0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-10 11:47:53 +00:00
MarlinFirmware/Marlin/src/HAL/STM32/eeprom_flash.cpp
2020-03-27 17:29:17 -05:00

265 lines
8.4 KiB
C++

/**
* Marlin 3D Printer Firmware
*
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
* Copyright (c) 2015-2016 Nico Tonnhofer wurstnase.reprap@gmail.com
* Copyright (c) 2016 Victor Perez victor_pv@hotmail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#if defined(ARDUINO_ARCH_STM32) && !defined(STM32GENERIC)
#include "../../inc/MarlinConfig.h"
#if BOTH(EEPROM_SETTINGS, FLASH_EEPROM_EMULATION)
#include "../shared/eeprom_api.h"
// Only STM32F4 can support wear leveling at this time
#ifndef STM32F4xx
#undef FLASH_EEPROM_LEVELING
#endif
/**
* The STM32 HAL supports chips that deal with "pages" and some with "sectors" and some that
* even have multiple "banks" of flash.
*
* This code is a bit of a mashup of
* framework-arduinoststm32/cores/arduino/stm32/stm32_eeprom.c
* hal/hal_lpc1768/persistent_store_flash.cpp
*
* This has only be written against those that use a single "sector" design.
*
* Those that deal with "pages" could be made to work. Looking at the STM32F07 for example, there are
* 128 "pages", each 2kB in size. If we continued with our EEPROM being 4Kb, we'd always need to operate
* on 2 of these pages. Each write, we'd use 2 different pages from a pool of pages until we are done.
*/
#if ENABLED(FLASH_EEPROM_LEVELING)
#include "stm32_def.h"
#define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
#include "src/core/debug_out.h"
#ifndef EEPROM_SIZE
#define EEPROM_SIZE 0x1000 // 4kB
#endif
#ifndef FLASH_SECTOR
#define FLASH_SECTOR (FLASH_SECTOR_TOTAL - 1)
#endif
#ifndef FLASH_UNIT_SIZE
#define FLASH_UNIT_SIZE 0x20000 // 128kB
#endif
#define FLASH_ADDRESS_START (FLASH_END - ((FLASH_SECTOR_TOTAL - FLASH_SECTOR) * FLASH_UNIT_SIZE) + 1)
#define FLASH_ADDRESS_END (FLASH_ADDRESS_START + FLASH_UNIT_SIZE - 1)
#define EEPROM_SLOTS (FLASH_UNIT_SIZE/EEPROM_SIZE)
#define SLOT_ADDRESS(slot) (FLASH_ADDRESS_START + (slot * EEPROM_SIZE))
#define UNLOCK_FLASH() if (!flash_unlocked) { \
HAL_FLASH_Unlock(); \
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | \
FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR); \
flash_unlocked = true; \
}
#define LOCK_FLASH() if (flash_unlocked) { HAL_FLASH_Lock(); flash_unlocked = false; }
#define EMPTY_UINT32 ((uint32_t)-1)
#define EMPTY_UINT8 ((uint8_t)-1)
static uint8_t ram_eeprom[EEPROM_SIZE] __attribute__((aligned(4))) = {0};
static int current_slot = -1;
static_assert(0 == EEPROM_SIZE % 4, "EEPROM_SIZE must be a multiple of 4"); // Ensure copying as uint32_t is safe
static_assert(0 == FLASH_UNIT_SIZE % EEPROM_SIZE, "EEPROM_SIZE must divide evenly into your FLASH_UNIT_SIZE");
static_assert(FLASH_UNIT_SIZE >= EEPROM_SIZE, "FLASH_UNIT_SIZE must be greater than or equal to your EEPROM_SIZE");
static_assert(IS_FLASH_SECTOR(FLASH_SECTOR), "FLASH_SECTOR is invalid");
static_assert(IS_POWER_OF_2(FLASH_UNIT_SIZE), "FLASH_UNIT_SIZE should be a power of 2, please check your chip's spec sheet");
#endif
static bool eeprom_data_written = false;
bool PersistentStore::access_start() {
#if ENABLED(FLASH_EEPROM_LEVELING)
if (current_slot == -1 || eeprom_data_written) {
// This must be the first time since power on that we have accessed the storage, or someone
// loaded and called write_data and never called access_finish.
// Lets go looking for the slot that holds our configuration.
if (eeprom_data_written) DEBUG_ECHOLN("Dangling EEPROM write_data");
uint32_t address = FLASH_ADDRESS_START;
while (address <= FLASH_ADDRESS_END) {
uint32_t address_value = (*(__IO uint32_t*)address);
if (address_value != EMPTY_UINT32) {
current_slot = (address - FLASH_ADDRESS_START) / EEPROM_SIZE;
break;
}
address += sizeof(uint32_t);
}
if (current_slot == -1) {
// We didn't find anything, so we'll just intialize to empty
for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = EMPTY_UINT8;
current_slot = EEPROM_SLOTS;
}
else {
// load current settings
uint8_t *eeprom_data = (uint8_t *)SLOT_ADDRESS(current_slot);
for (int i = 0; i < EEPROM_SIZE; i++) ram_eeprom[i] = eeprom_data[i];
DEBUG_ECHOLNPAIR("EEPROM loaded from slot ", current_slot, ".");
}
eeprom_data_written = false;
}
#else
eeprom_buffer_fill();
#endif
return true;
}
bool PersistentStore::access_finish() {
if (eeprom_data_written) {
#if ENABLED(FLASH_EEPROM_LEVELING)
HAL_StatusTypeDef status = HAL_ERROR;
bool flash_unlocked = false;
if (--current_slot < 0) {
// all slots have been used, erase everything and start again
FLASH_EraseInitTypeDef EraseInitStruct;
uint32_t SectorError = 0;
EraseInitStruct.TypeErase = FLASH_TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = FLASH_VOLTAGE_RANGE_3;
EraseInitStruct.Sector = FLASH_SECTOR;
EraseInitStruct.NbSectors = 1;
current_slot = EEPROM_SLOTS - 1;
UNLOCK_FLASH();
status = HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError);
if (status != HAL_OK) {
DEBUG_ECHOLNPAIR("HAL_FLASHEx_Erase=", status);
DEBUG_ECHOLNPAIR("GetError=", HAL_FLASH_GetError());
DEBUG_ECHOLNPAIR("SectorError=", SectorError);
LOCK_FLASH();
return false;
}
}
UNLOCK_FLASH();
uint32_t offset = 0;
uint32_t address = SLOT_ADDRESS(current_slot);
uint32_t address_end = address + EEPROM_SIZE;
uint32_t data = 0;
bool success = true;
while (address < address_end) {
memcpy(&data, ram_eeprom + offset, sizeof(uint32_t));
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, address, data);
if (status == HAL_OK) {
address += sizeof(uint32_t);
offset += sizeof(uint32_t);
}
else {
DEBUG_ECHOLNPAIR("HAL_FLASH_Program=", status);
DEBUG_ECHOLNPAIR("GetError=", HAL_FLASH_GetError());
DEBUG_ECHOLNPAIR("address=", address);
success = false;
break;
}
}
LOCK_FLASH();
if (success) {
eeprom_data_written = false;
DEBUG_ECHOLNPAIR("EEPROM saved to slot ", current_slot, ".");
}
return success;
#else
eeprom_buffer_flush();
eeprom_data_written = false;
#endif
}
return true;
}
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
while (size--) {
uint8_t v = *value;
#if ENABLED(FLASH_EEPROM_LEVELING)
if (v != ram_eeprom[pos]) {
ram_eeprom[pos] = v;
eeprom_data_written = true;
}
#else
if (v != eeprom_buffered_read_byte(pos)) {
eeprom_buffered_write_byte(pos, v);
eeprom_data_written = true;
}
#endif
crc16(crc, &v, 1);
pos++;
value++;
}
return false;
}
bool PersistentStore::read_data(int &pos, uint8_t* value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
do {
const uint8_t c = (
#if ENABLED(FLASH_EEPROM_LEVELING)
ram_eeprom[pos]
#else
eeprom_buffered_read_byte(pos)
#endif
);
if (writing) *value = c;
crc16(crc, &c, 1);
pos++;
value++;
} while (--size);
return false;
}
size_t PersistentStore::capacity() {
return (
#if ENABLED(FLASH_EEPROM_LEVELING)
EEPROM_SIZE
#else
E2END + 1
#endif
);
}
#endif // EEPROM_SETTINGS && FLASH_EEPROM_EMULATION
#endif // ARDUINO_ARCH_STM32 && !STM32GENERIC