mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-27 13:56:24 +00:00
d147a057ac
It is a realtime control over the head position via the LCD menu system that works _while_ printing. Using it, one can e.g. tune the z-position in realtime, while printing the first layer. Also, lost steps can be manually added/removed, but thats not the prime feature. Stuff is placed into the Tune->Babystep * It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then. Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name. say goodby to fuddling around with the z-axis.
154 lines
4.0 KiB
C
154 lines
4.0 KiB
C
/*
|
|
temperature.h - temperature controller
|
|
Part of Marlin
|
|
|
|
Copyright (c) 2011 Erik van der Zalm
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef temperature_h
|
|
#define temperature_h
|
|
|
|
#include "Marlin.h"
|
|
#include "planner.h"
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
// public functions
|
|
void tp_init(); //initialise the heating
|
|
void manage_heater(); //it is critical that this is called periodically.
|
|
|
|
// low level conversion routines
|
|
// do not use these routines and variables outside of temperature.cpp
|
|
extern int target_temperature[EXTRUDERS];
|
|
extern float current_temperature[EXTRUDERS];
|
|
extern int target_temperature_bed;
|
|
extern float current_temperature_bed;
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
extern float redundant_temperature;
|
|
#endif
|
|
|
|
#ifdef PIDTEMP
|
|
extern float Kp,Ki,Kd,Kc;
|
|
float scalePID_i(float i);
|
|
float scalePID_d(float d);
|
|
float unscalePID_i(float i);
|
|
float unscalePID_d(float d);
|
|
|
|
#endif
|
|
#ifdef PIDTEMPBED
|
|
extern float bedKp,bedKi,bedKd;
|
|
#endif
|
|
|
|
|
|
#ifdef BABYSTEPPING
|
|
extern volatile int babystepsTodo[3];
|
|
#endif
|
|
|
|
//high level conversion routines, for use outside of temperature.cpp
|
|
//inline so that there is no performance decrease.
|
|
//deg=degreeCelsius
|
|
|
|
FORCE_INLINE float degHotend(uint8_t extruder) {
|
|
return current_temperature[extruder];
|
|
};
|
|
|
|
FORCE_INLINE float degBed() {
|
|
return current_temperature_bed;
|
|
};
|
|
|
|
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
|
|
return target_temperature[extruder];
|
|
};
|
|
|
|
FORCE_INLINE float degTargetBed() {
|
|
return target_temperature_bed;
|
|
};
|
|
|
|
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
|
|
target_temperature[extruder] = celsius;
|
|
};
|
|
|
|
FORCE_INLINE void setTargetBed(const float &celsius) {
|
|
target_temperature_bed = celsius;
|
|
};
|
|
|
|
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
|
|
return target_temperature[extruder] > current_temperature[extruder];
|
|
};
|
|
|
|
FORCE_INLINE bool isHeatingBed() {
|
|
return target_temperature_bed > current_temperature_bed;
|
|
};
|
|
|
|
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
|
|
return target_temperature[extruder] < current_temperature[extruder];
|
|
};
|
|
|
|
FORCE_INLINE bool isCoolingBed() {
|
|
return target_temperature_bed < current_temperature_bed;
|
|
};
|
|
|
|
#define degHotend0() degHotend(0)
|
|
#define degTargetHotend0() degTargetHotend(0)
|
|
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
|
|
#define isHeatingHotend0() isHeatingHotend(0)
|
|
#define isCoolingHotend0() isCoolingHotend(0)
|
|
#if EXTRUDERS > 1
|
|
#define degHotend1() degHotend(1)
|
|
#define degTargetHotend1() degTargetHotend(1)
|
|
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
|
|
#define isHeatingHotend1() isHeatingHotend(1)
|
|
#define isCoolingHotend1() isCoolingHotend(1)
|
|
#else
|
|
#define setTargetHotend1(_celsius) do{}while(0)
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
#define degHotend2() degHotend(2)
|
|
#define degTargetHotend2() degTargetHotend(2)
|
|
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
|
|
#define isHeatingHotend2() isHeatingHotend(2)
|
|
#define isCoolingHotend2() isCoolingHotend(2)
|
|
#else
|
|
#define setTargetHotend2(_celsius) do{}while(0)
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
#error Invalid number of extruders
|
|
#endif
|
|
|
|
|
|
|
|
int getHeaterPower(int heater);
|
|
void disable_heater();
|
|
void setWatch();
|
|
void updatePID();
|
|
|
|
FORCE_INLINE void autotempShutdown(){
|
|
#ifdef AUTOTEMP
|
|
if(autotemp_enabled)
|
|
{
|
|
autotemp_enabled=false;
|
|
if(degTargetHotend(active_extruder)>autotemp_min)
|
|
setTargetHotend(0,active_extruder);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void PID_autotune(float temp, int extruder, int ncycles);
|
|
|
|
#endif
|
|
|