1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-23 20:18:52 +00:00
MarlinFirmware/Marlin/ubl.cpp
2018-04-17 15:55:38 -05:00

287 lines
8.7 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "Marlin.h"
#include "ubl.h"
#include "hex_print_routines.h"
#include "temperature.h"
#include "planner.h"
#include "math.h"
unified_bed_leveling ubl;
uint8_t ubl_cnt = 0;
void unified_bed_leveling::echo_name() { SERIAL_PROTOCOLPGM("Unified Bed Leveling"); }
void unified_bed_leveling::report_current_mesh() {
if (!leveling_is_valid()) return;
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(" G29 I999");
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y])) {
SERIAL_ECHO_START();
SERIAL_ECHOPAIR(" M421 I", x);
SERIAL_ECHOPAIR(" J", y);
SERIAL_ECHOPGM(" Z");
SERIAL_ECHO_F(z_values[x][y], 2);
SERIAL_EOL();
}
}
void unified_bed_leveling::report_state() {
echo_name();
SERIAL_PROTOCOLPGM(" System v" UBL_VERSION " ");
if (!planner.leveling_active) SERIAL_PROTOCOLPGM("in");
SERIAL_PROTOCOLLNPGM("active.");
safe_delay(50);
}
#if ENABLED(UBL_DEVEL_DEBUGGING)
static void debug_echo_axis(const AxisEnum axis) {
if (current_position[axis] == destination[axis])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[X_AXIS], 6);
}
void debug_current_and_destination(const char *title) {
// if the title message starts with a '!' it is so important, we are going to
// ignore the status of the g26_debug_flag
if (*title != '!' && !g26_debug_flag) return;
const float de = destination[E_AXIS] - current_position[E_AXIS];
if (de == 0.0) return; // Printing moves only
const float dx = destination[X_AXIS] - current_position[X_AXIS],
dy = destination[Y_AXIS] - current_position[Y_AXIS],
xy_dist = HYPOT(dx, dy);
if (xy_dist == 0.0) return;
SERIAL_ECHOPGM(" fpmm=");
const float fpmm = de / xy_dist;
SERIAL_ECHO_F(fpmm, 6);
SERIAL_ECHOPGM(" current=( ");
SERIAL_ECHO_F(current_position[X_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[Y_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[Z_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[E_AXIS], 6);
SERIAL_ECHOPGM(" ) destination=( ");
debug_echo_axis(X_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(Y_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(Z_AXIS);
SERIAL_ECHOPGM(", ");
debug_echo_axis(E_AXIS);
SERIAL_ECHOPGM(" ) ");
SERIAL_ECHO(title);
SERIAL_EOL();
}
#endif // UBL_DEVEL_DEBUGGING
int8_t unified_bed_leveling::storage_slot;
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
constexpr float unified_bed_leveling::_mesh_index_to_xpos[16],
unified_bed_leveling::_mesh_index_to_ypos[16];
#if ENABLED(ULTIPANEL)
bool unified_bed_leveling::lcd_map_control = false;
#endif
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() {
ubl_cnt++; // Debug counter to ensure we only have one UBL object present in memory. We can eliminate this (and all references to ubl_cnt) very soon.
reset();
}
void unified_bed_leveling::reset() {
const bool was_enabled = planner.leveling_active;
set_bed_leveling_enabled(false);
storage_slot = -1;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.set_z_fade_height(10.0);
#endif
ZERO(z_values);
if (was_enabled) report_current_position();
}
void unified_bed_leveling::invalidate() {
set_bed_leveling_enabled(false);
set_all_mesh_points_to_value(NAN);
}
void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
z_values[x][y] = value;
}
}
}
static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) {
SERIAL_ECHO_SP(sp);
SERIAL_CHAR('(');
if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(x);
SERIAL_CHAR(',');
if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(y);
SERIAL_CHAR(')');
safe_delay(5);
}
static void serial_echo_column_labels(const uint8_t sp) {
SERIAL_ECHO_SP(7);
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
if (i < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(i);
SERIAL_ECHO_SP(sp);
}
safe_delay(10);
}
/**
* Produce one of these mesh maps:
* 0: Human-readable
* 1: CSV format for spreadsheet import
* 2: TODO: Display on Graphical LCD
* 4: Compact Human-Readable
*/
void unified_bed_leveling::display_map(const int map_type) {
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
suspend_auto_report = true;
#endif
constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each
const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4;
SERIAL_ECHOPGM("\nBed Topography Report");
if (human) {
SERIAL_ECHOPGM(":\n\n");
serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y);
serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y);
SERIAL_EOL();
serial_echo_column_labels(eachsp - 2);
}
else {
SERIAL_ECHOPGM(" for ");
serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n"));
}
const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
if (!lcd) SERIAL_EOL();
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
// Row Label (J index)
if (human) {
if (j < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(j);
SERIAL_ECHOPGM(" |");
}
// Row Values (I indexes)
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
// Opening Brace or Space
const bool is_current = i == current_xi && j == current_yi;
if (human) SERIAL_CHAR(is_current ? '[' : ' ');
// Z Value at current I, J
const float f = z_values[i][j];
if (lcd) {
// TODO: Display on Graphical LCD
}
else if (isnan(f))
serialprintPGM(human ? PSTR(" . ") : PSTR("NAN"));
else if (human || csv) {
if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Space for positive ('-' for negative)
SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits
}
idle();
if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t');
// Closing Brace or Space
if (human) SERIAL_CHAR(is_current ? ']' : ' ');
#if TX_BUFFER_SIZE > 0
SERIAL_FLUSHTX();
#endif
safe_delay(5);
}
if (!lcd) SERIAL_EOL();
// A blank line between rows (unless compact)
if (j && human && !comp) SERIAL_ECHOLNPGM(" |");
}
if (human) {
serial_echo_column_labels(eachsp - 2);
SERIAL_EOL();
serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y);
serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y);
SERIAL_EOL();
SERIAL_EOL();
}
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
suspend_auto_report = false;
#endif
}
bool unified_bed_leveling::sanity_check() {
uint8_t error_flag = 0;
if (settings.calc_num_meshes() < 1) {
SERIAL_PROTOCOLLNPGM("?Mesh too big for EEPROM.");
error_flag++;
}
return !!error_flag;
}
#endif // AUTO_BED_LEVELING_UBL