mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-24 12:35:51 +00:00
257 lines
7.2 KiB
OpenSCAD
257 lines
7.2 KiB
OpenSCAD
/**************************************\
|
|
* *
|
|
* OpenSCAD Mesh Display *
|
|
* by Thinkyhead - April 2017 *
|
|
* *
|
|
* Copy the grid output from Marlin, *
|
|
* paste below as shown, and use *
|
|
* OpenSCAD to see a visualization *
|
|
* of your mesh. *
|
|
* *
|
|
\**************************************/
|
|
|
|
//$t = 0.15; // comment out during animation
|
|
|
|
//
|
|
// Mesh info and points
|
|
//
|
|
|
|
mesh_width = 200; // X Size in mm of the probed area
|
|
mesh_height = 200; // Y Size...
|
|
zprobe_offset = 0; // Added to the points
|
|
NAN = 0; // Z to use for un-measured points
|
|
|
|
measured_z = [
|
|
[ -1.20, -1.13, -1.09, -1.03, -1.19 ],
|
|
[ -1.16, -1.25, -1.27, -1.25, -1.08 ],
|
|
[ -1.13, -1.26, -1.39, -1.31, -1.18 ],
|
|
[ -1.09, -1.20, -1.26, -1.21, -1.18 ],
|
|
[ -1.13, -0.99, -1.03, -1.06, -1.32 ]
|
|
];
|
|
|
|
//
|
|
// Geometry
|
|
//
|
|
|
|
max_z_scale = 100; // Scale at Time 0.5
|
|
min_z_scale = 10; // Scale at Time 0.0 and 1.0
|
|
thickness = 0.5; // thickness of the mesh triangles
|
|
tesselation = 1; // levels of tesselation from 0-2
|
|
alternation = 2; // direction change modulus (try it)
|
|
|
|
//
|
|
// Appearance
|
|
//
|
|
|
|
show_plane = true;
|
|
show_labels = true;
|
|
arrow_length = 5;
|
|
|
|
label_font_lg = "Arial";
|
|
label_font_sm = "Arial";
|
|
mesh_color = [1,1,1,0.5];
|
|
plane_color = [0.4,0.6,0.9,0.6];
|
|
|
|
//================================================ Derive useful values
|
|
|
|
big_z = max_2D(measured_z,0);
|
|
lil_z = min_2D(measured_z,0);
|
|
|
|
mean_value = (big_z + lil_z) / 2.0;
|
|
|
|
mesh_points_y = len(measured_z);
|
|
mesh_points_x = len(measured_z[0]);
|
|
|
|
xspace = mesh_width / (mesh_points_x - 1);
|
|
yspace = mesh_height / (mesh_points_y - 1);
|
|
|
|
// At $t=0 and $t=1 scale will be 100%
|
|
z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2;
|
|
|
|
//
|
|
// Min and max recursive functions for 1D and 2D arrays
|
|
// Return the smallest or largest value in the array
|
|
//
|
|
function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i];
|
|
function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0);
|
|
function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i];
|
|
function max_2D(a,j) = (j<len(a)-1) ? max_2D(a,j+1) : max_1D(a[j], 0);
|
|
|
|
//
|
|
// Get the corner probe points of a grid square.
|
|
//
|
|
// Input : x,y grid indexes
|
|
// Output : An array of the 4 corner points
|
|
//
|
|
function grid_square(x,y) = [
|
|
[x * xspace, y * yspace, z_scale_factor * (measured_z[y][x] - mean_value)],
|
|
[x * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x] - mean_value)],
|
|
[(x+1) * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x+1] - mean_value)],
|
|
[(x+1) * xspace, y * yspace, z_scale_factor * (measured_z[y][x+1] - mean_value)]
|
|
];
|
|
|
|
// The corner point of a grid square with Z centered on the mean
|
|
function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)];
|
|
|
|
//
|
|
// Draw the point markers and labels
|
|
//
|
|
module point_markers(show_home=true) {
|
|
// Mark the home position 0,0
|
|
color([0,0,0,0.25]) translate([1,1]) cylinder(r=1, h=z_scale_factor, center=true);
|
|
|
|
for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) {
|
|
z = measured_z[y][x];
|
|
down = z < mean_value;
|
|
translate(pos(x, y, z)) {
|
|
|
|
// Label each point with the Z
|
|
if (show_labels) {
|
|
v = z - mean_value;
|
|
|
|
color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
|
|
translate([0,0,down?-10:10]) {
|
|
|
|
$fn=8;
|
|
rotate([90,0])
|
|
text(str(z), 6, label_font_lg, halign="center", valign="center");
|
|
|
|
translate([0,0,down?-6:6]) rotate([90,0])
|
|
text(str(down ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
|
|
}
|
|
}
|
|
|
|
// Show an arrow pointing up or down
|
|
rotate([0, down ? 180 : 0]) translate([0,0,-1])
|
|
cylinder(
|
|
r1=0.5,
|
|
r2=0.1,
|
|
h=arrow_length, $fn=12, center=1
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Split a square on the diagonal into
|
|
// two triangles and render them.
|
|
//
|
|
// s : a square
|
|
// alt : a flag to split on the other diagonal
|
|
//
|
|
module tesselated_square(s, alt=false) {
|
|
add = [0,0,thickness];
|
|
p1 = [
|
|
s[0], s[1], s[2], s[3],
|
|
s[0]+add, s[1]+add, s[2]+add, s[3]+add
|
|
];
|
|
f1 = alt
|
|
? [ [0,1,3], [4,5,1,0], [4,7,5], [5,7,3,1], [7,4,0,3] ]
|
|
: [ [0,1,2], [4,5,1,0], [4,6,5], [5,6,2,1], [6,4,0,2] ];
|
|
f2 = alt
|
|
? [ [1,2,3], [5,6,2,1], [5,6,7], [6,7,3,2], [7,5,1,3] ]
|
|
: [ [0,2,3], [4,6,2,0], [4,7,6], [6,7,3,2], [7,4,0,3] ];
|
|
|
|
// Use the other diagonal
|
|
polyhedron(points=p1, faces=f1);
|
|
polyhedron(points=p1, faces=f2);
|
|
}
|
|
|
|
/**
|
|
* The simplest mesh display
|
|
*/
|
|
module simple_mesh(show_plane=show_plane) {
|
|
if (show_plane) color(plane_color) cube([mesh_width, mesh_height, thickness]);
|
|
color(mesh_color)
|
|
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2])
|
|
tesselated_square(grid_square(x, y));
|
|
}
|
|
|
|
/**
|
|
* Subdivide the mesh into smaller squares.
|
|
*/
|
|
module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) {
|
|
if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_width+10, mesh_height+10, thickness]);
|
|
tesselation = tesselation % 4;
|
|
color(mesh_color)
|
|
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
|
|
square = grid_square(x, y);
|
|
if (tesselation < 1) {
|
|
tesselated_square(square,(x%alternation)-(y%alternation));
|
|
}
|
|
else {
|
|
subdiv_4 = subdivided_square(square);
|
|
if (tesselation < 2) {
|
|
for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
|
|
}
|
|
else {
|
|
for (i=[0:3]) {
|
|
subdiv_16 = subdivided_square(subdiv_4[i]);
|
|
if (tesselation < 3) {
|
|
for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
|
|
}
|
|
else {
|
|
for (j=[0:3]) {
|
|
subdiv_64 = subdivided_square(subdiv_16[j]);
|
|
if (tesselation < 4) {
|
|
for (k=[0:3]) tesselated_square(subdiv_64[k]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
//
|
|
// Subdivision helpers
|
|
//
|
|
function ctrz(a) = (a[0][2]+a[1][2]+a[3][2]+a[2][2])/4;
|
|
function avgx(a,i) = (a[i][0]+a[(i+1)%4][0])/2;
|
|
function avgy(a,i) = (a[i][1]+a[(i+1)%4][1])/2;
|
|
function avgz(a,i) = (a[i][2]+a[(i+1)%4][2])/2;
|
|
|
|
//
|
|
// Convert one square into 4, applying bilinear averaging
|
|
//
|
|
// Input : 1 square (4 points)
|
|
// Output : An array of 4 squares
|
|
//
|
|
function subdivided_square(a) = [
|
|
[ // SW square
|
|
a[0], // SW
|
|
[a[0][0],avgy(a,0),avgz(a,0)], // CW
|
|
[avgx(a,1),avgy(a,0),ctrz(a)], // CC
|
|
[avgx(a,1),a[0][1],avgz(a,3)] // SC
|
|
],
|
|
[ // NW square
|
|
[a[0][0],avgy(a,0),avgz(a,0)], // CW
|
|
a[1], // NW
|
|
[avgx(a,1),a[1][1],avgz(a,1)], // NC
|
|
[avgx(a,1),avgy(a,0),ctrz(a)] // CC
|
|
],
|
|
[ // NE square
|
|
[avgx(a,1),avgy(a,0),ctrz(a)], // CC
|
|
[avgx(a,1),a[1][1],avgz(a,1)], // NC
|
|
a[2], // NE
|
|
[a[2][0],avgy(a,0),avgz(a,2)] // CE
|
|
],
|
|
[ // SE square
|
|
[avgx(a,1),a[0][1],avgz(a,3)], // SC
|
|
[avgx(a,1),avgy(a,0),ctrz(a)], // CC
|
|
[a[2][0],avgy(a,0),avgz(a,2)], // CE
|
|
a[3] // SE
|
|
]
|
|
];
|
|
|
|
|
|
//================================================ Run the plan
|
|
|
|
translate([-mesh_width / 2, -mesh_height / 2]) {
|
|
$fn = 12;
|
|
point_markers();
|
|
bilinear_mesh();
|
|
}
|