
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
|
|
Z2_ENABLE_INIT;
|
|
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#endif
|
|
#if HAS_E0_ENABLE
|
|
E0_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E1_ENABLE
|
|
E1_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E2_ENABLE
|
|
E2_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E3_ENABLE
|
|
E3_ENABLE_INIT;
|
|
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
|
|
//endstops and pullups
|
|
|
|
#if HAS_X_MIN
|
|
SET_INPUT(X_MIN_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_XMIN)
|
|
WRITE(X_MIN_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y_MIN
|
|
SET_INPUT(Y_MIN_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_YMIN)
|
|
WRITE(Y_MIN_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z_MIN
|
|
SET_INPUT(Z_MIN_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
|
WRITE(Z_MIN_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_X_MAX
|
|
SET_INPUT(X_MAX_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_XMAX)
|
|
WRITE(X_MAX_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y_MAX
|
|
SET_INPUT(Y_MAX_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_YMAX)
|
|
WRITE(Y_MAX_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z_MAX
|
|
SET_INPUT(Z_MAX_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
|
WRITE(Z_MAX_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z2_MAX
|
|
SET_INPUT(Z2_MAX_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
|
WRITE(Z2_MAX_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
|
|
SET_INPUT(Z_MIN_PROBE_PIN);
|
|
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
|
|
WRITE(Z_MIN_PROBE_PIN,HIGH);
|
|
#endif
|
|
#endif
|
|
|
|
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
|
|
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
|
#define _DISABLE(axis) disable_## axis()
|
|
|
|
#define AXIS_INIT(axis, AXIS, PIN) \
|
|
_STEP_INIT(AXIS); \
|
|
_WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
|
|
_DISABLE(axis)
|
|
|
|
#define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
|
|
|
|
// Initialize Step Pins
|
|
#if HAS_X_STEP
|
|
AXIS_INIT(x, X, X);
|
|
#endif
|
|
#if HAS_X2_STEP
|
|
AXIS_INIT(x, X2, X);
|
|
#endif
|
|
#if HAS_Y_STEP
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
|
|
Y2_STEP_INIT;
|
|
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
#endif
|
|
AXIS_INIT(y, Y, Y);
|
|
#endif
|
|
#if HAS_Z_STEP
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
|
|
Z2_STEP_INIT;
|
|
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
#endif
|
|
AXIS_INIT(z, Z, Z);
|
|
#endif
|
|
#if HAS_E0_STEP
|
|
E_AXIS_INIT(0);
|
|
#endif
|
|
#if HAS_E1_STEP
|
|
E_AXIS_INIT(1);
|
|
#endif
|
|
#if HAS_E2_STEP
|
|
E_AXIS_INIT(2);
|
|
#endif
|
|
#if HAS_E3_STEP
|
|
E_AXIS_INIT(3);
|
|
#endif
|
|
|
|
// waveform generation = 0100 = CTC
|
|
TCCR1B &= ~BIT(WGM13);
|
|
TCCR1B |= BIT(WGM12);
|
|
TCCR1A &= ~BIT(WGM11);
|
|
TCCR1A &= ~BIT(WGM10);
|
|
|
|
// output mode = 00 (disconnected)
|
|
TCCR1A &= ~(3 << COM1A0);
|
|
TCCR1A &= ~(3 << COM1B0);
|
|
// Set the timer pre-scaler
|
|
// Generally we use a divider of 8, resulting in a 2MHz timer
|
|
// frequency on a 16MHz MCU. If you are going to change this, be
|
|
// sure to regenerate speed_lookuptable.h with
|
|
// create_speed_lookuptable.py
|
|
TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
|
|
|
|
OCR1A = 0x4000;
|
|
TCNT1 = 0;
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
|
|
#if ENABLED(ADVANCE)
|
|
#if defined(TCCR0A) && defined(WGM01)
|
|
TCCR0A &= ~BIT(WGM01);
|
|
TCCR0A &= ~BIT(WGM00);
|
|
#endif
|
|
e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
|
|
TIMSK0 |= BIT(OCIE0A);
|
|
#endif //ADVANCE
|
|
|
|
enable_endstops(true); // Start with endstops active. After homing they can be disabled
|
|
sei();
|
|
|
|
set_stepper_direction(); // Init directions to out_bits = 0
|
|
}
|
|
|
|
|
|
/**
|
|
* Block until all buffered steps are executed
|
|
*/
|
|
void st_synchronize() { while (blocks_queued()) idle(); }
|
|
|
|
void st_set_position(const long& x, const long& y, const long& z, const long& e) {
|
|
CRITICAL_SECTION_START;
|
|
count_position[X_AXIS] = x;
|
|
count_position[Y_AXIS] = y;
|
|
count_position[Z_AXIS] = z;
|
|
count_position[E_AXIS] = e;
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
|
|
void st_set_e_position(const long& e) {
|
|
CRITICAL_SECTION_START;
|
|
count_position[E_AXIS] = e;
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
|
|
long st_get_position(uint8_t axis) {
|
|
long count_pos;
|
|
CRITICAL_SECTION_START;
|
|
count_pos = count_position[axis];
|
|
CRITICAL_SECTION_END;
|
|
return count_pos;
|
|
}
|
|
|
|
float st_get_position_mm(AxisEnum axis) { return st_get_position(axis) / axis_steps_per_unit[axis]; }
|
|
|
|
void finishAndDisableSteppers() {
|
|
st_synchronize();
|
|
disable_all_steppers();
|
|
}
|
|
|
|
void quickStop() {
|
|
cleaning_buffer_counter = 5000;
|
|
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
|
while (blocks_queued()) plan_discard_current_block();
|
|
current_block = NULL;
|
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
|
}
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
// MUST ONLY BE CALLED BY AN ISR,
|
|
// No other ISR should ever interrupt this!
|
|
void babystep(const uint8_t axis, const bool direction) {
|
|
|
|
#define _ENABLE(axis) enable_## axis()
|
|
#define _READ_DIR(AXIS) AXIS ##_DIR_READ
|
|
#define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
|
|
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
|
|
|
|
#define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
|
|
_ENABLE(axis); \
|
|
uint8_t old_pin = _READ_DIR(AXIS); \
|
|
_APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
|
|
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
|
|
delayMicroseconds(2); \
|
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
|
|
_APPLY_DIR(AXIS, old_pin); \
|
|
}
|
|
|
|
switch (axis) {
|
|
|
|
case X_AXIS:
|
|
BABYSTEP_AXIS(x, X, false);
|
|
break;
|
|
|
|
case Y_AXIS:
|
|
BABYSTEP_AXIS(y, Y, false);
|
|
break;
|
|
|
|
case Z_AXIS: {
|
|
|
|
#if DISABLED(DELTA)
|
|
|
|
BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
|
|
|
|
#else // DELTA
|
|
|
|
bool z_direction = direction ^ BABYSTEP_INVERT_Z;
|
|
|
|
enable_x();
|
|
enable_y();
|
|
enable_z();
|
|
uint8_t old_x_dir_pin = X_DIR_READ,
|
|
old_y_dir_pin = Y_DIR_READ,
|
|
old_z_dir_pin = Z_DIR_READ;
|
|
//setup new step
|
|
X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
|
|
Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
|
|
Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
|
|
//perform step
|
|
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
|
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
|
|
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
|
delayMicroseconds(2);
|
|
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
|
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
|
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
|
|
//get old pin state back.
|
|
X_DIR_WRITE(old_x_dir_pin);
|
|
Y_DIR_WRITE(old_y_dir_pin);
|
|
Z_DIR_WRITE(old_z_dir_pin);
|
|
|
|
#endif
|
|
|
|
} break;
|
|
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
#endif //BABYSTEPPING
|
|
|
|
// From Arduino DigitalPotControl example
|
|
void digitalPotWrite(int address, int value) {
|
|
#if HAS_DIGIPOTSS
|
|
digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
|
|
SPI.transfer(address); // send in the address and value via SPI:
|
|
SPI.transfer(value);
|
|
digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
|
|
//delay(10);
|
|
#else
|
|
UNUSED(address);
|
|
UNUSED(value);
|
|
#endif
|
|
}
|
|
|
|
// Initialize Digipot Motor Current
|
|
void digipot_init() {
|
|
#if HAS_DIGIPOTSS
|
|
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
|
|
|
SPI.begin();
|
|
pinMode(DIGIPOTSS_PIN, OUTPUT);
|
|
for (int i = 0; i < COUNT(digipot_motor_current); i++) {
|
|
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
|
|
digipot_current(i, digipot_motor_current[i]);
|
|
}
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
|
|
pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
|
|
pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
|
|
digipot_current(0, motor_current_setting[0]);
|
|
digipot_current(1, motor_current_setting[1]);
|
|
digipot_current(2, motor_current_setting[2]);
|
|
//Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
|
|
TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
|
|
#endif
|
|
}
|
|
|
|
void digipot_current(uint8_t driver, int current) {
|
|
#if HAS_DIGIPOTSS
|
|
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
|
digitalPotWrite(digipot_ch[driver], current);
|
|
#elif defined(MOTOR_CURRENT_PWM_XY_PIN)
|
|
switch (driver) {
|
|
case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
|
|
case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
|
|
case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
|
|
}
|
|
#else
|
|
UNUSED(driver);
|
|
UNUSED(current);
|
|
#endif
|
|
}
|
|
|
|
void microstep_init() {
|
|
#if HAS_MICROSTEPS_E1
|
|
pinMode(E1_MS1_PIN, OUTPUT);
|
|
pinMode(E1_MS2_PIN, OUTPUT);
|
|
#endif
|
|
|
|
#if HAS_MICROSTEPS
|
|
pinMode(X_MS1_PIN, OUTPUT);
|
|
pinMode(X_MS2_PIN, OUTPUT);
|
|
pinMode(Y_MS1_PIN, OUTPUT);
|
|
pinMode(Y_MS2_PIN, OUTPUT);
|
|
pinMode(Z_MS1_PIN, OUTPUT);
|
|
pinMode(Z_MS2_PIN, OUTPUT);
|
|
pinMode(E0_MS1_PIN, OUTPUT);
|
|
pinMode(E0_MS2_PIN, OUTPUT);
|
|
const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
|
for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
|
|
microstep_mode(i, microstep_modes[i]);
|
|
#endif
|
|
}
|
|
|
|
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
|
if (ms1 >= 0) switch (driver) {
|
|
case 0: digitalWrite(X_MS1_PIN, ms1); break;
|
|
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
|
|
case 2: digitalWrite(Z_MS1_PIN, ms1); break;
|
|
case 3: digitalWrite(E0_MS1_PIN, ms1); break;
|
|
#if HAS_MICROSTEPS_E1
|
|
case 4: digitalWrite(E1_MS1_PIN, ms1); break;
|
|
#endif
|
|
}
|
|
if (ms2 >= 0) switch (driver) {
|
|
case 0: digitalWrite(X_MS2_PIN, ms2); break;
|
|
case 1: digitalWrite(Y_MS2_PIN, ms2); break;
|
|
case 2: digitalWrite(Z_MS2_PIN, ms2); break;
|
|
case 3: digitalWrite(E0_MS2_PIN, ms2); break;
|
|
#if PIN_EXISTS(E1_MS2)
|
|
case 4: digitalWrite(E1_MS2_PIN, ms2); break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
|
switch (stepping_mode) {
|
|
case 1: microstep_ms(driver, MICROSTEP1); break;
|
|
case 2: microstep_ms(driver, MICROSTEP2); break;
|
|
case 4: microstep_ms(driver, MICROSTEP4); break;
|
|
case 8: microstep_ms(driver, MICROSTEP8); break;
|
|
case 16: microstep_ms(driver, MICROSTEP16); break;
|
|
}
|
|
}
|
|
|
|
void microstep_readings() {
|
|
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
|
|
SERIAL_PROTOCOLPGM("X: ");
|
|
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
|
|
SERIAL_PROTOCOLPGM("Y: ");
|
|
SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
|
|
SERIAL_PROTOCOLPGM("Z: ");
|
|
SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
|
|
SERIAL_PROTOCOLPGM("E0: ");
|
|
SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
|
|
#if HAS_MICROSTEPS_E1
|
|
SERIAL_PROTOCOLPGM("E1: ");
|
|
SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
|
|
SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
void In_Homing_Process(bool state) { performing_homing = state; }
|
|
void Lock_z_motor(bool state) { locked_z_motor = state; }
|
|
void Lock_z2_motor(bool state) { locked_z2_motor = state; }
|
|
#endif
|