1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-27 22:08:02 +00:00
MarlinFirmware/Marlin/stepper.h
Scott Lahteine 6398d497b3 Ultimate followup to Stepper/Planner patch
- Search all symbols and apply prefixes where needed
- Encapsulate some private methods
- Inline some setters
- Make `microstep_mode` a public method
2016-05-03 17:07:37 -07:00

334 lines
10 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Part of Grbl
*
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Grbl is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Grbl is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef STEPPER_H
#define STEPPER_H
#include "planner.h"
#include "speed_lookuptable.h"
#include "stepper_indirection.h"
#include "language.h"
class Stepper;
extern Stepper stepper;
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
class Stepper {
public:
block_t* current_block = NULL; // A pointer to the block currently being traced
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
bool abort_on_endstop_hit = false;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
bool performing_homing = false;
#endif
#if ENABLED(ADVANCE)
long e_steps[4];
#endif
private:
unsigned char last_direction_bits = 0; // The next stepping-bits to be output
unsigned int cleaning_buffer_counter = 0;
#if ENABLED(Z_DUAL_ENDSTOPS)
bool locked_z_motor = false,
locked_z2_motor = false;
#endif
// Counter variables for the Bresenham line tracer
long counter_X = 0, counter_Y = 0, counter_Z = 0, counter_E = 0;
volatile unsigned long step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(ADVANCE)
unsigned char old_OCR0A;
long advance_rate, advance, final_advance = 0;
long old_advance = 0;
#endif
long acceleration_time, deceleration_time;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
unsigned short acc_step_rate; // needed for deceleration start point
uint8_t step_loops;
uint8_t step_loops_nominal;
unsigned short OCR1A_nominal;
volatile long endstops_trigsteps[3];
volatile long endstops_stepsTotal, endstops_stepsDone;
#if HAS_MOTOR_CURRENT_PWM
#ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif
const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
#endif
//
// Positions of stepper motors, in step units
//
volatile long count_position[NUM_AXIS] = { 0 };
//
// Current direction of stepper motors (+1 or -1)
//
volatile signed char count_direction[NUM_AXIS] = { 1 };
public:
//
// Constructor / initializer
//
Stepper() {};
//
// Initialize stepper hardware
//
void init();
//
// Interrupt Service Routines
//
void isr();
#if ENABLED(ADVANCE)
void advance_isr();
#endif
//
// Block until all buffered steps are executed
//
void synchronize();
//
// Set the current position in steps
//
void set_position(const long& x, const long& y, const long& z, const long& e);
void set_e_position(const long& e);
//
// Set direction bits for all steppers
//
void set_directions();
//
// Get the position of a stepper, in steps
//
long position(AxisEnum axis);
//
// Report the positions of the steppers, in steps
//
void report_positions();
//
// Get the position (mm) of an axis based on stepper position(s)
//
float get_axis_position_mm(AxisEnum axis);
//
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
//
void wake_up();
//
// Wait for moves to finish and disable all steppers
//
void finish_and_disable();
//
// Quickly stop all steppers and clear the blocks queue
//
void quick_stop();
//
// The direction of a single motor
//
FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
#if HAS_DIGIPOTSS
void digitalPotWrite(int address, int value);
#endif
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
void digipot_current(uint8_t driver, int current);
void microstep_mode(uint8_t driver, uint8_t stepping);
void microstep_readings();
#if ENABLED(Z_DUAL_ENDSTOPS)
FORCE_INLINE void set_homing_flag(bool state) { performing_homing = state; }
FORCE_INLINE void set_z_lock(bool state) { locked_z_motor = state; }
FORCE_INLINE void set_z2_lock(bool state) { locked_z2_motor = state; }
#endif
#if ENABLED(BABYSTEPPING)
void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
inline void kill_current_block() {
step_events_completed = current_block->step_event_count;
}
//
// Handle a triggered endstop
//
void endstop_triggered(AxisEnum axis);
//
// Triggered position of an axis in mm (not core-savvy)
//
FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
return endstops_trigsteps[axis] / planner.axis_steps_per_unit[axis];
}
private:
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
NOMORE(step_rate, MAX_STEP_FREQUENCY);
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2) & 0x3fff;
step_loops = 4;
}
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1) & 0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
NOLESS(step_rate, F_CPU / 500000);
step_rate -= F_CPU / 500000; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
}
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset() {
static int8_t last_extruder = -1;
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
last_direction_bits = current_block->direction_bits;
last_extruder = current_block->active_extruder;
set_directions();
}
#if ENABLED(ADVANCE)
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
void digipot_init();
void microstep_init();
};
#endif // STEPPER_H