mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-25 04:48:31 +00:00
209 lines
6.0 KiB
C
209 lines
6.0 KiB
C
/*
|
|
temperature.h - temperature controller
|
|
Part of Marlin
|
|
|
|
Copyright (c) 2011 Erik van der Zalm
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef temperature_h
|
|
#define temperature_h
|
|
|
|
#include "Marlin.h"
|
|
#include "planner.h"
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
// public functions
|
|
void tp_init(); //initialize the heating
|
|
void manage_heater(); //it is critical that this is called periodically.
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
// For converting raw Filament Width to milimeters
|
|
float analog2widthFil();
|
|
|
|
// For converting raw Filament Width to an extrusion ratio
|
|
int widthFil_to_size_ratio();
|
|
#endif
|
|
|
|
// low level conversion routines
|
|
// do not use these routines and variables outside of temperature.cpp
|
|
extern int target_temperature[EXTRUDERS];
|
|
extern float current_temperature[EXTRUDERS];
|
|
#ifdef SHOW_TEMP_ADC_VALUES
|
|
extern int current_temperature_raw[EXTRUDERS];
|
|
extern int current_temperature_bed_raw;
|
|
#endif
|
|
extern int target_temperature_bed;
|
|
extern float current_temperature_bed;
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
extern float redundant_temperature;
|
|
#endif
|
|
|
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
|
extern unsigned char soft_pwm_bed;
|
|
#endif
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
#ifdef PID_PARAMS_PER_EXTRUDER
|
|
extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS]; // one param per extruder
|
|
#define PID_PARAM(param,e) param[e] // use macro to point to array value
|
|
#else
|
|
extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
|
|
#define PID_PARAM(param, e) param // use macro to point directly to value
|
|
#endif // PID_PARAMS_PER_EXTRUDER
|
|
float scalePID_i(float i);
|
|
float scalePID_d(float d);
|
|
float unscalePID_i(float i);
|
|
float unscalePID_d(float d);
|
|
|
|
#endif
|
|
#ifdef PIDTEMPBED
|
|
extern float bedKp,bedKi,bedKd;
|
|
#endif
|
|
|
|
|
|
#ifdef BABYSTEPPING
|
|
extern volatile int babystepsTodo[3];
|
|
#endif
|
|
|
|
//high level conversion routines, for use outside of temperature.cpp
|
|
//inline so that there is no performance decrease.
|
|
//deg=degreeCelsius
|
|
|
|
FORCE_INLINE float degHotend(uint8_t extruder) {
|
|
return current_temperature[extruder];
|
|
};
|
|
|
|
#ifdef SHOW_TEMP_ADC_VALUES
|
|
FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
|
|
return current_temperature_raw[extruder];
|
|
};
|
|
|
|
FORCE_INLINE float rawBedTemp() {
|
|
return current_temperature_bed_raw;
|
|
};
|
|
#endif
|
|
|
|
FORCE_INLINE float degBed() {
|
|
return current_temperature_bed;
|
|
};
|
|
|
|
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
|
|
return target_temperature[extruder];
|
|
};
|
|
|
|
FORCE_INLINE float degTargetBed() {
|
|
return target_temperature_bed;
|
|
};
|
|
|
|
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
|
|
target_temperature[extruder] = celsius;
|
|
};
|
|
|
|
FORCE_INLINE void setTargetBed(const float &celsius) {
|
|
target_temperature_bed = celsius;
|
|
};
|
|
|
|
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
|
|
return target_temperature[extruder] > current_temperature[extruder];
|
|
};
|
|
|
|
FORCE_INLINE bool isHeatingBed() {
|
|
return target_temperature_bed > current_temperature_bed;
|
|
};
|
|
|
|
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
|
|
return target_temperature[extruder] < current_temperature[extruder];
|
|
};
|
|
|
|
FORCE_INLINE bool isCoolingBed() {
|
|
return target_temperature_bed < current_temperature_bed;
|
|
};
|
|
|
|
#define degHotend0() degHotend(0)
|
|
#define degTargetHotend0() degTargetHotend(0)
|
|
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
|
|
#define isHeatingHotend0() isHeatingHotend(0)
|
|
#define isCoolingHotend0() isCoolingHotend(0)
|
|
#if EXTRUDERS > 1
|
|
#define degHotend1() degHotend(1)
|
|
#define degTargetHotend1() degTargetHotend(1)
|
|
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
|
|
#define isHeatingHotend1() isHeatingHotend(1)
|
|
#define isCoolingHotend1() isCoolingHotend(1)
|
|
#else
|
|
#define setTargetHotend1(_celsius) do{}while(0)
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
#define degHotend2() degHotend(2)
|
|
#define degTargetHotend2() degTargetHotend(2)
|
|
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
|
|
#define isHeatingHotend2() isHeatingHotend(2)
|
|
#define isCoolingHotend2() isCoolingHotend(2)
|
|
#else
|
|
#define setTargetHotend2(_celsius) do{}while(0)
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
#define degHotend3() degHotend(3)
|
|
#define degTargetHotend3() degTargetHotend(3)
|
|
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
|
|
#define isHeatingHotend3() isHeatingHotend(3)
|
|
#define isCoolingHotend3() isCoolingHotend(3)
|
|
#else
|
|
#define setTargetHotend3(_celsius) do{}while(0)
|
|
#endif
|
|
#if EXTRUDERS > 4
|
|
#error Invalid number of extruders
|
|
#endif
|
|
|
|
|
|
|
|
int getHeaterPower(int heater);
|
|
void disable_heater();
|
|
void setWatch();
|
|
void updatePID();
|
|
|
|
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
|
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
|
|
static int thermal_runaway_state_machine[4]; // = {0,0,0,0};
|
|
static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0};
|
|
static bool thermal_runaway = false;
|
|
#if TEMP_SENSOR_BED != 0
|
|
static int thermal_runaway_bed_state_machine;
|
|
static unsigned long thermal_runaway_bed_timer;
|
|
#endif
|
|
#endif
|
|
|
|
FORCE_INLINE void autotempShutdown(){
|
|
#ifdef AUTOTEMP
|
|
if(autotemp_enabled)
|
|
{
|
|
autotemp_enabled=false;
|
|
if(degTargetHotend(active_extruder)>autotemp_min)
|
|
setTargetHotend(0,active_extruder);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void PID_autotune(float temp, int extruder, int ncycles);
|
|
|
|
void setExtruderAutoFanState(int pin, bool state);
|
|
void checkExtruderAutoFans();
|
|
|
|
#endif
|