mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-22 17:52:57 +00:00
647 lines
22 KiB
C++
647 lines
22 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
#ifndef MARLIN_H
|
|
#define MARLIN_H
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <util/delay.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include "MarlinConfig.h"
|
|
|
|
#ifdef DEBUG_GCODE_PARSER
|
|
#include "parser.h"
|
|
#endif
|
|
|
|
#include "enum.h"
|
|
#include "types.h"
|
|
#include "fastio.h"
|
|
#include "utility.h"
|
|
#include "serial.h"
|
|
|
|
void idle(
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
|
|
#endif
|
|
);
|
|
|
|
void manage_inactivity(const bool ignore_stepper_queue=false);
|
|
|
|
extern const char axis_codes[XYZE];
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
extern bool extruder_duplication_enabled;
|
|
#endif
|
|
|
|
#if HAS_X2_ENABLE
|
|
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
|
|
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
|
|
#elif HAS_X_ENABLE
|
|
#define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
|
|
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
|
|
#else
|
|
#define enable_X() NOOP
|
|
#define disable_X() NOOP
|
|
#endif
|
|
|
|
#if HAS_Y2_ENABLE
|
|
#define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
|
|
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
|
|
#elif HAS_Y_ENABLE
|
|
#define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
|
|
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
|
|
#else
|
|
#define enable_Y() NOOP
|
|
#define disable_Y() NOOP
|
|
#endif
|
|
|
|
#if HAS_Z2_ENABLE
|
|
#define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
|
|
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
|
|
#elif HAS_Z_ENABLE
|
|
#define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
|
|
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
|
|
#else
|
|
#define enable_Z() NOOP
|
|
#define disable_Z() NOOP
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
/**
|
|
* Mixing steppers synchronize their enable (and direction) together
|
|
*/
|
|
#if MIXING_STEPPERS > 4
|
|
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); E4_ENABLE_WRITE( E_ENABLE_ON); }
|
|
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); E4_ENABLE_WRITE(!E_ENABLE_ON); }
|
|
#elif MIXING_STEPPERS > 3
|
|
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
|
|
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
|
|
#elif MIXING_STEPPERS > 2
|
|
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
|
|
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
|
|
#else
|
|
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
|
|
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
|
|
#endif
|
|
#define enable_E1() NOOP
|
|
#define disable_E1() NOOP
|
|
#define enable_E2() NOOP
|
|
#define disable_E2() NOOP
|
|
#define enable_E3() NOOP
|
|
#define disable_E3() NOOP
|
|
#define enable_E4() NOOP
|
|
#define disable_E4() NOOP
|
|
|
|
#else // !MIXING_EXTRUDER
|
|
|
|
#if HAS_E0_ENABLE
|
|
#define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E0() NOOP
|
|
#define disable_E0() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 1 && HAS_E1_ENABLE
|
|
#define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E1() NOOP
|
|
#define disable_E1() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 2 && HAS_E2_ENABLE
|
|
#define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E2() NOOP
|
|
#define disable_E2() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 3 && HAS_E3_ENABLE
|
|
#define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E3() NOOP
|
|
#define disable_E3() NOOP
|
|
#endif
|
|
|
|
#if E_STEPPERS > 4 && HAS_E4_ENABLE
|
|
#define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_E4() NOOP
|
|
#define disable_E4() NOOP
|
|
#endif
|
|
|
|
#endif // !MIXING_EXTRUDER
|
|
|
|
#if ENABLED(HANGPRINTER)
|
|
|
|
#define enable_A() enable_X()
|
|
#define enable_B() enable_Y()
|
|
#define enable_C() enable_Z()
|
|
#define __D_ENABLE(p) E##p##_ENABLE_WRITE(E_ENABLE_ON)
|
|
#define _D_ENABLE(p) __D_ENABLE(p)
|
|
#define enable_D() _D_ENABLE(EXTRUDERS)
|
|
|
|
// Don't allow any axes to be disabled
|
|
#undef disable_X
|
|
#undef disable_Y
|
|
#undef disable_Z
|
|
#define disable_X() NOOP
|
|
#define disable_Y() NOOP
|
|
#define disable_Z() NOOP
|
|
|
|
#if EXTRUDERS >= 1
|
|
#undef disable_E1
|
|
#define disable_E1() NOOP
|
|
#if EXTRUDERS >= 2
|
|
#undef disable_E2
|
|
#define disable_E2() NOOP
|
|
#if EXTRUDERS >= 3
|
|
#undef disable_E3
|
|
#define disable_E3() NOOP
|
|
#if EXTRUDERS >= 4
|
|
#undef disable_E4
|
|
#define disable_E4() NOOP
|
|
#endif // EXTRUDERS >= 4
|
|
#endif // EXTRUDERS >= 3
|
|
#endif // EXTRUDERS >= 2
|
|
#endif // EXTRUDERS >= 1
|
|
|
|
#endif // HANGPRINTER
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
|
|
G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
|
|
#endif
|
|
|
|
void enable_all_steppers();
|
|
void disable_e_stepper(const uint8_t e);
|
|
void disable_e_steppers();
|
|
void disable_all_steppers();
|
|
|
|
void sync_plan_position();
|
|
void sync_plan_position_e();
|
|
|
|
#if IS_KINEMATIC
|
|
void sync_plan_position_kinematic();
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
|
#else
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
|
|
#endif
|
|
|
|
void flush_and_request_resend();
|
|
void ok_to_send();
|
|
|
|
void kill(const char*);
|
|
|
|
void quickstop_stepper();
|
|
|
|
extern uint8_t marlin_debug_flags;
|
|
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
|
|
|
|
extern bool Running;
|
|
inline bool IsRunning() { return Running; }
|
|
inline bool IsStopped() { return !Running; }
|
|
|
|
bool enqueue_and_echo_command(const char* cmd); // Add a single command to the end of the buffer. Return false on failure.
|
|
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
|
|
void clear_command_queue();
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(POWER_LOSS_RECOVERY)
|
|
extern char command_queue[BUFSIZE][MAX_CMD_SIZE];
|
|
#endif
|
|
|
|
#define HAS_LCD_QUEUE_NOW (ENABLED(MALYAN_LCD) || (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE))))
|
|
#define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW)
|
|
#if HAS_QUEUE_NOW
|
|
// Return only when commands are actually enqueued
|
|
void enqueue_and_echo_command_now(const char* cmd);
|
|
#if HAS_LCD_QUEUE_NOW
|
|
void enqueue_and_echo_commands_now_P(const char * const cmd);
|
|
#endif
|
|
#endif
|
|
|
|
extern millis_t previous_move_ms;
|
|
inline void reset_stepper_timeout() { previous_move_ms = millis(); }
|
|
|
|
/**
|
|
* Feedrate scaling and conversion
|
|
*/
|
|
extern float feedrate_mm_s;
|
|
extern int16_t feedrate_percentage;
|
|
|
|
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f)
|
|
|
|
extern bool axis_relative_modes[XYZE];
|
|
|
|
extern uint8_t axis_homed, axis_known_position;
|
|
|
|
constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
|
|
FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
|
|
FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
|
|
|
|
extern volatile bool wait_for_heatup;
|
|
|
|
#if HAS_RESUME_CONTINUE
|
|
extern volatile bool wait_for_user;
|
|
#endif
|
|
|
|
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
extern bool suspend_auto_report;
|
|
#endif
|
|
|
|
extern float current_position[XYZE], destination[XYZE];
|
|
|
|
/**
|
|
* Workspace offsets
|
|
*/
|
|
#if HAS_WORKSPACE_OFFSET
|
|
#if HAS_HOME_OFFSET
|
|
extern float home_offset[XYZ];
|
|
#endif
|
|
#if HAS_POSITION_SHIFT
|
|
extern float position_shift[XYZ];
|
|
#endif
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
extern float workspace_offset[XYZ];
|
|
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
|
|
#elif HAS_HOME_OFFSET
|
|
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
|
|
#elif HAS_POSITION_SHIFT
|
|
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
|
|
#endif
|
|
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
|
|
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
|
|
#else
|
|
#define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
|
|
#define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
|
|
#endif
|
|
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
|
|
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
|
|
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
|
|
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
|
|
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
|
|
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
|
|
|
|
// Hotend Offsets
|
|
#if HOTENDS > 1
|
|
extern float hotend_offset[XYZ][HOTENDS];
|
|
#endif
|
|
|
|
// Software Endstops
|
|
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
extern bool soft_endstops_enabled;
|
|
void clamp_to_software_endstops(float target[XYZ]);
|
|
#else
|
|
#define soft_endstops_enabled false
|
|
#define clamp_to_software_endstops(x) NOOP
|
|
#endif
|
|
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
|
void update_software_endstops(const AxisEnum axis);
|
|
#endif
|
|
|
|
#define MAX_COORDINATE_SYSTEMS 9
|
|
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
|
|
bool select_coordinate_system(const int8_t _new);
|
|
#endif
|
|
|
|
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
|
|
|
|
void home_all_axes();
|
|
|
|
void report_current_position();
|
|
|
|
#if IS_KINEMATIC
|
|
#if ENABLED(HANGPRINTER)
|
|
extern float line_lengths[ABCD];
|
|
#else
|
|
extern float delta[ABC];
|
|
#endif
|
|
void inverse_kinematics(const float raw[XYZ]);
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
extern float delta_height,
|
|
delta_endstop_adj[ABC],
|
|
delta_radius,
|
|
delta_tower_angle_trim[ABC],
|
|
delta_tower[ABC][2],
|
|
delta_diagonal_rod,
|
|
delta_calibration_radius,
|
|
delta_diagonal_rod_2_tower[ABC],
|
|
delta_segments_per_second,
|
|
delta_clip_start_height;
|
|
|
|
void recalc_delta_settings();
|
|
float delta_safe_distance_from_top();
|
|
|
|
// Macro to obtain the Z position of an individual tower
|
|
#define DELTA_Z(V,T) V[Z_AXIS] + SQRT( \
|
|
delta_diagonal_rod_2_tower[T] - HYPOT2( \
|
|
delta_tower[T][X_AXIS] - V[X_AXIS], \
|
|
delta_tower[T][Y_AXIS] - V[Y_AXIS] \
|
|
) \
|
|
)
|
|
|
|
#define DELTA_IK(V) do { \
|
|
delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
|
|
delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
|
|
delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
|
|
}while(0)
|
|
|
|
#elif ENABLED(HANGPRINTER)
|
|
|
|
// Don't collect anchor positions in array because there are no A_x, D_x or D_y
|
|
extern float anchor_A_y,
|
|
anchor_A_z,
|
|
anchor_B_x,
|
|
anchor_B_y,
|
|
anchor_B_z,
|
|
anchor_C_x,
|
|
anchor_C_y,
|
|
anchor_C_z,
|
|
anchor_D_z,
|
|
delta_segments_per_second,
|
|
line_lengths_origin[ABCD];
|
|
|
|
void recalc_hangprinter_settings();
|
|
|
|
#define HANGPRINTER_IK(V) do { \
|
|
line_lengths[A_AXIS] = SQRT(sq(anchor_A_z - V[Z_AXIS]) \
|
|
+ sq(anchor_A_y - V[Y_AXIS]) \
|
|
+ sq( V[X_AXIS])); \
|
|
line_lengths[B_AXIS] = SQRT(sq(anchor_B_z - V[Z_AXIS]) \
|
|
+ sq(anchor_B_y - V[Y_AXIS]) \
|
|
+ sq(anchor_B_x - V[X_AXIS])); \
|
|
line_lengths[C_AXIS] = SQRT(sq(anchor_C_z - V[Z_AXIS]) \
|
|
+ sq(anchor_C_y - V[Y_AXIS]) \
|
|
+ sq(anchor_C_x - V[X_AXIS])); \
|
|
line_lengths[D_AXIS] = SQRT(sq( V[X_AXIS]) \
|
|
+ sq( V[Y_AXIS]) \
|
|
+ sq(anchor_D_z - V[Z_AXIS])); \
|
|
}while(0)
|
|
|
|
// Inverse kinematics at origin
|
|
#define HANGPRINTER_IK_ORIGIN(LL) do { \
|
|
LL[A_AXIS] = SQRT(sq(anchor_A_z) \
|
|
+ sq(anchor_A_y)); \
|
|
LL[B_AXIS] = SQRT(sq(anchor_B_z) \
|
|
+ sq(anchor_B_y) \
|
|
+ sq(anchor_B_x)); \
|
|
LL[C_AXIS] = SQRT(sq(anchor_C_z) \
|
|
+ sq(anchor_C_y) \
|
|
+ sq(anchor_C_x)); \
|
|
LL[D_AXIS] = anchor_D_z; \
|
|
}while(0)
|
|
|
|
#elif IS_SCARA
|
|
void forward_kinematics_SCARA(const float &a, const float &b);
|
|
#endif
|
|
|
|
#if ENABLED(G26_MESH_VALIDATION)
|
|
extern bool g26_debug_flag;
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
constexpr bool g26_debug_flag = false;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
#define _GET_MESH_X(I) (bilinear_start[X_AXIS] + (I) * bilinear_grid_spacing[X_AXIS])
|
|
#define _GET_MESH_Y(J) (bilinear_start[Y_AXIS] + (J) * bilinear_grid_spacing[Y_AXIS])
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
|
|
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
|
|
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
extern int bilinear_grid_spacing[2], bilinear_start[2];
|
|
extern float bilinear_grid_factor[2],
|
|
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
float bilinear_z_offset(const float raw[XYZ]);
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
|
|
typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
|
|
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn);
|
|
#endif
|
|
|
|
#if HAS_LEVELING
|
|
bool leveling_is_valid();
|
|
void set_bed_leveling_enabled(const bool enable=true);
|
|
void reset_bed_level();
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
void set_z_fade_height(const float zfh, const bool do_report=true);
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
extern float zprobe_zoffset;
|
|
bool set_probe_deployed(const bool deploy);
|
|
#ifdef Z_AFTER_PROBING
|
|
void move_z_after_probing();
|
|
#endif
|
|
enum ProbePtRaise : unsigned char {
|
|
PROBE_PT_NONE, // No raise or stow after run_z_probe
|
|
PROBE_PT_STOW, // Do a complete stow after run_z_probe
|
|
PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
|
|
PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe
|
|
};
|
|
float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
|
|
#define DEPLOY_PROBE() set_probe_deployed(true)
|
|
#define STOW_PROBE() set_probe_deployed(false)
|
|
#else
|
|
#define DEPLOY_PROBE()
|
|
#define STOW_PROBE()
|
|
#endif
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
extern MarlinBusyState busy_state;
|
|
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
|
|
#else
|
|
#define KEEPALIVE_STATE(n) NOOP
|
|
#endif
|
|
|
|
#if FAN_COUNT > 0
|
|
extern int16_t fanSpeeds[FAN_COUNT];
|
|
#if ENABLED(EXTRA_FAN_SPEED)
|
|
extern int16_t old_fanSpeeds[FAN_COUNT],
|
|
new_fanSpeeds[FAN_COUNT];
|
|
#endif
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
extern bool fans_paused;
|
|
extern int16_t paused_fanSpeeds[FAN_COUNT];
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
extern int controllerFanSpeed;
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
extern bool filament_sensor; // Flag that filament sensor readings should control extrusion
|
|
extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
|
|
filament_width_meas; // Measured filament diameter
|
|
extern uint8_t meas_delay_cm; // Delay distance
|
|
extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delay measurement
|
|
filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
extern int8_t did_pause_print;
|
|
extern AdvancedPauseMenuResponse advanced_pause_menu_response;
|
|
extern float filament_change_unload_length[EXTRUDERS],
|
|
filament_change_load_length[EXTRUDERS];
|
|
#endif
|
|
|
|
#if HAS_POWER_SWITCH
|
|
extern bool powersupply_on;
|
|
#define PSU_PIN_ON() do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0)
|
|
#define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0)
|
|
#endif
|
|
|
|
// Handling multiple extruders pins
|
|
extern uint8_t active_extruder;
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
extern float mixing_factor[MIXING_STEPPERS];
|
|
#endif
|
|
|
|
inline void set_current_from_destination() { COPY(current_position, destination); }
|
|
inline void set_destination_from_current() { COPY(destination, current_position); }
|
|
void prepare_move_to_destination();
|
|
|
|
/**
|
|
* Blocking movement and shorthand functions
|
|
*/
|
|
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0);
|
|
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0);
|
|
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0);
|
|
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0);
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
void plan_arc(const float(&cart)[XYZE], const float(&offset)[2], const bool clockwise);
|
|
#endif
|
|
|
|
#define HAS_AXIS_UNHOMED_ERR ( \
|
|
ENABLED(Z_PROBE_ALLEN_KEY) \
|
|
|| ENABLED(Z_PROBE_SLED) \
|
|
|| HAS_PROBING_PROCEDURE \
|
|
|| HOTENDS > 1 \
|
|
|| ENABLED(NOZZLE_CLEAN_FEATURE) \
|
|
|| ENABLED(NOZZLE_PARK_FEATURE) \
|
|
|| (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
|
|
|| HAS_M206_COMMAND \
|
|
) || ENABLED(NO_MOTION_BEFORE_HOMING)
|
|
|
|
#if HAS_AXIS_UNHOMED_ERR
|
|
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
|
|
#endif
|
|
|
|
/**
|
|
* position_is_reachable family of functions
|
|
*/
|
|
|
|
#if IS_KINEMATIC // (DELTA or SCARA)
|
|
|
|
#if IS_SCARA
|
|
extern const float L1, L2;
|
|
#endif
|
|
|
|
// Return true if the given point is within the printable area
|
|
inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
|
|
#if ENABLED(DELTA)
|
|
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
|
|
#elif ENABLED(HANGPRINTER)
|
|
// TODO: This is over simplified. Hangprinter's build volume is _not_ cylindrical.
|
|
return HYPOT2(rx, ry) <= sq(HANGPRINTER_PRINTABLE_RADIUS - inset);
|
|
#elif IS_SCARA
|
|
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
|
|
return (
|
|
R2 <= sq(L1 + L2) - inset
|
|
#if MIDDLE_DEAD_ZONE_R > 0
|
|
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
|
|
#endif
|
|
);
|
|
#endif
|
|
}
|
|
|
|
#if HAS_BED_PROBE
|
|
// Return true if the both nozzle and the probe can reach the given point.
|
|
// Note: This won't work on SCARA since the probe offset rotates with the arm.
|
|
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
|
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
|
&& position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
|
|
}
|
|
#endif
|
|
|
|
#else // CARTESIAN
|
|
|
|
// Return true if the given position is within the machine bounds.
|
|
inline bool position_is_reachable(const float &rx, const float &ry) {
|
|
// Add 0.001 margin to deal with float imprecision
|
|
return WITHIN(rx, X_MIN_POS - 0.001f, X_MAX_POS + 0.001f)
|
|
&& WITHIN(ry, Y_MIN_POS - 0.001f, Y_MAX_POS + 0.001f);
|
|
}
|
|
|
|
#if HAS_BED_PROBE
|
|
/**
|
|
* Return whether the given position is within the bed, and whether the nozzle
|
|
* can reach the position required to put the probe at the given position.
|
|
*
|
|
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
|
|
* nozzle must be be able to reach +10,-10.
|
|
*/
|
|
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
|
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
|
&& WITHIN(rx, MIN_PROBE_X - 0.001f, MAX_PROBE_X + 0.001f)
|
|
&& WITHIN(ry, MIN_PROBE_Y - 0.001f, MAX_PROBE_Y + 0.001f);
|
|
}
|
|
#endif
|
|
|
|
#endif // CARTESIAN
|
|
|
|
#if !HAS_BED_PROBE
|
|
FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
|
|
#endif
|
|
|
|
#endif // MARLIN_H
|