1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-30 23:30:16 +00:00
MarlinFirmware/Marlin/I2CPositionEncoder.h
jaysonkelly f8a8711075 I2C position encoders update
Updating I2C position encoders to enable babystepping and Babystep XY when using the ecm microstep correction method. Also changed default method to ECM microstep.
2018-02-08 02:46:12 -06:00

347 lines
12 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef I2CPOSENC_H
#define I2CPOSENC_H
#include "MarlinConfig.h"
#if ENABLED(I2C_POSITION_ENCODERS)
#include "enum.h"
#include "macros.h"
#include "types.h"
#include <Wire.h>
//=========== Advanced / Less-Common Encoder Configuration Settings ==========
#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
// proportional to the current speed of the axis allows
// for very small error margin at low speeds without
// stuttering due to reading latency at high speeds
#define I2CPE_DEBUG // enable encoder-related debug serial echos
#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
// after changing address.
#define I2CPE_MAG_SIG_GOOD 0
#define I2CPE_MAG_SIG_MID 1
#define I2CPE_MAG_SIG_BAD 2
#define I2CPE_MAG_SIG_NF 255
#define I2CPE_REQ_REPORT 0
#define I2CPE_RESET_COUNT 1
#define I2CPE_SET_ADDR 2
#define I2CPE_SET_REPORT_MODE 3
#define I2CPE_CLEAR_EEPROM 4
#define I2CPE_LED_PAR_MODE 10
#define I2CPE_LED_PAR_BRT 11
#define I2CPE_LED_PAR_RATE 14
#define I2CPE_REPORT_DISTANCE 0
#define I2CPE_REPORT_STRENGTH 1
#define I2CPE_REPORT_VERSION 2
// Default I2C addresses
#define I2CPE_PRESET_ADDR_X 30
#define I2CPE_PRESET_ADDR_Y 31
#define I2CPE_PRESET_ADDR_Z 32
#define I2CPE_PRESET_ADDR_E 33
#define I2CPE_DEF_AXIS X_AXIS
#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
// Error event counter; tracks how many times there is an error exceeding a certain threshold
#define I2CPE_ERR_CNT_THRESH 3.00
#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
#define I2CPE_ERR_ARRAY_SIZE 32
#define I2CPE_ERR_PRST_ARRAY_SIZE 10
#endif
// Error Correction Methods
#define I2CPE_ECM_NONE 0
#define I2CPE_ECM_MICROSTEP 1
#define I2CPE_ECM_PLANNER 2
#define I2CPE_ECM_STALLDETECT 3
// Encoder types
#define I2CPE_ENC_TYPE_ROTARY 0
#define I2CPE_ENC_TYPE_LINEAR 1
// Parser
#define I2CPE_PARSE_ERR 1
#define I2CPE_PARSE_OK 0
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
#define CHECK_IDX() do{ if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; }while(0)
typedef union {
volatile int32_t val = 0;
uint8_t bval[4];
} i2cLong;
class I2CPositionEncoder {
private:
AxisEnum encoderAxis = I2CPE_DEF_AXIS;
uint8_t i2cAddress = I2CPE_DEF_ADDR,
ecMethod = I2CPE_DEF_EC_METHOD,
type = I2CPE_DEF_TYPE,
H = I2CPE_MAG_SIG_NF; // Magnetic field strength
int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
stepperTicks = I2CPE_DEF_TICKS_REV,
errorCount = 0,
errorPrev = 0;
float ecThreshold = I2CPE_DEF_EC_THRESH;
bool homed = false,
trusted = false,
initialised = false,
active = false,
invert = false,
ec = true;
int32_t zeroOffset = 0,
lastPosition = 0,
position;
millis_t lastPositionTime = 0,
nextErrorCountTime = 0,
lastErrorTime;
//double positionMm; //calculate
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
uint8_t errIdx = 0, errPrstIdx = 0;
int err[I2CPE_ERR_ARRAY_SIZE] = { 0 },
errPrst[I2CPE_ERR_PRST_ARRAY_SIZE] = { 0 };
#endif
//float positionMm; //calculate
public:
void init(const uint8_t address, const AxisEnum axis);
void reset();
void update();
void set_homed();
int32_t get_raw_count();
FORCE_INLINE float mm_from_count(const int32_t count) {
switch (type) {
default: return -1;
case I2CPE_ENC_TYPE_LINEAR:
return count / encoderTicksPerUnit;
case I2CPE_ENC_TYPE_ROTARY:
return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]);
}
}
FORCE_INLINE float get_position_mm() { return mm_from_count(get_position()); }
FORCE_INLINE int32_t get_position() { return get_raw_count() - zeroOffset; }
int32_t get_axis_error_steps(const bool report);
float get_axis_error_mm(const bool report);
void calibrate_steps_mm(const uint8_t iter);
bool passes_test(const bool report);
bool test_axis(void);
FORCE_INLINE int get_error_count(void) { return errorCount; }
FORCE_INLINE void set_error_count(const int newCount) { errorCount = newCount; }
FORCE_INLINE uint8_t get_address() { return i2cAddress; }
FORCE_INLINE void set_address(const uint8_t addr) { i2cAddress = addr; }
FORCE_INLINE bool get_active(void) { return active; }
FORCE_INLINE void set_active(const bool a) { active = a; }
FORCE_INLINE void set_inverted(const bool i) { invert = i; }
FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
FORCE_INLINE bool get_ec_enabled() { return ec; }
FORCE_INLINE void set_ec_enabled(const bool enabled) { ec = enabled; }
FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
FORCE_INLINE void set_ec_method(const byte method) { ecMethod = method; }
FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
FORCE_INLINE void set_ec_threshold(const float newThreshold) { ecThreshold = newThreshold; }
FORCE_INLINE int get_encoder_ticks_mm() {
switch (type) {
default: return 0;
case I2CPE_ENC_TYPE_LINEAR:
return encoderTicksPerUnit;
case I2CPE_ENC_TYPE_ROTARY:
return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]);
}
}
FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
FORCE_INLINE void set_ticks_unit(const int ticks) { encoderTicksPerUnit = ticks; }
FORCE_INLINE uint8_t get_type() { return type; }
FORCE_INLINE void set_type(const byte newType) { type = newType; }
FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
FORCE_INLINE void set_stepper_ticks(const int ticks) { stepperTicks = ticks; }
};
class I2CPositionEncodersMgr {
private:
static bool I2CPE_anyaxis;
static uint8_t I2CPE_addr, I2CPE_idx;
public:
static void init(void);
// consider only updating one endoder per call / tick if encoders become too time intensive
static void update(void) { LOOP_PE(i) encoders[i].update(); }
static void homed(const AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) encoders[i].set_homed();
}
static void report_position(const int8_t idx, const bool units, const bool noOffset);
static void report_status(const int8_t idx) {
CHECK_IDX();
SERIAL_ECHOPAIR("Encoder ",idx);
SERIAL_ECHOPGM(": ");
encoders[idx].get_raw_count();
encoders[idx].passes_test(true);
}
static void report_error(const int8_t idx) {
CHECK_IDX();
encoders[idx].get_axis_error_steps(true);
}
static void test_axis(const int8_t idx) {
CHECK_IDX();
encoders[idx].test_axis();
}
static void calibrate_steps_mm(const int8_t idx, const int iterations) {
CHECK_IDX();
encoders[idx].calibrate_steps_mm(iterations);
}
static void change_module_address(const uint8_t oldaddr, const uint8_t newaddr);
static void report_module_firmware(const uint8_t address);
static void report_error_count(const int8_t idx, const AxisEnum axis) {
CHECK_IDX();
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count());
}
static void reset_error_count(const int8_t idx, const AxisEnum axis) {
CHECK_IDX();
encoders[idx].set_error_count(0);
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPGM(" axis has been reset.");
}
static void enable_ec(const int8_t idx, const bool enabled, const AxisEnum axis) {
CHECK_IDX();
encoders[idx].set_ec_enabled(enabled);
SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
SERIAL_ECHOPGM(" axis is ");
serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis"));
SERIAL_ECHOLNPGM("abled.");
}
static void set_ec_threshold(const int8_t idx, const float newThreshold, const AxisEnum axis) {
CHECK_IDX();
encoders[idx].set_ec_threshold(newThreshold);
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis set to ", newThreshold);
SERIAL_ECHOLNPGM("mm.");
}
static void get_ec_threshold(const int8_t idx, const AxisEnum axis) {
CHECK_IDX();
const float threshold = encoders[idx].get_ec_threshold();
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis is ", threshold);
SERIAL_ECHOLNPGM("mm.");
}
static int8_t idx_from_axis(const AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) return i;
return -1;
}
static int8_t idx_from_addr(const uint8_t addr) {
LOOP_PE(i)
if (encoders[i].get_address() == addr) return i;
return -1;
}
static int8_t parse();
static void M860();
static void M861();
static void M862();
static void M863();
static void M864();
static void M865();
static void M866();
static void M867();
static void M868();
static void M869();
static I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
};
extern I2CPositionEncodersMgr I2CPEM;
FORCE_INLINE static void gcode_M860() { I2CPEM.M860(); }
FORCE_INLINE static void gcode_M861() { I2CPEM.M861(); }
FORCE_INLINE static void gcode_M862() { I2CPEM.M862(); }
FORCE_INLINE static void gcode_M863() { I2CPEM.M863(); }
FORCE_INLINE static void gcode_M864() { I2CPEM.M864(); }
FORCE_INLINE static void gcode_M865() { I2CPEM.M865(); }
FORCE_INLINE static void gcode_M866() { I2CPEM.M866(); }
FORCE_INLINE static void gcode_M867() { I2CPEM.M867(); }
FORCE_INLINE static void gcode_M868() { I2CPEM.M868(); }
FORCE_INLINE static void gcode_M869() { I2CPEM.M869(); }
#endif //I2C_POSITION_ENCODERS
#endif //I2CPOSENC_H