mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-08 10:42:30 +00:00
402 lines
16 KiB
C
402 lines
16 KiB
C
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "../shared/Marduino.h"
|
|
#include "../shared/HAL_SPI.h"
|
|
#include "fastio.h"
|
|
#include "watchdog.h"
|
|
#include "math.h"
|
|
|
|
#ifdef USBCON
|
|
#include <HardwareSerial.h>
|
|
#else
|
|
#define HardwareSerial_h // Hack to prevent HardwareSerial.h header inclusion
|
|
#include "MarlinSerial.h"
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
#include <util/delay.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <avr/interrupt.h>
|
|
#include <avr/io.h>
|
|
|
|
#ifndef pgm_read_ptr
|
|
// Compatibility for avr-libc 1.8.0-4.1 included with Ubuntu for
|
|
// Windows Subsystem for Linux on Windows 10 as of 10/18/2019
|
|
#define pgm_read_ptr_far(address_long) (void*)__ELPM_word((uint32_t)(address_long))
|
|
#define pgm_read_ptr_near(address_short) (void*)__LPM_word((uint16_t)(address_short))
|
|
#define pgm_read_ptr(address_short) pgm_read_ptr_near(address_short)
|
|
#endif
|
|
|
|
// ------------------------
|
|
// Defines
|
|
// ------------------------
|
|
|
|
//#define analogInputToDigitalPin(IO) IO
|
|
|
|
#ifndef CRITICAL_SECTION_START
|
|
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
|
|
#define CRITICAL_SECTION_END SREG = _sreg
|
|
#endif
|
|
#define ISRS_ENABLED() TEST(SREG, SREG_I)
|
|
#define ENABLE_ISRS() sei()
|
|
#define DISABLE_ISRS() cli()
|
|
|
|
// On AVR this is in math.h?
|
|
//#define square(x) ((x)*(x))
|
|
|
|
// ------------------------
|
|
// Types
|
|
// ------------------------
|
|
|
|
typedef uint16_t hal_timer_t;
|
|
#define HAL_TIMER_TYPE_MAX 0xFFFF
|
|
|
|
typedef int8_t pin_t;
|
|
|
|
#define SHARED_SERVOS HAS_SERVOS
|
|
#define HAL_SERVO_LIB Servo
|
|
|
|
// ------------------------
|
|
// Public Variables
|
|
// ------------------------
|
|
|
|
//extern uint8_t MCUSR;
|
|
|
|
// Serial ports
|
|
#ifdef USBCON
|
|
#if ENABLED(BLUETOOTH)
|
|
#define MYSERIAL0 bluetoothSerial
|
|
#else
|
|
#define MYSERIAL0 Serial
|
|
#endif
|
|
#define NUM_SERIAL 1
|
|
#else
|
|
#if !WITHIN(SERIAL_PORT, -1, 3)
|
|
#error "SERIAL_PORT must be from -1 to 3"
|
|
#endif
|
|
|
|
#define MYSERIAL0 customizedSerial1
|
|
|
|
#ifdef SERIAL_PORT_2
|
|
#if !WITHIN(SERIAL_PORT_2, -1, 3)
|
|
#error "SERIAL_PORT_2 must be from -1 to 3"
|
|
#elif SERIAL_PORT_2 == SERIAL_PORT
|
|
#error "SERIAL_PORT_2 must be different than SERIAL_PORT"
|
|
#endif
|
|
#define NUM_SERIAL 2
|
|
#define MYSERIAL1 customizedSerial2
|
|
#else
|
|
#define NUM_SERIAL 1
|
|
#endif
|
|
#endif
|
|
|
|
// ------------------------
|
|
// Public functions
|
|
// ------------------------
|
|
|
|
void HAL_init();
|
|
|
|
//void cli();
|
|
|
|
//void _delay_ms(const int delay);
|
|
|
|
inline void HAL_clear_reset_source() { MCUSR = 0; }
|
|
inline uint8_t HAL_get_reset_source() { return MCUSR; }
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-function"
|
|
extern "C" {
|
|
int freeMemory();
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
|
|
// timers
|
|
#define HAL_TIMER_RATE ((F_CPU) / 8) // i.e., 2MHz or 2.5MHz
|
|
|
|
#define STEP_TIMER_NUM 1
|
|
#define TEMP_TIMER_NUM 0
|
|
#define PULSE_TIMER_NUM STEP_TIMER_NUM
|
|
|
|
#define TEMP_TIMER_FREQUENCY ((F_CPU) / 64.0 / 256.0)
|
|
|
|
#define STEPPER_TIMER_RATE HAL_TIMER_RATE
|
|
#define STEPPER_TIMER_PRESCALE 8
|
|
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // Cannot be of type double
|
|
|
|
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
|
|
#define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE
|
|
#define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US
|
|
|
|
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
|
|
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
|
|
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
|
|
|
|
#define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0B)
|
|
#define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0B)
|
|
#define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0B)
|
|
|
|
FORCE_INLINE void HAL_timer_start(const uint8_t timer_num, const uint32_t) {
|
|
switch (timer_num) {
|
|
case STEP_TIMER_NUM:
|
|
// waveform generation = 0100 = CTC
|
|
SET_WGM(1, CTC_OCRnA);
|
|
|
|
// output mode = 00 (disconnected)
|
|
SET_COMA(1, NORMAL);
|
|
|
|
// Set the timer pre-scaler
|
|
// Generally we use a divider of 8, resulting in a 2MHz timer
|
|
// frequency on a 16MHz MCU. If you are going to change this, be
|
|
// sure to regenerate speed_lookuptable.h with
|
|
// create_speed_lookuptable.py
|
|
SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
|
|
|
|
// Init Stepper ISR to 122 Hz for quick starting
|
|
// (F_CPU) / (STEPPER_TIMER_PRESCALE) / frequency
|
|
OCR1A = 0x4000;
|
|
TCNT1 = 0;
|
|
break;
|
|
|
|
case TEMP_TIMER_NUM:
|
|
// Use timer0 for temperature measurement
|
|
// Interleave temperature interrupt with millies interrupt
|
|
OCR0B = 128;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define TIMER_OCR_1 OCR1A
|
|
#define TIMER_COUNTER_1 TCNT1
|
|
|
|
#define TIMER_OCR_0 OCR0A
|
|
#define TIMER_COUNTER_0 TCNT0
|
|
|
|
#define _CAT(a,V...) a##V
|
|
#define HAL_timer_set_compare(timer, compare) (_CAT(TIMER_OCR_, timer) = compare)
|
|
#define HAL_timer_get_compare(timer) _CAT(TIMER_OCR_, timer)
|
|
#define HAL_timer_get_count(timer) _CAT(TIMER_COUNTER_, timer)
|
|
|
|
/**
|
|
* On AVR there is no hardware prioritization and preemption of
|
|
* interrupts, so this emulates it. The UART has first priority
|
|
* (otherwise, characters will be lost due to UART overflow).
|
|
* Then: Stepper, Endstops, Temperature, and -finally- all others.
|
|
*/
|
|
#define HAL_timer_isr_prologue(TIMER_NUM)
|
|
#define HAL_timer_isr_epilogue(TIMER_NUM)
|
|
|
|
/* 18 cycles maximum latency */
|
|
#define HAL_STEP_TIMER_ISR() \
|
|
extern "C" void TIMER1_COMPA_vect() __attribute__ ((signal, naked, used, externally_visible)); \
|
|
extern "C" void TIMER1_COMPA_vect_bottom() asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
|
|
void TIMER1_COMPA_vect() { \
|
|
__asm__ __volatile__ ( \
|
|
A("push r16") /* 2 Save R16 */ \
|
|
A("in r16, __SREG__") /* 1 Get SREG */ \
|
|
A("push r16") /* 2 Save SREG into stack */ \
|
|
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
|
|
A("push r16") /* 2 Save TIMSK0 into the stack */ \
|
|
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
|
|
A("sts %[timsk0], r16") /* 2 And set the new value */ \
|
|
A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \
|
|
A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \
|
|
A("sts %[timsk1], r16") /* 2 And set the new value */ \
|
|
A("push r16") /* 2 Save TIMSK1 into stack */ \
|
|
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
|
|
A("push r16") /* 2 Save RAMPZ into stack */ \
|
|
A("in r16, 0x3C") /* 1 Get EIND register */ \
|
|
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
|
|
A("push r1") \
|
|
A("push r18") \
|
|
A("push r19") \
|
|
A("push r20") \
|
|
A("push r21") \
|
|
A("push r22") \
|
|
A("push r23") \
|
|
A("push r24") \
|
|
A("push r25") \
|
|
A("push r26") \
|
|
A("push r27") \
|
|
A("push r30") \
|
|
A("push r31") \
|
|
A("clr r1") /* C runtime expects this register to be 0 */ \
|
|
A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
|
|
A("pop r31") \
|
|
A("pop r30") \
|
|
A("pop r27") \
|
|
A("pop r26") \
|
|
A("pop r25") \
|
|
A("pop r24") \
|
|
A("pop r23") \
|
|
A("pop r22") \
|
|
A("pop r21") \
|
|
A("pop r20") \
|
|
A("pop r19") \
|
|
A("pop r18") \
|
|
A("pop r1") \
|
|
A("pop r0") \
|
|
A("out 0x3C, r16") /* 1 Restore EIND register */ \
|
|
A("pop r16") /* 2 Get the original RAMPZ register value */ \
|
|
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
|
|
A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \
|
|
A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \
|
|
A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \
|
|
A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \
|
|
A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \
|
|
A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \
|
|
A("pop r16") /* 2 Get the old SREG value */ \
|
|
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
|
|
A("pop r16") /* 2 Restore R16 value */ \
|
|
A("reti") /* 4 Return from interrupt */ \
|
|
: \
|
|
: [timsk0] "i" ((uint16_t)&TIMSK0), \
|
|
[timsk1] "i" ((uint16_t)&TIMSK1), \
|
|
[msk0] "M" ((uint8_t)(1<<OCIE0B)),\
|
|
[msk1] "M" ((uint8_t)(1<<OCIE1A)) \
|
|
: \
|
|
); \
|
|
} \
|
|
void TIMER1_COMPA_vect_bottom()
|
|
|
|
/* 14 cycles maximum latency */
|
|
#define HAL_TEMP_TIMER_ISR() \
|
|
extern "C" void TIMER0_COMPB_vect() __attribute__ ((signal, naked, used, externally_visible)); \
|
|
extern "C" void TIMER0_COMPB_vect_bottom() asm ("TIMER0_COMPB_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
|
|
void TIMER0_COMPB_vect() { \
|
|
__asm__ __volatile__ ( \
|
|
A("push r16") /* 2 Save R16 */ \
|
|
A("in r16, __SREG__") /* 1 Get SREG */ \
|
|
A("push r16") /* 2 Save SREG into stack */ \
|
|
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
|
|
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
|
|
A("sts %[timsk0], r16") /* 2 And set the new value */ \
|
|
A("sei") /* 1 Enable global interrupts - It is safe, as the temperature ISR is disabled, so we cannot reenter it */ \
|
|
A("push r16") /* 2 Save TIMSK0 into stack */ \
|
|
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
|
|
A("push r16") /* 2 Save RAMPZ into stack */ \
|
|
A("in r16, 0x3C") /* 1 Get EIND register */ \
|
|
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
|
|
A("push r1") \
|
|
A("push r18") \
|
|
A("push r19") \
|
|
A("push r20") \
|
|
A("push r21") \
|
|
A("push r22") \
|
|
A("push r23") \
|
|
A("push r24") \
|
|
A("push r25") \
|
|
A("push r26") \
|
|
A("push r27") \
|
|
A("push r30") \
|
|
A("push r31") \
|
|
A("clr r1") /* C runtime expects this register to be 0 */ \
|
|
A("call TIMER0_COMPB_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
|
|
A("pop r31") \
|
|
A("pop r30") \
|
|
A("pop r27") \
|
|
A("pop r26") \
|
|
A("pop r25") \
|
|
A("pop r24") \
|
|
A("pop r23") \
|
|
A("pop r22") \
|
|
A("pop r21") \
|
|
A("pop r20") \
|
|
A("pop r19") \
|
|
A("pop r18") \
|
|
A("pop r1") \
|
|
A("pop r0") \
|
|
A("out 0x3C, r16") /* 1 Restore EIND register */ \
|
|
A("pop r16") /* 2 Get the original RAMPZ register value */ \
|
|
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
|
|
A("pop r16") /* 2 Get the original TIMSK0 value but with temperature ISR disabled */ \
|
|
A("ori r16,%[msk0]") /* 1 Enable temperature ISR */ \
|
|
A("cli") /* 1 Disable global interrupts - We must do this, as we will reenable the temperature ISR, and we don't want to reenter this handler until the current one is done */ \
|
|
A("sts %[timsk0], r16") /* 2 And restore the old value */ \
|
|
A("pop r16") /* 2 Get the old SREG */ \
|
|
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
|
|
A("pop r16") /* 2 Restore R16 */ \
|
|
A("reti") /* 4 Return from interrupt */ \
|
|
: \
|
|
: [timsk0] "i"((uint16_t)&TIMSK0), \
|
|
[msk0] "M" ((uint8_t)(1<<OCIE0B)) \
|
|
: \
|
|
); \
|
|
} \
|
|
void TIMER0_COMPB_vect_bottom()
|
|
|
|
// ADC
|
|
#ifdef DIDR2
|
|
#define HAL_ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin & 0x07); }while(0)
|
|
#else
|
|
#define HAL_ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
|
|
#endif
|
|
|
|
inline void HAL_adc_init() {
|
|
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
|
|
DIDR0 = 0;
|
|
#ifdef DIDR2
|
|
DIDR2 = 0;
|
|
#endif
|
|
}
|
|
|
|
#define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
|
|
#ifdef MUX5
|
|
#define HAL_START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
|
#else
|
|
#define HAL_START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
|
#endif
|
|
|
|
#define HAL_ADC_RESOLUTION 10
|
|
#define HAL_READ_ADC() ADC
|
|
#define HAL_ADC_READY() !TEST(ADCSRA, ADSC)
|
|
|
|
#define GET_PIN_MAP_PIN(index) index
|
|
#define GET_PIN_MAP_INDEX(pin) pin
|
|
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
|
|
|
|
#define HAL_SENSITIVE_PINS 0, 1
|
|
|
|
#ifdef __AVR_AT90USB1286__
|
|
#define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0)
|
|
#endif
|
|
|
|
// AVR compatibility
|
|
#define strtof strtod
|
|
|
|
/**
|
|
* set_pwm_frequency
|
|
* Sets the frequency of the timer corresponding to the provided pin
|
|
* as close as possible to the provided desired frequency. Internally
|
|
* calculates the required waveform generation mode, prescaler and
|
|
* resolution values required and sets the timer registers accordingly.
|
|
* NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B)
|
|
* NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST FAN PWM Settings)
|
|
*/
|
|
void set_pwm_frequency(const pin_t pin, int f_desired);
|
|
|
|
/**
|
|
* set_pwm_duty
|
|
* Sets the PWM duty cycle of the provided pin to the provided value
|
|
* Optionally allows inverting the duty cycle [default = false]
|
|
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
|
|
*/
|
|
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);
|