mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-10 03:38:34 +00:00
706 lines
26 KiB
C++
706 lines
26 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "../../inc/MarlinConfig.h"
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
|
#include "../gcode.h"
|
|
#include "../../module/delta.h"
|
|
#include "../../module/probe.h"
|
|
#include "../../module/motion.h"
|
|
#include "../../module/stepper.h"
|
|
#include "../../module/endstops.h"
|
|
#include "../../lcd/ultralcd.h"
|
|
|
|
#if HOTENDS > 1
|
|
#include "../../module/tool_change.h"
|
|
#endif
|
|
|
|
#if HAS_LEVELING
|
|
#include "../../feature/bedlevel/bedlevel.h"
|
|
#endif
|
|
|
|
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
|
|
_4P_STEP = _7P_STEP * 2, // 4-point step
|
|
NPP = _7P_STEP * 6; // number of calibration points on the radius
|
|
enum CalEnum { // the 7 main calibration points - add definitions if needed
|
|
CEN = 0,
|
|
__A = 1,
|
|
_AB = __A + _7P_STEP,
|
|
__B = _AB + _7P_STEP,
|
|
_BC = __B + _7P_STEP,
|
|
__C = _BC + _7P_STEP,
|
|
_CA = __C + _7P_STEP,
|
|
};
|
|
|
|
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
|
|
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
|
|
#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
|
|
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
|
|
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
|
|
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
|
|
|
|
static void print_signed_float(const char * const prefix, const float &f) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
serialprintPGM(prefix);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
if (f >= 0) SERIAL_CHAR('+');
|
|
SERIAL_PROTOCOL_F(f, 2);
|
|
}
|
|
|
|
static void print_G33_settings(const bool end_stops, const bool tower_angles) {
|
|
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
|
if (end_stops) {
|
|
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
|
|
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
|
|
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
|
|
}
|
|
if (end_stops && tower_angles) {
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
SERIAL_EOL();
|
|
SERIAL_CHAR('.');
|
|
SERIAL_PROTOCOL_SP(13);
|
|
}
|
|
if (tower_angles) {
|
|
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
|
|
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
|
|
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
|
|
}
|
|
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
}
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
|
|
SERIAL_PROTOCOLPGM(". ");
|
|
print_signed_float(PSTR("c"), z_at_pt[CEN]);
|
|
if (tower_points) {
|
|
print_signed_float(PSTR(" x"), z_at_pt[__A]);
|
|
print_signed_float(PSTR(" y"), z_at_pt[__B]);
|
|
print_signed_float(PSTR(" z"), z_at_pt[__C]);
|
|
}
|
|
if (tower_points && opposite_points) {
|
|
SERIAL_EOL();
|
|
SERIAL_CHAR('.');
|
|
SERIAL_PROTOCOL_SP(13);
|
|
}
|
|
if (opposite_points) {
|
|
print_signed_float(PSTR("yz"), z_at_pt[_BC]);
|
|
print_signed_float(PSTR("zx"), z_at_pt[_CA]);
|
|
print_signed_float(PSTR("xy"), z_at_pt[_AB]);
|
|
}
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
/**
|
|
* After G33:
|
|
* - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
|
|
* - Stow the probe
|
|
* - Restore endstops state
|
|
* - Select the old tool, if needed
|
|
*/
|
|
static void G33_cleanup(
|
|
#if HOTENDS > 1
|
|
const uint8_t old_tool_index
|
|
#endif
|
|
) {
|
|
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
#endif
|
|
STOW_PROBE();
|
|
clean_up_after_endstop_or_probe_move();
|
|
#if HOTENDS > 1
|
|
tool_change(old_tool_index, 0, true);
|
|
#endif
|
|
}
|
|
|
|
static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
|
|
const bool _0p_calibration = probe_points == 0,
|
|
_1p_calibration = probe_points == 1,
|
|
_4p_calibration = probe_points == 2,
|
|
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
_7p_calibration = probe_points >= 3 || probe_points == 0,
|
|
_7p_no_intermediates = probe_points == 3,
|
|
_7p_1_intermediates = probe_points == 4,
|
|
_7p_2_intermediates = probe_points == 5,
|
|
_7p_4_intermediates = probe_points == 6,
|
|
_7p_6_intermediates = probe_points == 7,
|
|
_7p_8_intermediates = probe_points == 8,
|
|
_7p_11_intermediates = probe_points == 9,
|
|
_7p_14_intermediates = probe_points == 10,
|
|
_7p_intermed_points = probe_points >= 4,
|
|
_7p_6_centre = probe_points >= 5 && probe_points <= 7,
|
|
_7p_9_centre = probe_points >= 8;
|
|
|
|
#if HAS_BED_PROBE
|
|
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
#endif
|
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
|
|
|
|
if (!_0p_calibration) {
|
|
|
|
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
|
|
z_at_pt[CEN] +=
|
|
#if HAS_BED_PROBE
|
|
probe_pt(dx, dy, stow_after_each, 1, false)
|
|
#else
|
|
lcd_probe_pt(0, 0)
|
|
#endif
|
|
;
|
|
}
|
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
|
|
steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
|
|
I_LOOP_CAL_PT(axis, start, steps) {
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
r = delta_calibration_radius * 0.1;
|
|
z_at_pt[CEN] +=
|
|
#if HAS_BED_PROBE
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
|
|
#else
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
#endif
|
|
;
|
|
}
|
|
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
|
|
}
|
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
const CalEnum start = _4p_opposite_points ? _AB : __A;
|
|
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
|
|
_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
|
|
_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
|
|
_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
|
|
_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
|
|
_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
|
|
_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
|
|
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
|
|
_4P_STEP; // .5r * 6 + 1c = 4
|
|
bool zig_zag = true;
|
|
F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
|
|
const int8_t offset = _7p_9_centre ? 1 : 0;
|
|
for (int8_t circle = -offset; circle <= offset; circle++) {
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
|
|
interpol = FMOD(axis, 1);
|
|
const float z_temp =
|
|
#if HAS_BED_PROBE
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
|
|
#else
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
#endif
|
|
;
|
|
// split probe point to neighbouring calibration points
|
|
z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
|
|
z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
|
|
}
|
|
zig_zag = !zig_zag;
|
|
}
|
|
if (_7p_intermed_points)
|
|
LOOP_CAL_RAD(axis)
|
|
z_at_pt[axis] /= _7P_STEP / steps;
|
|
}
|
|
|
|
|
|
float S1 = z_at_pt[CEN],
|
|
S2 = sq(z_at_pt[CEN]);
|
|
int16_t N = 1;
|
|
if (!_1p_calibration) { // std dev from zero plane
|
|
LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
|
|
S1 += z_at_pt[axis];
|
|
S2 += sq(z_at_pt[axis]);
|
|
N++;
|
|
}
|
|
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
|
}
|
|
}
|
|
|
|
return 0.00001;
|
|
}
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
static void G33_auto_tune() {
|
|
float z_at_pt[NPP + 1] = { 0.0 },
|
|
z_at_pt_base[NPP + 1] = { 0.0 },
|
|
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
#define Z06(I) ZP(6, I)
|
|
#define Z03(I) ZP(3, I)
|
|
#define Z02(I) ZP(2, I)
|
|
#define Z01(I) ZP(1, I)
|
|
#define Z32(I) ZP(3/2, I)
|
|
|
|
SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
|
|
SERIAL_EOL();
|
|
probe_G33_points(z_at_pt_base, 3, true, false);
|
|
print_G33_results(z_at_pt_base, true, true);
|
|
|
|
LOOP_XYZ(axis) {
|
|
delta_endstop_adj[axis] -= 1.0;
|
|
|
|
endstops.enable(true);
|
|
if (!home_delta()) return;
|
|
endstops.not_homing();
|
|
|
|
SERIAL_PROTOCOLPGM("Tuning E");
|
|
SERIAL_CHAR(tolower(axis_codes[axis]));
|
|
SERIAL_EOL();
|
|
|
|
probe_G33_points(z_at_pt, 3, true, false);
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
|
print_G33_results(z_at_pt, true, true);
|
|
delta_endstop_adj[axis] += 1.0;
|
|
switch (axis) {
|
|
case A_AXIS :
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
|
|
break;
|
|
case B_AXIS :
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
|
|
break;
|
|
case C_AXIS :
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
|
|
break;
|
|
}
|
|
}
|
|
h_fac /= 3.0;
|
|
h_fac *= norm; // Normalize to 1.02 for Kossel mini
|
|
|
|
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
|
|
delta_radius += 1.0 * zig_zag;
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
endstops.enable(true);
|
|
if (!home_delta()) return;
|
|
endstops.not_homing();
|
|
|
|
SERIAL_PROTOCOLPGM("Tuning R");
|
|
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
|
|
SERIAL_EOL();
|
|
probe_G33_points(z_at_pt, 3, true, false);
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
|
print_G33_results(z_at_pt, true, true);
|
|
delta_radius -= 1.0 * zig_zag;
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
|
|
}
|
|
r_fac /= 2.0;
|
|
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
|
|
|
|
LOOP_XYZ(axis) {
|
|
delta_tower_angle_trim[axis] += 1.0;
|
|
delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
|
|
delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
endstops.enable(true);
|
|
if (!home_delta()) return;
|
|
endstops.not_homing();
|
|
|
|
SERIAL_PROTOCOLPGM("Tuning T");
|
|
SERIAL_CHAR(tolower(axis_codes[axis]));
|
|
SERIAL_EOL();
|
|
|
|
probe_G33_points(z_at_pt, 3, true, false);
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
delta_tower_angle_trim[axis] -= 1.0;
|
|
delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
|
|
delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
switch (axis) {
|
|
case A_AXIS :
|
|
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
|
|
break;
|
|
case B_AXIS :
|
|
a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
|
|
break;
|
|
case C_AXIS :
|
|
a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
|
|
break;
|
|
}
|
|
}
|
|
a_fac /= 3.0;
|
|
a_fac *= norm; // Normalize to 0.83 for Kossel mini
|
|
|
|
endstops.enable(true);
|
|
if (!home_delta()) return;
|
|
endstops.not_homing();
|
|
print_signed_float(PSTR( "H_FACTOR: "), h_fac);
|
|
print_signed_float(PSTR(" R_FACTOR: "), r_fac);
|
|
print_signed_float(PSTR(" A_FACTOR: "), a_fac);
|
|
SERIAL_EOL();
|
|
SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
/**
|
|
* G33 - Delta '1-4-7-point' Auto-Calibration
|
|
* Calibrate height, endstops, delta radius, and tower angles.
|
|
*
|
|
* Parameters:
|
|
*
|
|
* Pn Number of probe points:
|
|
* P0 No probe. Normalize only.
|
|
* P1 Probe center and set height only.
|
|
* P2 Probe center and towers. Set height, endstops and delta radius.
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
|
* P4-P10 Probe all positions + at different itermediate locations and average them.
|
|
*
|
|
* T Don't calibrate tower angle corrections
|
|
*
|
|
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
|
|
*
|
|
* Fn Force to run at least n iterations and takes the best result
|
|
*
|
|
* A Auto tune calibartion factors (set in Configuration.h)
|
|
*
|
|
* Vn Verbose level:
|
|
* V0 Dry-run mode. Report settings and probe results. No calibration.
|
|
* V1 Report settings
|
|
* V2 Report settings and probe results
|
|
*
|
|
* E Engage the probe for each point
|
|
*/
|
|
void GcodeSuite::G33() {
|
|
|
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
|
if (!WITHIN(probe_points, 0, 10)) {
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
|
|
return;
|
|
}
|
|
|
|
const int8_t verbose_level = parser.byteval('V', 1);
|
|
if (!WITHIN(verbose_level, 0, 2)) {
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
|
|
return;
|
|
}
|
|
|
|
const float calibration_precision = parser.floatval('C');
|
|
if (calibration_precision < 0) {
|
|
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
|
|
return;
|
|
}
|
|
|
|
const int8_t force_iterations = parser.intval('F', 0);
|
|
if (!WITHIN(force_iterations, 0, 30)) {
|
|
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
|
|
return;
|
|
}
|
|
|
|
const bool towers_set = !parser.boolval('T'),
|
|
auto_tune = parser.boolval('A'),
|
|
stow_after_each = parser.boolval('E'),
|
|
_0p_calibration = probe_points == 0,
|
|
_1p_calibration = probe_points == 1,
|
|
_4p_calibration = probe_points == 2,
|
|
_7p_9_centre = probe_points >= 8,
|
|
_tower_results = (_4p_calibration && towers_set)
|
|
|| probe_points >= 3 || probe_points == 0,
|
|
_opposite_results = (_4p_calibration && !towers_set)
|
|
|| probe_points >= 3 || probe_points == 0,
|
|
_endstop_results = probe_points != 1,
|
|
_angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
|
|
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
|
|
int8_t iterations = 0;
|
|
float test_precision,
|
|
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
|
zero_std_dev_min = zero_std_dev,
|
|
e_old[ABC] = {
|
|
delta_endstop_adj[A_AXIS],
|
|
delta_endstop_adj[B_AXIS],
|
|
delta_endstop_adj[C_AXIS]
|
|
},
|
|
dr_old = delta_radius,
|
|
zh_old = home_offset[Z_AXIS],
|
|
ta_old[ABC] = {
|
|
delta_tower_angle_trim[A_AXIS],
|
|
delta_tower_angle_trim[B_AXIS],
|
|
delta_tower_angle_trim[C_AXIS]
|
|
};
|
|
|
|
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
|
|
|
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
|
LOOP_CAL_RAD(axis) {
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
|
|
if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
|
|
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
stepper.synchronize();
|
|
#if HAS_LEVELING
|
|
reset_bed_level(); // After calibration bed-level data is no longer valid
|
|
#endif
|
|
|
|
#if HOTENDS > 1
|
|
const uint8_t old_tool_index = active_extruder;
|
|
tool_change(0, 0, true);
|
|
#define G33_CLEANUP() G33_cleanup(old_tool_index)
|
|
#else
|
|
#define G33_CLEANUP() G33_cleanup()
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
endstops.enable(true);
|
|
if (!_0p_calibration) {
|
|
if (!home_delta())
|
|
return;
|
|
endstops.not_homing();
|
|
}
|
|
|
|
if (auto_tune) {
|
|
#if HAS_BED_PROBE
|
|
G33_auto_tune();
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
|
|
#endif
|
|
G33_CLEANUP();
|
|
return;
|
|
}
|
|
|
|
// Report settings
|
|
|
|
const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
|
|
serialprintPGM(checkingac);
|
|
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
|
|
SERIAL_EOL();
|
|
lcd_setstatusPGM(checkingac);
|
|
|
|
print_G33_settings(_endstop_results, _angle_results);
|
|
|
|
do {
|
|
|
|
float z_at_pt[NPP + 1] = { 0.0 };
|
|
|
|
test_precision = zero_std_dev;
|
|
|
|
iterations++;
|
|
|
|
// Probe the points
|
|
|
|
zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
|
|
|
|
// Solve matrices
|
|
|
|
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
|
|
if (zero_std_dev < zero_std_dev_min) {
|
|
COPY(e_old, delta_endstop_adj);
|
|
dr_old = delta_radius;
|
|
zh_old = home_offset[Z_AXIS];
|
|
COPY(ta_old, delta_tower_angle_trim);
|
|
}
|
|
|
|
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
|
|
const float r_diff = delta_radius - delta_calibration_radius,
|
|
h_factor = 1 / 6.0 *
|
|
#ifdef H_FACTOR
|
|
(H_FACTOR), // Set in Configuration.h
|
|
#else
|
|
(1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
|
|
#endif
|
|
r_factor = 1 / 6.0 *
|
|
#ifdef R_FACTOR
|
|
-(R_FACTOR), // Set in Configuration.h
|
|
#else
|
|
-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
|
|
#endif
|
|
a_factor = 1 / 6.0 *
|
|
#ifdef A_FACTOR
|
|
(A_FACTOR); // Set in Configuration.h
|
|
#else
|
|
(66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
|
|
#endif
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
#define Z6(I) ZP(6, I)
|
|
#define Z4(I) ZP(4, I)
|
|
#define Z2(I) ZP(2, I)
|
|
#define Z1(I) ZP(1, I)
|
|
|
|
#if !HAS_BED_PROBE
|
|
test_precision = 0.00; // forced end
|
|
#endif
|
|
|
|
switch (probe_points) {
|
|
case 0:
|
|
test_precision = 0.00; // forced end
|
|
break;
|
|
|
|
case 1:
|
|
test_precision = 0.00; // forced end
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
|
|
break;
|
|
|
|
case 2:
|
|
if (towers_set) {
|
|
e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
|
|
e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
|
|
e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
|
|
r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
|
|
}
|
|
else {
|
|
e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
|
|
e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
|
|
e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
|
|
r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
|
|
e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
|
|
e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
|
|
r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
|
|
|
|
if (towers_set) {
|
|
t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
|
|
t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
|
|
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
|
|
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
|
|
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
|
|
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
|
|
}
|
|
break;
|
|
}
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
|
|
delta_radius += r_delta;
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
|
|
}
|
|
else if (zero_std_dev >= test_precision) { // step one back
|
|
COPY(delta_endstop_adj, e_old);
|
|
delta_radius = dr_old;
|
|
home_offset[Z_AXIS] = zh_old;
|
|
COPY(delta_tower_angle_trim, ta_old);
|
|
}
|
|
|
|
if (verbose_level != 0) { // !dry run
|
|
// normalise angles to least squares
|
|
if (_angle_results) {
|
|
float a_sum = 0.0;
|
|
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
|
|
}
|
|
|
|
// adjust delta_height and endstops by the max amount
|
|
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
}
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
|
// print report
|
|
|
|
if (verbose_level != 1)
|
|
print_G33_results(z_at_pt, _tower_results, _opposite_results);
|
|
|
|
if (verbose_level != 0) { // !dry run
|
|
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
|
|
SERIAL_PROTOCOLPGM("Calibration OK");
|
|
SERIAL_PROTOCOL_SP(32);
|
|
#if HAS_BED_PROBE
|
|
if (zero_std_dev >= test_precision && !_1p_calibration)
|
|
SERIAL_PROTOCOLPGM("rolling back.");
|
|
else
|
|
#endif
|
|
{
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
|
|
}
|
|
SERIAL_EOL();
|
|
char mess[21];
|
|
strcpy_P(mess, PSTR("Calibration sd:"));
|
|
if (zero_std_dev_min < 1)
|
|
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
|
|
else
|
|
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
|
|
lcd_setstatus(mess);
|
|
print_G33_settings(_endstop_results, _angle_results);
|
|
serialprintPGM(save_message);
|
|
SERIAL_EOL();
|
|
}
|
|
else { // !end iterations
|
|
char mess[15];
|
|
if (iterations < 31)
|
|
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
|
|
else
|
|
strcpy_P(mess, PSTR("No convergence"));
|
|
SERIAL_PROTOCOL(mess);
|
|
SERIAL_PROTOCOL_SP(32);
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
SERIAL_EOL();
|
|
lcd_setstatus(mess);
|
|
print_G33_settings(_endstop_results, _angle_results);
|
|
}
|
|
}
|
|
else { // dry run
|
|
const char *enddryrun = PSTR("End DRY-RUN");
|
|
serialprintPGM(enddryrun);
|
|
SERIAL_PROTOCOL_SP(35);
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
SERIAL_EOL();
|
|
|
|
char mess[21];
|
|
strcpy_P(mess, enddryrun);
|
|
strcpy_P(&mess[11], PSTR(" sd:"));
|
|
if (zero_std_dev < 1)
|
|
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
|
|
else
|
|
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
|
|
lcd_setstatus(mess);
|
|
}
|
|
|
|
endstops.enable(true);
|
|
if (!home_delta())
|
|
return;
|
|
endstops.not_homing();
|
|
|
|
}
|
|
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
|
|
|
|
G33_CLEANUP();
|
|
}
|
|
|
|
#endif // DELTA_AUTO_CALIBRATION
|