0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-08 10:42:30 +00:00
MarlinFirmware/Marlin/src/HAL/HAL_AVR/HAL.h
2019-11-12 22:16:54 -06:00

402 lines
16 KiB
C

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "../shared/Marduino.h"
#include "../shared/HAL_SPI.h"
#include "fastio.h"
#include "watchdog.h"
#include "math.h"
#ifdef USBCON
#include <HardwareSerial.h>
#else
#define HardwareSerial_h // Hack to prevent HardwareSerial.h header inclusion
#include "MarlinSerial.h"
#endif
#include <stdint.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#ifndef pgm_read_ptr
// Compatibility for avr-libc 1.8.0-4.1 included with Ubuntu for
// Windows Subsystem for Linux on Windows 10 as of 10/18/2019
#define pgm_read_ptr_far(address_long) (void*)__ELPM_word((uint32_t)(address_long))
#define pgm_read_ptr_near(address_short) (void*)__LPM_word((uint16_t)(address_short))
#define pgm_read_ptr(address_short) pgm_read_ptr_near(address_short)
#endif
// ------------------------
// Defines
// ------------------------
//#define analogInputToDigitalPin(IO) IO
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END SREG = _sreg
#endif
#define ISRS_ENABLED() TEST(SREG, SREG_I)
#define ENABLE_ISRS() sei()
#define DISABLE_ISRS() cli()
// On AVR this is in math.h?
//#define square(x) ((x)*(x))
// ------------------------
// Types
// ------------------------
typedef uint16_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFF
typedef int8_t pin_t;
#define SHARED_SERVOS HAS_SERVOS
#define HAL_SERVO_LIB Servo
// ------------------------
// Public Variables
// ------------------------
//extern uint8_t MCUSR;
// Serial ports
#ifdef USBCON
#if ENABLED(BLUETOOTH)
#define MYSERIAL0 bluetoothSerial
#else
#define MYSERIAL0 Serial
#endif
#define NUM_SERIAL 1
#else
#if !WITHIN(SERIAL_PORT, -1, 3)
#error "SERIAL_PORT must be from -1 to 3"
#endif
#define MYSERIAL0 customizedSerial1
#ifdef SERIAL_PORT_2
#if !WITHIN(SERIAL_PORT_2, -1, 3)
#error "SERIAL_PORT_2 must be from -1 to 3"
#elif SERIAL_PORT_2 == SERIAL_PORT
#error "SERIAL_PORT_2 must be different than SERIAL_PORT"
#endif
#define NUM_SERIAL 2
#define MYSERIAL1 customizedSerial2
#else
#define NUM_SERIAL 1
#endif
#endif
// ------------------------
// Public functions
// ------------------------
void HAL_init();
//void cli();
//void _delay_ms(const int delay);
inline void HAL_clear_reset_source() { MCUSR = 0; }
inline uint8_t HAL_get_reset_source() { return MCUSR; }
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
extern "C" {
int freeMemory();
}
#pragma GCC diagnostic pop
// timers
#define HAL_TIMER_RATE ((F_CPU) / 8) // i.e., 2MHz or 2.5MHz
#define STEP_TIMER_NUM 1
#define TEMP_TIMER_NUM 0
#define PULSE_TIMER_NUM STEP_TIMER_NUM
#define TEMP_TIMER_FREQUENCY ((F_CPU) / 64.0 / 256.0)
#define STEPPER_TIMER_RATE HAL_TIMER_RATE
#define STEPPER_TIMER_PRESCALE 8
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // Cannot be of type double
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
#define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE
#define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
#define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0B)
#define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0B)
#define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0B)
FORCE_INLINE void HAL_timer_start(const uint8_t timer_num, const uint32_t) {
switch (timer_num) {
case STEP_TIMER_NUM:
// waveform generation = 0100 = CTC
SET_WGM(1, CTC_OCRnA);
// output mode = 00 (disconnected)
SET_COMA(1, NORMAL);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
// Init Stepper ISR to 122 Hz for quick starting
// (F_CPU) / (STEPPER_TIMER_PRESCALE) / frequency
OCR1A = 0x4000;
TCNT1 = 0;
break;
case TEMP_TIMER_NUM:
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
break;
}
}
#define TIMER_OCR_1 OCR1A
#define TIMER_COUNTER_1 TCNT1
#define TIMER_OCR_0 OCR0A
#define TIMER_COUNTER_0 TCNT0
#define _CAT(a,V...) a##V
#define HAL_timer_set_compare(timer, compare) (_CAT(TIMER_OCR_, timer) = compare)
#define HAL_timer_get_compare(timer) _CAT(TIMER_OCR_, timer)
#define HAL_timer_get_count(timer) _CAT(TIMER_COUNTER_, timer)
/**
* On AVR there is no hardware prioritization and preemption of
* interrupts, so this emulates it. The UART has first priority
* (otherwise, characters will be lost due to UART overflow).
* Then: Stepper, Endstops, Temperature, and -finally- all others.
*/
#define HAL_timer_isr_prologue(TIMER_NUM)
#define HAL_timer_isr_epilogue(TIMER_NUM)
/* 18 cycles maximum latency */
#define HAL_STEP_TIMER_ISR() \
extern "C" void TIMER1_COMPA_vect() __attribute__ ((signal, naked, used, externally_visible)); \
extern "C" void TIMER1_COMPA_vect_bottom() asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
void TIMER1_COMPA_vect() { \
__asm__ __volatile__ ( \
A("push r16") /* 2 Save R16 */ \
A("in r16, __SREG__") /* 1 Get SREG */ \
A("push r16") /* 2 Save SREG into stack */ \
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
A("push r16") /* 2 Save TIMSK0 into the stack */ \
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
A("sts %[timsk0], r16") /* 2 And set the new value */ \
A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \
A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \
A("sts %[timsk1], r16") /* 2 And set the new value */ \
A("push r16") /* 2 Save TIMSK1 into stack */ \
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
A("push r16") /* 2 Save RAMPZ into stack */ \
A("in r16, 0x3C") /* 1 Get EIND register */ \
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
A("push r1") \
A("push r18") \
A("push r19") \
A("push r20") \
A("push r21") \
A("push r22") \
A("push r23") \
A("push r24") \
A("push r25") \
A("push r26") \
A("push r27") \
A("push r30") \
A("push r31") \
A("clr r1") /* C runtime expects this register to be 0 */ \
A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
A("pop r31") \
A("pop r30") \
A("pop r27") \
A("pop r26") \
A("pop r25") \
A("pop r24") \
A("pop r23") \
A("pop r22") \
A("pop r21") \
A("pop r20") \
A("pop r19") \
A("pop r18") \
A("pop r1") \
A("pop r0") \
A("out 0x3C, r16") /* 1 Restore EIND register */ \
A("pop r16") /* 2 Get the original RAMPZ register value */ \
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \
A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \
A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \
A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \
A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \
A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \
A("pop r16") /* 2 Get the old SREG value */ \
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
A("pop r16") /* 2 Restore R16 value */ \
A("reti") /* 4 Return from interrupt */ \
: \
: [timsk0] "i" ((uint16_t)&TIMSK0), \
[timsk1] "i" ((uint16_t)&TIMSK1), \
[msk0] "M" ((uint8_t)(1<<OCIE0B)),\
[msk1] "M" ((uint8_t)(1<<OCIE1A)) \
: \
); \
} \
void TIMER1_COMPA_vect_bottom()
/* 14 cycles maximum latency */
#define HAL_TEMP_TIMER_ISR() \
extern "C" void TIMER0_COMPB_vect() __attribute__ ((signal, naked, used, externally_visible)); \
extern "C" void TIMER0_COMPB_vect_bottom() asm ("TIMER0_COMPB_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
void TIMER0_COMPB_vect() { \
__asm__ __volatile__ ( \
A("push r16") /* 2 Save R16 */ \
A("in r16, __SREG__") /* 1 Get SREG */ \
A("push r16") /* 2 Save SREG into stack */ \
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
A("sts %[timsk0], r16") /* 2 And set the new value */ \
A("sei") /* 1 Enable global interrupts - It is safe, as the temperature ISR is disabled, so we cannot reenter it */ \
A("push r16") /* 2 Save TIMSK0 into stack */ \
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
A("push r16") /* 2 Save RAMPZ into stack */ \
A("in r16, 0x3C") /* 1 Get EIND register */ \
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
A("push r1") \
A("push r18") \
A("push r19") \
A("push r20") \
A("push r21") \
A("push r22") \
A("push r23") \
A("push r24") \
A("push r25") \
A("push r26") \
A("push r27") \
A("push r30") \
A("push r31") \
A("clr r1") /* C runtime expects this register to be 0 */ \
A("call TIMER0_COMPB_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
A("pop r31") \
A("pop r30") \
A("pop r27") \
A("pop r26") \
A("pop r25") \
A("pop r24") \
A("pop r23") \
A("pop r22") \
A("pop r21") \
A("pop r20") \
A("pop r19") \
A("pop r18") \
A("pop r1") \
A("pop r0") \
A("out 0x3C, r16") /* 1 Restore EIND register */ \
A("pop r16") /* 2 Get the original RAMPZ register value */ \
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
A("pop r16") /* 2 Get the original TIMSK0 value but with temperature ISR disabled */ \
A("ori r16,%[msk0]") /* 1 Enable temperature ISR */ \
A("cli") /* 1 Disable global interrupts - We must do this, as we will reenable the temperature ISR, and we don't want to reenter this handler until the current one is done */ \
A("sts %[timsk0], r16") /* 2 And restore the old value */ \
A("pop r16") /* 2 Get the old SREG */ \
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
A("pop r16") /* 2 Restore R16 */ \
A("reti") /* 4 Return from interrupt */ \
: \
: [timsk0] "i"((uint16_t)&TIMSK0), \
[msk0] "M" ((uint8_t)(1<<OCIE0B)) \
: \
); \
} \
void TIMER0_COMPB_vect_bottom()
// ADC
#ifdef DIDR2
#define HAL_ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin & 0x07); }while(0)
#else
#define HAL_ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
#endif
inline void HAL_adc_init() {
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
}
#define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
#ifdef MUX5
#define HAL_START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else
#define HAL_START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
#define HAL_ADC_RESOLUTION 10
#define HAL_READ_ADC() ADC
#define HAL_ADC_READY() !TEST(ADCSRA, ADSC)
#define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
#define HAL_SENSITIVE_PINS 0, 1
#ifdef __AVR_AT90USB1286__
#define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0)
#endif
// AVR compatibility
#define strtof strtod
/**
* set_pwm_frequency
* Sets the frequency of the timer corresponding to the provided pin
* as close as possible to the provided desired frequency. Internally
* calculates the required waveform generation mode, prescaler and
* resolution values required and sets the timer registers accordingly.
* NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B)
* NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST FAN PWM Settings)
*/
void set_pwm_frequency(const pin_t pin, int f_desired);
/**
* set_pwm_duty
* Sets the PWM duty cycle of the provided pin to the provided value
* Optionally allows inverting the duty cycle [default = false]
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
*/
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);