mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-18 07:29:33 +00:00
128 lines
4.8 KiB
C
128 lines
4.8 KiB
C
/*
|
|
temperature.h - temperature controller
|
|
Part of Marlin
|
|
|
|
Copyright (c) 2011 Erik van der Zalm
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef temperature_h
|
|
#define temperature_h
|
|
|
|
#include "Marlin.h"
|
|
#include "fastio.h"
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
// public functions
|
|
void tp_init(); //initialise the heating
|
|
void manage_heater(); //it is critical that this is called periodically.
|
|
|
|
|
|
enum TempSensor {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2};
|
|
|
|
//low leven conversion routines
|
|
// do not use this routines and variables outsie of temperature.cpp
|
|
int temp2analog(int celsius);
|
|
int temp2analogBed(int celsius);
|
|
float analog2temp(int raw);
|
|
float analog2tempBed(int raw);
|
|
extern int target_raw[3];
|
|
extern int heatingtarget_raw[3];
|
|
extern int current_raw[3];
|
|
extern float Kp,Ki,Kd,Kc;
|
|
|
|
#ifdef PIDTEMP
|
|
extern float pid_setpoint ;
|
|
#endif
|
|
|
|
// #ifdef WATCHPERIOD
|
|
// extern int watch_raw[3] ;
|
|
// extern unsigned long watchmillis;
|
|
// #endif
|
|
|
|
|
|
|
|
//high level conversion routines, for use outside of temperature.cpp
|
|
//inline so that there is no performance decrease.
|
|
//deg=degreeCelsius
|
|
|
|
FORCE_INLINE float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);};
|
|
FORCE_INLINE float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);};
|
|
FORCE_INLINE float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);};
|
|
FORCE_INLINE float degHotend(uint8_t extruder){
|
|
if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
|
if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);
|
|
};
|
|
|
|
FORCE_INLINE float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);};
|
|
FORCE_INLINE float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);};
|
|
FORCE_INLINE float degTargetHotend(uint8_t extruder){
|
|
if(extruder == 0) return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);
|
|
if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);
|
|
};
|
|
|
|
FORCE_INLINE float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};
|
|
|
|
FORCE_INLINE void setTargetHotend0(const float &celsius)
|
|
{
|
|
target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius);
|
|
heatingtarget_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius-HEATING_EARLY_FINISH_DEG_OFFSET);
|
|
#ifdef PIDTEMP
|
|
pid_setpoint = celsius;
|
|
#endif //PIDTEMP
|
|
};
|
|
FORCE_INLINE void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};
|
|
FORCE_INLINE void setTargetHotend(const float &celcius, uint8_t extruder){
|
|
if(extruder == 0) setTargetHotend0(celcius);
|
|
if(extruder == 1) setTargetHotend1(celcius);
|
|
};
|
|
FORCE_INLINE void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};
|
|
|
|
FORCE_INLINE bool isHeatingHotend0() {return heatingtarget_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};
|
|
FORCE_INLINE bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};
|
|
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
|
|
if(extruder == 0) return heatingtarget_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];
|
|
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];
|
|
return false;
|
|
};
|
|
FORCE_INLINE bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];};
|
|
|
|
FORCE_INLINE bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];};
|
|
FORCE_INLINE bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];};
|
|
FORCE_INLINE bool isCoolingHotend(uint8_t extruder){
|
|
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];
|
|
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];
|
|
return false;
|
|
};
|
|
FORCE_INLINE bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];};
|
|
|
|
FORCE_INLINE void autotempShutdown(){
|
|
#ifdef AUTOTEMP
|
|
if(autotemp_enabled)
|
|
{
|
|
autotemp_enabled=false;
|
|
if(degTargetHotend0()>autotemp_min)
|
|
setTargetHotend0(0);
|
|
}
|
|
#endif
|
|
}
|
|
void disable_heater();
|
|
void setWatch();
|
|
void updatePID();
|
|
|
|
#endif
|
|
|