1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-12-14 14:31:33 +00:00
MarlinFirmware/Marlin/src/lcd/extui/ui_api.cpp
2021-04-01 19:12:00 -05:00

1146 lines
39 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**************
* ui_api.cpp *
**************/
/****************************************************************************
* Written By Marcio Teixeira 2018 - Aleph Objects, Inc. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* To view a copy of the GNU General Public License, go to the following *
* location: <https://www.gnu.org/licenses/>. *
****************************************************************************/
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../marlinui.h"
#include "../../gcode/queue.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../module/temperature.h"
#include "../../module/printcounter.h"
#include "../../libs/duration_t.h"
#include "../../HAL/shared/Delay.h"
#include "../../sd/cardreader.h"
#if ENABLED(PRINTCOUNTER)
#include "../../core/utility.h"
#include "../../libs/numtostr.h"
#endif
#if HAS_MULTI_EXTRUDER
#include "../../module/tool_change.h"
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "../../feature/e_parser.h"
#endif
#if HAS_TRINAMIC_CONFIG
#include "../../feature/tmc_util.h"
#include "../../module/stepper/indirection.h"
#endif
#include "ui_api.h"
#if ENABLED(BACKLASH_GCODE)
#include "../../feature/backlash.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#if HAS_FILAMENT_SENSOR
#include "../../feature/runout.h"
#endif
#if ENABLED(CASE_LIGHT_ENABLE)
#include "../../feature/caselight.h"
#endif
#if ENABLED(BABYSTEPPING)
#include "../../feature/babystep.h"
#endif
#if ENABLED(HOST_PROMPT_SUPPORT)
#include "../../feature/host_actions.h"
#endif
namespace ExtUI {
static struct {
uint8_t printer_killed : 1;
#if ENABLED(JOYSTICK)
uint8_t jogging : 1;
#endif
#if ENABLED(SDSUPPORT)
uint8_t was_sd_printing : 1;
#endif
} flags;
#ifdef __SAM3X8E__
/**
* Implement a special millis() to allow time measurement
* within an ISR (such as when the printer is killed).
*
* To keep proper time, must be called at least every 1s.
*/
uint32_t safe_millis() {
// Not killed? Just call millis()
if (!flags.printer_killed) return millis();
static uint32_t currTimeHI = 0; /* Current time */
// Machine was killed, reinit SysTick so we are able to compute time without ISRs
if (currTimeHI == 0) {
// Get the last time the Arduino time computed (from CMSIS) and convert it to SysTick
currTimeHI = uint32_t((GetTickCount() * uint64_t(F_CPU / 8000)) >> 24);
// Reinit the SysTick timer to maximize its period
SysTick->LOAD = SysTick_LOAD_RELOAD_Msk; // get the full range for the systick timer
SysTick->VAL = 0; // Load the SysTick Counter Value
SysTick->CTRL = // MCLK/8 as source
// No interrupts
SysTick_CTRL_ENABLE_Msk; // Enable SysTick Timer
}
// Check if there was a timer overflow from the last read
if (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) {
// There was. This means (SysTick_LOAD_RELOAD_Msk * 1000 * 8)/F_CPU ms has elapsed
currTimeHI++;
}
// Calculate current time in milliseconds
uint32_t currTimeLO = SysTick_LOAD_RELOAD_Msk - SysTick->VAL; // (in MCLK/8)
uint64_t currTime = ((uint64_t)currTimeLO) | (((uint64_t)currTimeHI) << 24);
// The ms count is
return (uint32_t)(currTime / (F_CPU / 8000));
}
#endif // __SAM3X8E__
void delay_us(uint32_t us) { DELAY_US(us); }
void delay_ms(uint32_t ms) {
if (flags.printer_killed)
DELAY_US(ms * 1000);
else
safe_delay(ms);
}
void yield() {
if (!flags.printer_killed) thermalManager.manage_heater();
}
void enableHeater(const extruder_t extruder) {
#if HAS_HOTEND && HEATER_IDLE_HANDLER
thermalManager.reset_hotend_idle_timer(extruder - E0);
#else
UNUSED(extruder);
#endif
}
void enableHeater(const heater_t heater) {
#if HEATER_IDLE_HANDLER
switch (heater) {
#if HAS_HEATED_BED
case BED: thermalManager.reset_bed_idle_timer(); return;
#endif
#if ENABLED(HAS_HEATED_CHAMBER)
case CHAMBER: return; // Chamber has no idle timer
#endif
#if ENABLED(HAS_COOLER)
case COOLER: return; // Cooler has no idle timer
#endif
default:
TERN_(HAS_HOTEND, thermalManager.reset_hotend_idle_timer(heater - H0));
break;
}
#else
UNUSED(heater);
#endif
}
#if ENABLED(JOYSTICK)
/**
* Jogs in the direction given by the vector (dx, dy, dz).
* The values range from -1 to 1 mapping to the maximum
* feedrate for an axis.
*
* The axis will continue to jog until this function is
* called with all zeros.
*/
void jog(const xyz_float_t &dir) {
// The "destination" variable is used as a scratchpad in
// Marlin by GCODE routines, but should remain untouched
// during manual jogging, allowing us to reuse the space
// for our direction vector.
destination = dir;
flags.jogging = !NEAR_ZERO(dir.x) || !NEAR_ZERO(dir.y) || !NEAR_ZERO(dir.z);
}
// Called by the polling routine in "joystick.cpp"
void _joystick_update(xyz_float_t &norm_jog) {
if (flags.jogging) {
#define OUT_OF_RANGE(VALUE) (VALUE < -1.0f || VALUE > 1.0f)
if (OUT_OF_RANGE(destination.x) || OUT_OF_RANGE(destination.y) || OUT_OF_RANGE(destination.z)) {
// If destination on any axis is out of range, it
// probably means the UI forgot to stop jogging and
// ran GCODE that wrote a position to destination.
// To prevent a disaster, stop jogging.
flags.jogging = false;
return;
}
norm_jog = destination;
}
}
#endif
bool isHeaterIdle(const extruder_t extruder) {
#if HAS_HOTEND && HEATER_IDLE_HANDLER
return thermalManager.heater_idle[extruder - E0].timed_out;
#else
UNUSED(extruder);
return false;
#endif
}
bool isHeaterIdle(const heater_t heater) {
#if HEATER_IDLE_HANDLER
switch (heater) {
#if ENABLED(HAS_HEATED_BED)
case BED: return thermalManager.heater_idle[thermalManager.IDLE_INDEX_BED].timed_out;
#endif
#if ENABLED(HAS_HEATED_CHAMBER)
case CHAMBER: return false; // Chamber has no idle timer
#endif
default:
return TERN0(HAS_HOTEND, thermalManager.heater_idle[heater - H0].timed_out);
}
#else
UNUSED(heater);
return false;
#endif
}
#ifdef TOUCH_UI_LCD_TEMP_SCALING
#define GET_TEMP_ADJUSTMENT(A) (float(A) / (TOUCH_UI_LCD_TEMP_SCALING))
#else
#define GET_TEMP_ADJUSTMENT(A) A
#endif
float getActualTemp_celsius(const heater_t heater) {
switch (heater) {
#if ENABLED(HAS_HEATED_BED)
case BED: return GET_TEMP_ADJUSTMENT(thermalManager.degBed());
#endif
#if ENABLED(HAS_HEATED_CHAMBER)
case CHAMBER: return GET_TEMP_ADJUSTMENT(thermalManager.degChamber());
#endif
default: return GET_TEMP_ADJUSTMENT(thermalManager.degHotend(heater - H0));
}
}
float getActualTemp_celsius(const extruder_t extruder) {
return GET_TEMP_ADJUSTMENT(thermalManager.degHotend(extruder - E0));
}
float getTargetTemp_celsius(const heater_t heater) {
switch (heater) {
#if ENABLED(HAS_HEATED_BED)
case BED: return GET_TEMP_ADJUSTMENT(thermalManager.degTargetBed());
#endif
#if ENABLED(HAS_HEATED_CHAMBER)
case CHAMBER: return GET_TEMP_ADJUSTMENT(thermalManager.degTargetChamber());
#endif
default: return GET_TEMP_ADJUSTMENT(thermalManager.degTargetHotend(heater - H0));
}
}
float getTargetTemp_celsius(const extruder_t extruder) {
return GET_TEMP_ADJUSTMENT(thermalManager.degTargetHotend(extruder - E0));
}
float getTargetFan_percent(const fan_t fan) {
#if HAS_FAN
return thermalManager.fanPercent(thermalManager.fan_speed[fan - FAN0]);
#else
UNUSED(fan);
return 0;
#endif
}
float getActualFan_percent(const fan_t fan) {
#if HAS_FAN
return thermalManager.fanPercent(thermalManager.scaledFanSpeed(fan - FAN0));
#else
UNUSED(fan);
return 0;
#endif
}
float getAxisPosition_mm(const axis_t axis) {
return TERN0(JOYSTICK, flags.jogging) ? destination[axis] : current_position[axis];
}
float getAxisPosition_mm(const extruder_t extruder) {
const extruder_t old_tool = getActiveTool();
setActiveTool(extruder, true);
const float epos = TERN0(JOYSTICK, flags.jogging) ? destination.e : current_position.e;
setActiveTool(old_tool, true);
return epos;
}
void setAxisPosition_mm(const_float_t position, const axis_t axis, const feedRate_t feedrate/*=0*/) {
// Get motion limit from software endstops, if any
float min, max;
soft_endstop.get_manual_axis_limits((AxisEnum)axis, min, max);
// Delta limits XY based on the current offset from center
// This assumes the center is 0,0
#if ENABLED(DELTA)
if (axis != Z) {
max = SQRT(sq(float(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y - axis])); // (Y - axis) == the other axis
min = -max;
}
#endif
current_position[axis] = constrain(position, min, max);
line_to_current_position(feedrate ?: manual_feedrate_mm_s[axis]);
}
void setAxisPosition_mm(const_float_t position, const extruder_t extruder, const feedRate_t feedrate/*=0*/) {
setActiveTool(extruder, true);
current_position.e = position;
line_to_current_position(feedrate ?: manual_feedrate_mm_s.e);
}
void setActiveTool(const extruder_t extruder, bool no_move) {
#if HAS_MULTI_EXTRUDER
const uint8_t e = extruder - E0;
if (e != active_extruder) tool_change(e, no_move);
active_extruder = e;
#else
UNUSED(extruder);
UNUSED(no_move);
#endif
}
extruder_t getTool(const uint8_t extruder) {
switch (extruder) {
case 7: return E7;
case 6: return E6;
case 5: return E5;
case 4: return E4;
case 3: return E3;
case 2: return E2;
case 1: return E1;
default: return E0;
}
}
extruder_t getActiveTool() { return getTool(active_extruder); }
bool isMoving() { return planner.has_blocks_queued(); }
bool canMove(const axis_t axis) {
switch (axis) {
#if IS_KINEMATIC || ENABLED(NO_MOTION_BEFORE_HOMING)
case X: return axis_should_home(X_AXIS);
case Y: return axis_should_home(Y_AXIS);
case Z: return axis_should_home(Z_AXIS);
#else
case X: case Y: case Z: return true;
#endif
default: return false;
}
}
bool canMove(const extruder_t extruder) {
return !thermalManager.tooColdToExtrude(extruder - E0);
}
#if HAS_SOFTWARE_ENDSTOPS
bool getSoftEndstopState() { return soft_endstop._enabled; }
void setSoftEndstopState(const bool value) { soft_endstop._enabled = value; }
#endif
#if HAS_TRINAMIC_CONFIG
float getAxisCurrent_mA(const axis_t axis) {
switch (axis) {
#if AXIS_IS_TMC(X)
case X: return stepperX.getMilliamps();
#endif
#if AXIS_IS_TMC(X2)
case X2: return stepperX2.getMilliamps();
#endif
#if AXIS_IS_TMC(Y)
case Y: return stepperY.getMilliamps();
#endif
#if AXIS_IS_TMC(Y2)
case Y2: return stepperY2.getMilliamps();
#endif
#if AXIS_IS_TMC(Z)
case Z: return stepperZ.getMilliamps();
#endif
#if AXIS_IS_TMC(Z2)
case Z2: return stepperZ2.getMilliamps();
#endif
default: return NAN;
};
}
float getAxisCurrent_mA(const extruder_t extruder) {
switch (extruder) {
#if AXIS_IS_TMC(E0)
case E0: return stepperE0.getMilliamps();
#endif
#if AXIS_IS_TMC(E1)
case E1: return stepperE1.getMilliamps();
#endif
#if AXIS_IS_TMC(E2)
case E2: return stepperE2.getMilliamps();
#endif
#if AXIS_IS_TMC(E3)
case E3: return stepperE3.getMilliamps();
#endif
#if AXIS_IS_TMC(E4)
case E4: return stepperE4.getMilliamps();
#endif
#if AXIS_IS_TMC(E5)
case E5: return stepperE5.getMilliamps();
#endif
#if AXIS_IS_TMC(E6)
case E6: return stepperE6.getMilliamps();
#endif
#if AXIS_IS_TMC(E7)
case E7: return stepperE7.getMilliamps();
#endif
default: return NAN;
};
}
void setAxisCurrent_mA(const_float_t mA, const axis_t axis) {
switch (axis) {
#if AXIS_IS_TMC(X)
case X: stepperX.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(X2)
case X2: stepperX2.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(Y)
case Y: stepperY.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(Y2)
case Y2: stepperY2.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(Z)
case Z: stepperZ.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(Z2)
case Z2: stepperZ2.rms_current(constrain(mA, 400, 1500)); break;
#endif
default: break;
};
}
void setAxisCurrent_mA(const_float_t mA, const extruder_t extruder) {
switch (extruder) {
#if AXIS_IS_TMC(E0)
case E0: stepperE0.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(E1)
case E1: stepperE1.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(E2)
case E2: stepperE2.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(E3)
case E3: stepperE3.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(E4)
case E4: stepperE4.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(E5)
case E5: stepperE5.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(E6)
case E6: stepperE6.rms_current(constrain(mA, 400, 1500)); break;
#endif
#if AXIS_IS_TMC(E7)
case E7: stepperE7.rms_current(constrain(mA, 400, 1500)); break;
#endif
default: break;
};
}
int getTMCBumpSensitivity(const axis_t axis) {
switch (axis) {
#if ENABLED(X_SENSORLESS)
case X: return stepperX.homing_threshold();
#endif
#if ENABLED(X2_SENSORLESS)
case X2: return stepperX2.homing_threshold();
#endif
#if ENABLED(Y_SENSORLESS)
case Y: return stepperY.homing_threshold();
#endif
#if ENABLED(Y2_SENSORLESS)
case Y2: return stepperY2.homing_threshold();
#endif
#if ENABLED(Z_SENSORLESS)
case Z: return stepperZ.homing_threshold();
#endif
#if ENABLED(Z2_SENSORLESS)
case Z2: return stepperZ2.homing_threshold();
#endif
#if ENABLED(Z3_SENSORLESS)
case Z3: return stepperZ3.homing_threshold();
#endif
#if ENABLED(Z4_SENSORLESS)
case Z4: return stepperZ4.homing_threshold();
#endif
default: return 0;
}
}
void setTMCBumpSensitivity(const_float_t value, const axis_t axis) {
switch (axis) {
#if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
#if X_SENSORLESS
case X: stepperX.homing_threshold(value); break;
#endif
#if X2_SENSORLESS
case X2: stepperX2.homing_threshold(value); break;
#endif
#if Y_SENSORLESS
case Y: stepperY.homing_threshold(value); break;
#endif
#if Y2_SENSORLESS
case Y2: stepperY2.homing_threshold(value); break;
#endif
#if Z_SENSORLESS
case Z: stepperZ.homing_threshold(value); break;
#endif
#if Z2_SENSORLESS
case Z2: stepperZ2.homing_threshold(value); break;
#endif
#if Z3_SENSORLESS
case Z3: stepperZ3.homing_threshold(value); break;
#endif
#if Z4_SENSORLESS
case Z4: stepperZ4.homing_threshold(value); break;
#endif
#else
UNUSED(value);
#endif
default: break;
}
}
#endif
float getAxisSteps_per_mm(const axis_t axis) {
return planner.settings.axis_steps_per_mm[axis];
}
float getAxisSteps_per_mm(const extruder_t extruder) {
UNUSED_E(extruder);
return planner.settings.axis_steps_per_mm[E_AXIS_N(extruder - E0)];
}
void setAxisSteps_per_mm(const_float_t value, const axis_t axis) {
planner.settings.axis_steps_per_mm[axis] = value;
planner.refresh_positioning();
}
void setAxisSteps_per_mm(const_float_t value, const extruder_t extruder) {
UNUSED_E(extruder);
planner.settings.axis_steps_per_mm[E_AXIS_N(extruder - E0)] = value;
planner.refresh_positioning();
}
feedRate_t getAxisMaxFeedrate_mm_s(const axis_t axis) {
return planner.settings.max_feedrate_mm_s[axis];
}
feedRate_t getAxisMaxFeedrate_mm_s(const extruder_t extruder) {
UNUSED_E(extruder);
return planner.settings.max_feedrate_mm_s[E_AXIS_N(extruder - E0)];
}
void setAxisMaxFeedrate_mm_s(const feedRate_t value, const axis_t axis) {
planner.set_max_feedrate(axis, value);
}
void setAxisMaxFeedrate_mm_s(const feedRate_t value, const extruder_t extruder) {
UNUSED_E(extruder);
planner.set_max_feedrate(E_AXIS_N(extruder - E0), value);
}
float getAxisMaxAcceleration_mm_s2(const axis_t axis) {
return planner.settings.max_acceleration_mm_per_s2[axis];
}
float getAxisMaxAcceleration_mm_s2(const extruder_t extruder) {
UNUSED_E(extruder);
return planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(extruder - E0)];
}
void setAxisMaxAcceleration_mm_s2(const_float_t value, const axis_t axis) {
planner.set_max_acceleration(axis, value);
}
void setAxisMaxAcceleration_mm_s2(const_float_t value, const extruder_t extruder) {
UNUSED_E(extruder);
planner.set_max_acceleration(E_AXIS_N(extruder - E0), value);
}
#if HAS_FILAMENT_SENSOR
bool getFilamentRunoutEnabled() { return runout.enabled; }
void setFilamentRunoutEnabled(const bool value) { runout.enabled = value; }
bool getFilamentRunoutState() { return runout.filament_ran_out; }
void setFilamentRunoutState(const bool value) { runout.filament_ran_out = value; }
#if HAS_FILAMENT_RUNOUT_DISTANCE
float getFilamentRunoutDistance_mm() { return runout.runout_distance(); }
void setFilamentRunoutDistance_mm(const_float_t value) { runout.set_runout_distance(constrain(value, 0, 999)); }
#endif
#endif
#if ENABLED(CASE_LIGHT_ENABLE)
bool getCaseLightState() { return caselight.on; }
void setCaseLightState(const bool value) {
caselight.on = value;
caselight.update_enabled();
}
#if CASELIGHT_USES_BRIGHTNESS
float getCaseLightBrightness_percent() { return ui8_to_percent(caselight.brightness); }
void setCaseLightBrightness_percent(const_float_t value) {
caselight.brightness = map(constrain(value, 0, 100), 0, 100, 0, 255);
caselight.update_brightness();
}
#endif
#endif
#if ENABLED(LIN_ADVANCE)
float getLinearAdvance_mm_mm_s(const extruder_t extruder) {
return (extruder < EXTRUDERS) ? planner.extruder_advance_K[extruder - E0] : 0;
}
void setLinearAdvance_mm_mm_s(const_float_t value, const extruder_t extruder) {
if (extruder < EXTRUDERS)
planner.extruder_advance_K[extruder - E0] = constrain(value, 0, 10);
}
#endif
#if HAS_JUNCTION_DEVIATION
float getJunctionDeviation_mm() {
return planner.junction_deviation_mm;
}
void setJunctionDeviation_mm(const_float_t value) {
planner.junction_deviation_mm = constrain(value, 0.001, 0.3);
TERN_(LIN_ADVANCE, planner.recalculate_max_e_jerk());
}
#else
float getAxisMaxJerk_mm_s(const axis_t axis) { return planner.max_jerk[axis]; }
float getAxisMaxJerk_mm_s(const extruder_t) { return planner.max_jerk.e; }
void setAxisMaxJerk_mm_s(const_float_t value, const axis_t axis) { planner.set_max_jerk((AxisEnum)axis, value); }
void setAxisMaxJerk_mm_s(const_float_t value, const extruder_t) { planner.set_max_jerk(E_AXIS, value); }
#endif
#if ENABLED(DUAL_X_CARRIAGE)
uint8_t getIDEX_Mode() { return dual_x_carriage_mode; }
#endif
#if PREHEAT_COUNT
uint16_t getMaterial_preset_E(const uint16_t index) { return ui.material_preset[index].hotend_temp; }
#if HAS_HEATED_BED
uint16_t getMaterial_preset_B(const uint16_t index) { return ui.material_preset[index].bed_temp; }
#endif
#endif
feedRate_t getFeedrate_mm_s() { return feedrate_mm_s; }
int16_t getFlowPercentage(const extruder_t extr) { return planner.flow_percentage[extr]; }
feedRate_t getMinFeedrate_mm_s() { return planner.settings.min_feedrate_mm_s; }
feedRate_t getMinTravelFeedrate_mm_s() { return planner.settings.min_travel_feedrate_mm_s; }
float getPrintingAcceleration_mm_s2() { return planner.settings.acceleration; }
float getRetractAcceleration_mm_s2() { return planner.settings.retract_acceleration; }
float getTravelAcceleration_mm_s2() { return planner.settings.travel_acceleration; }
void setFeedrate_mm_s(const feedRate_t fr) { feedrate_mm_s = fr; }
void setFlow_percent(const int16_t flow, const extruder_t extr) { planner.set_flow(extr, flow); }
void setMinFeedrate_mm_s(const feedRate_t fr) { planner.settings.min_feedrate_mm_s = fr; }
void setMinTravelFeedrate_mm_s(const feedRate_t fr) { planner.settings.min_travel_feedrate_mm_s = fr; }
void setPrintingAcceleration_mm_s2(const_float_t acc) { planner.settings.acceleration = acc; }
void setRetractAcceleration_mm_s2(const_float_t acc) { planner.settings.retract_acceleration = acc; }
void setTravelAcceleration_mm_s2(const_float_t acc) { planner.settings.travel_acceleration = acc; }
#if ENABLED(BABYSTEPPING)
bool babystepAxis_steps(const int16_t steps, const axis_t axis) {
switch (axis) {
#if ENABLED(BABYSTEP_XY)
case X: babystep.add_steps(X_AXIS, steps); break;
case Y: babystep.add_steps(Y_AXIS, steps); break;
#endif
case Z: babystep.add_steps(Z_AXIS, steps); break;
default: return false;
};
return true;
}
/**
* This function adjusts an axis during a print.
*
* When linked_nozzles is false, each nozzle in a multi-nozzle
* printer can be babystepped independently of the others. This
* lets the user to fine tune the Z-offset and Nozzle Offsets
* while observing the first layer of a print, regardless of
* what nozzle is printing.
*/
void smartAdjustAxis_steps(const int16_t steps, const axis_t axis, bool linked_nozzles) {
const float mm = steps * planner.steps_to_mm[axis];
UNUSED(mm);
if (!babystepAxis_steps(steps, axis)) return;
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
// Make it so babystepping in Z adjusts the Z probe offset.
if (axis == Z && TERN1(HAS_MULTI_EXTRUDER, (linked_nozzles || active_extruder == 0)))
probe.offset.z += mm;
#endif
#if HAS_MULTI_EXTRUDER && HAS_HOTEND_OFFSET
/**
* When linked_nozzles is false, as an axis is babystepped
* adjust the hotend offsets so that the other nozzles are
* unaffected by the babystepping of the active nozzle.
*/
if (!linked_nozzles) {
HOTEND_LOOP()
if (e != active_extruder)
hotend_offset[e][axis] += mm;
normalizeNozzleOffset(X);
normalizeNozzleOffset(Y);
normalizeNozzleOffset(Z);
}
#else
UNUSED(linked_nozzles);
#endif
}
/**
* Converts a mm displacement to a number of whole number of
* steps that is at least mm long.
*/
int16_t mmToWholeSteps(const_float_t mm, const axis_t axis) {
const float steps = mm / planner.steps_to_mm[axis];
return steps > 0 ? CEIL(steps) : FLOOR(steps);
}
#endif // BABYSTEPPING
float getZOffset_mm() {
return (0.0f
#if HAS_BED_PROBE
+ probe.offset.z
#elif ENABLED(BABYSTEP_DISPLAY_TOTAL)
+ planner.steps_to_mm[Z_AXIS] * babystep.axis_total[BS_AXIS_IND(Z_AXIS)]
#endif
);
}
void setZOffset_mm(const_float_t value) {
#if HAS_BED_PROBE
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX))
probe.offset.z = value;
#elif ENABLED(BABYSTEP_DISPLAY_TOTAL)
babystep.add_mm(Z_AXIS, value - getZOffset_mm());
#else
UNUSED(value);
#endif
}
#if HAS_HOTEND_OFFSET
float getNozzleOffset_mm(const axis_t axis, const extruder_t extruder) {
if (extruder - E0 >= HOTENDS) return 0;
return hotend_offset[extruder - E0][axis];
}
void setNozzleOffset_mm(const_float_t value, const axis_t axis, const extruder_t extruder) {
if (extruder - E0 >= HOTENDS) return;
hotend_offset[extruder - E0][axis] = value;
}
/**
* The UI should call this if needs to guarantee the first
* nozzle offset is zero (such as when it doesn't allow the
* user to edit the offset the first nozzle).
*/
void normalizeNozzleOffset(const axis_t axis) {
const float offs = hotend_offset[0][axis];
HOTEND_LOOP() hotend_offset[e][axis] -= offs;
}
#endif // HAS_HOTEND_OFFSET
#if HAS_BED_PROBE
float getProbeOffset_mm(const axis_t axis) { return probe.offset.pos[axis]; }
void setProbeOffset_mm(const_float_t val, const axis_t axis) { probe.offset.pos[axis] = val; }
#endif
#if ENABLED(BACKLASH_GCODE)
float getAxisBacklash_mm(const axis_t axis) { return backlash.distance_mm[axis]; }
void setAxisBacklash_mm(const_float_t value, const axis_t axis)
{ backlash.distance_mm[axis] = constrain(value,0,5); }
float getBacklashCorrection_percent() { return ui8_to_percent(backlash.correction); }
void setBacklashCorrection_percent(const_float_t value) { backlash.correction = map(constrain(value, 0, 100), 0, 100, 0, 255); }
#ifdef BACKLASH_SMOOTHING_MM
float getBacklashSmoothing_mm() { return backlash.smoothing_mm; }
void setBacklashSmoothing_mm(const_float_t value) { backlash.smoothing_mm = constrain(value, 0, 999); }
#endif
#endif
uint32_t getProgress_seconds_elapsed() {
const duration_t elapsed = print_job_timer.duration();
return elapsed.value;
}
#if HAS_LEVELING
bool getLevelingActive() { return planner.leveling_active; }
void setLevelingActive(const bool state) { set_bed_leveling_enabled(state); }
bool getMeshValid() { return leveling_is_valid(); }
#if HAS_MESH
bed_mesh_t& getMeshArray() { return Z_VALUES_ARR; }
float getMeshPoint(const xy_uint8_t &pos) { return Z_VALUES(pos.x, pos.y); }
void setMeshPoint(const xy_uint8_t &pos, const_float_t zoff) {
if (WITHIN(pos.x, 0, (GRID_MAX_POINTS_X) - 1) && WITHIN(pos.y, 0, (GRID_MAX_POINTS_Y) - 1)) {
Z_VALUES(pos.x, pos.y) = zoff;
TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
}
}
void moveToMeshPoint(const xy_uint8_t &pos, const_float_t z) {
#if EITHER(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL)
const feedRate_t old_feedrate = feedrate_mm_s;
const float x_target = MESH_MIN_X + pos.x * (MESH_X_DIST),
y_target = MESH_MIN_Y + pos.y * (MESH_Y_DIST);
if (x_target != current_position[X_AXIS] || y_target != current_position[Y_AXIS]) {
// If moving across bed, raise nozzle to safe height over bed
feedrate_mm_s = Z_PROBE_FEEDRATE_FAST;
destination = current_position;
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
prepare_line_to_destination();
feedrate_mm_s = XY_PROBE_FEEDRATE;
destination[X_AXIS] = x_target;
destination[Y_AXIS] = y_target;
prepare_line_to_destination();
}
feedrate_mm_s = Z_PROBE_FEEDRATE_FAST;
destination[Z_AXIS] = z;
prepare_line_to_destination();
feedrate_mm_s = old_feedrate;
#else
UNUSED(pos);
UNUSED(z);
#endif
}
#endif // HAS_MESH
#endif // HAS_LEVELING
#if ENABLED(HOST_PROMPT_SUPPORT)
void setHostResponse(const uint8_t response) { host_response_handler(response); }
#endif
#if ENABLED(PRINTCOUNTER)
char* getFailedPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().totalPrints - print_job_timer.getStats().finishedPrints)); return buffer; }
char* getTotalPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().totalPrints)); return buffer; }
char* getFinishedPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().finishedPrints)); return buffer; }
char* getTotalPrintTime_str(char buffer[21]) { return duration_t(print_job_timer.getStats().printTime).toString(buffer); }
char* getLongestPrint_str(char buffer[21]) { return duration_t(print_job_timer.getStats().longestPrint).toString(buffer); }
char* getFilamentUsed_str(char buffer[21]) {
printStatistics stats = print_job_timer.getStats();
sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
return buffer;
}
#endif
float getFeedrate_percent() { return feedrate_percentage; }
#if ENABLED(PIDTEMP)
float getPIDValues_Kp(const extruder_t tool) { return PID_PARAM(Kp, tool); }
float getPIDValues_Ki(const extruder_t tool) { return unscalePID_i(PID_PARAM(Ki, tool)); }
float getPIDValues_Kd(const extruder_t tool) { return unscalePID_d(PID_PARAM(Kd, tool)); }
void setPIDValues(const_float_t p, const_float_t i, const_float_t d, extruder_t tool) {
thermalManager.temp_hotend[tool].pid.Kp = p;
thermalManager.temp_hotend[tool].pid.Ki = scalePID_i(i);
thermalManager.temp_hotend[tool].pid.Kd = scalePID_d(d);
thermalManager.updatePID();
}
void startPIDTune(const_float_t temp, extruder_t tool) {
thermalManager.PID_autotune(temp, (heater_id_t)tool, 8, true);
}
#endif
#if ENABLED(PIDTEMPBED)
float getBedPIDValues_Kp() { return thermalManager.temp_bed.pid.Kp; }
float getBedPIDValues_Ki() { return unscalePID_i(thermalManager.temp_bed.pid.Ki); }
float getBedPIDValues_Kd() { return unscalePID_d(thermalManager.temp_bed.pid.Kd); }
void setBedPIDValues(const_float_t p, const_float_t i, const_float_t d) {
thermalManager.temp_bed.pid.Kp = p;
thermalManager.temp_bed.pid.Ki = scalePID_i(i);
thermalManager.temp_bed.pid.Kd = scalePID_d(d);
thermalManager.updatePID();
}
void startBedPIDTune(const_float_t temp) {
thermalManager.PID_autotune(temp, H_BED, 4, true);
}
#endif
void injectCommands_P(PGM_P const gcode) { queue.inject_P(gcode); }
void injectCommands(char * const gcode) { queue.inject(gcode); }
bool commandsInQueue() { return (planner.movesplanned() || queue.has_commands_queued()); }
bool isAxisPositionKnown(const axis_t axis) { return axis_is_trusted((AxisEnum)axis); }
bool isAxisPositionKnown(const extruder_t) { return axis_is_trusted(E_AXIS); }
bool isPositionKnown() { return all_axes_trusted(); }
bool isMachineHomed() { return all_axes_homed(); }
PGM_P getFirmwareName_str() {
static PGMSTR(firmware_name, "Marlin " SHORT_BUILD_VERSION);
return firmware_name;
}
void setTargetTemp_celsius(const_float_t inval, const heater_t heater) {
float value = inval;
#ifdef TOUCH_UI_LCD_TEMP_SCALING
value *= TOUCH_UI_LCD_TEMP_SCALING;
#endif
enableHeater(heater);
switch (heater) {
#if HAS_HEATED_CHAMBER
case CHAMBER: thermalManager.setTargetChamber(LROUND(constrain(value, 0, CHAMBER_MAX_TARGET))); break;
#endif
#if HAS_COOLER
case COOLER: thermalManager.setTargetCooler(LROUND(constrain(value, 0, COOLER_MAXTEMP))); break;
#endif
#if HAS_HEATED_BED
case BED: thermalManager.setTargetBed(LROUND(constrain(value, 0, BED_MAX_TARGET))); break;
#endif
default: {
#if HAS_HOTEND
const int16_t e = heater - H0;
thermalManager.setTargetHotend(LROUND(constrain(value, 0, thermalManager.hotend_max_target(e))), e);
#endif
} break;
}
}
void setTargetTemp_celsius(const_float_t inval, const extruder_t extruder) {
float value = inval;
#ifdef TOUCH_UI_LCD_TEMP_SCALING
value *= TOUCH_UI_LCD_TEMP_SCALING;
#endif
#if HAS_HOTEND
const int16_t e = extruder - E0;
enableHeater(extruder);
thermalManager.setTargetHotend(LROUND(constrain(value, 0, thermalManager.hotend_max_target(e))), e);
#endif
}
void setTargetFan_percent(const_float_t value, const fan_t fan) {
#if HAS_FAN
if (fan < FAN_COUNT)
thermalManager.set_fan_speed(fan - FAN0, map(constrain(value, 0, 100), 0, 100, 0, 255));
#else
UNUSED(value);
UNUSED(fan);
#endif
}
void setFeedrate_percent(const_float_t value) { feedrate_percentage = constrain(value, 10, 500); }
void coolDown() {
#if HAS_HOTEND
HOTEND_LOOP() thermalManager.setTargetHotend(0, e);
#endif
TERN_(HAS_HEATED_BED, thermalManager.setTargetBed(0));
TERN_(HAS_FAN, thermalManager.zero_fan_speeds());
}
bool awaitingUserConfirm() { return wait_for_user; }
void setUserConfirmed() { TERN_(HAS_RESUME_CONTINUE, wait_for_user = false); }
void printFile(const char *filename) {
UNUSED(filename);
TERN_(SDSUPPORT, card.openAndPrintFile(filename));
}
bool isPrintingFromMediaPaused() {
return TERN0(SDSUPPORT, isPrintingFromMedia() && !IS_SD_PRINTING());
}
bool isPrintingFromMedia() {
#if ENABLED(SDSUPPORT)
// Account for when IS_SD_PRINTING() reports the end of the
// print when there is still SD card data in the planner.
flags.was_sd_printing = card.isFileOpen() || (flags.was_sd_printing && commandsInQueue());
return flags.was_sd_printing;
#else
return false;
#endif
}
bool isPrinting() {
return (commandsInQueue() || isPrintingFromMedia() || TERN0(SDSUPPORT, IS_SD_PRINTING())) || print_job_timer.isRunning() || print_job_timer.isPaused();
}
bool isPrintingPaused() {
return isPrinting() && (isPrintingFromMediaPaused() || print_job_timer.isPaused());
}
bool isMediaInserted() { return TERN0(SDSUPPORT, IS_SD_INSERTED() && card.isMounted()); }
void pausePrint() { ui.pause_print(); }
void resumePrint() { ui.resume_print(); }
void stopPrint() { ui.abort_print(); }
void onUserConfirmRequired_P(PGM_P const pstr) {
char msg[strlen_P(pstr) + 1];
strcpy_P(msg, pstr);
onUserConfirmRequired(msg);
}
void onStatusChanged_P(PGM_P const pstr) {
char msg[strlen_P(pstr) + 1];
strcpy_P(msg, pstr);
onStatusChanged(msg);
}
FileList::FileList() { refresh(); }
void FileList::refresh() { num_files = 0xFFFF; }
bool FileList::seek(const uint16_t pos, const bool skip_range_check) {
#if ENABLED(SDSUPPORT)
if (!skip_range_check && (pos + 1) > count()) return false;
card.getfilename_sorted(SD_ORDER(pos, count()));
return card.filename[0] != '\0';
#else
UNUSED(pos);
UNUSED(skip_range_check);
return false;
#endif
}
const char* FileList::filename() {
return TERN(SDSUPPORT, card.longest_filename(), "");
}
const char* FileList::shortFilename() {
return TERN(SDSUPPORT, card.filename, "");
}
const char* FileList::longFilename() {
return TERN(SDSUPPORT, card.longFilename, "");
}
bool FileList::isDir() {
return TERN0(SDSUPPORT, card.flag.filenameIsDir);
}
uint16_t FileList::count() {
return TERN0(SDSUPPORT, (num_files = (num_files == 0xFFFF ? card.get_num_Files() : num_files)));
}
bool FileList::isAtRootDir() {
return TERN1(SDSUPPORT, card.flag.workDirIsRoot);
}
void FileList::upDir() {
#if ENABLED(SDSUPPORT)
card.cdup();
num_files = 0xFFFF;
#endif
}
void FileList::changeDir(const char * const dirname) {
#if ENABLED(SDSUPPORT)
card.cd(dirname);
num_files = 0xFFFF;
#else
UNUSED(dirname);
#endif
}
} // namespace ExtUI
// At the moment we hook into MarlinUI methods, but this could be cleaned up in the future
void MarlinUI::init() { ExtUI::onStartup(); }
void MarlinUI::update() { ExtUI::onIdle(); }
void MarlinUI::kill_screen(PGM_P const error, PGM_P const component) {
using namespace ExtUI;
if (!flags.printer_killed) {
flags.printer_killed = true;
onPrinterKilled(error, component);
}
}
#endif // EXTENSIBLE_UI