mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-23 12:04:19 +00:00
a7822e3ff7
* Fix a couple of renames omission and macro expansion errors.
335 lines
10 KiB
C
335 lines
10 KiB
C
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
|
|
// License: GPL
|
|
|
|
#ifndef MARLIN_H
|
|
#define MARLIN_H
|
|
|
|
#define FORCE_INLINE __attribute__((always_inline)) inline
|
|
/**
|
|
* Compiler warning on unused varable.
|
|
*/
|
|
#define UNUSED(x) (void) (x)
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <util/delay.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
|
|
#include "fastio.h"
|
|
#include "Configuration.h"
|
|
#include "pins.h"
|
|
|
|
#ifndef SANITYCHECK_H
|
|
#error Your Configuration.h and Configuration_adv.h files are outdated!
|
|
#endif
|
|
|
|
#include "Arduino.h"
|
|
|
|
typedef unsigned long millis_t;
|
|
|
|
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
|
#ifndef analogInputToDigitalPin
|
|
#define analogInputToDigitalPin(p) ((p) + 0xA0)
|
|
#endif
|
|
|
|
#ifdef USBCON
|
|
#include "HardwareSerial.h"
|
|
#endif
|
|
|
|
#include "MarlinSerial.h"
|
|
|
|
#ifndef cbi
|
|
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
|
#endif
|
|
#ifndef sbi
|
|
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
|
#endif
|
|
|
|
#include "WString.h"
|
|
|
|
#ifdef USBCON
|
|
#if ENABLED(BLUETOOTH)
|
|
#define MYSERIAL bluetoothSerial
|
|
#else
|
|
#define MYSERIAL Serial
|
|
#endif // BLUETOOTH
|
|
#else
|
|
#define MYSERIAL customizedSerial
|
|
#endif
|
|
|
|
#define SERIAL_CHAR(x) MYSERIAL.write(x)
|
|
#define SERIAL_EOL SERIAL_CHAR('\n')
|
|
|
|
#define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x)
|
|
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x)
|
|
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y)
|
|
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x))
|
|
#define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x); SERIAL_EOL; }while(0)
|
|
#define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x)); SERIAL_EOL; }while(0)
|
|
|
|
|
|
extern const char errormagic[] PROGMEM;
|
|
extern const char echomagic[] PROGMEM;
|
|
|
|
#define SERIAL_ERROR_START serialprintPGM(errormagic)
|
|
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
|
|
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
|
|
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
|
|
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
|
|
|
|
#define SERIAL_ECHO_START serialprintPGM(echomagic)
|
|
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
|
|
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
|
|
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
|
|
#define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
|
|
|
|
#define SERIAL_ECHOPAIR(name,value) do{ serial_echopair_P(PSTR(name),(value)); }while(0)
|
|
|
|
void serial_echopair_P(const char *s_P, int v);
|
|
void serial_echopair_P(const char *s_P, long v);
|
|
void serial_echopair_P(const char *s_P, float v);
|
|
void serial_echopair_P(const char *s_P, double v);
|
|
void serial_echopair_P(const char *s_P, unsigned long v);
|
|
|
|
|
|
// Things to write to serial from Program memory. Saves 400 to 2k of RAM.
|
|
FORCE_INLINE void serialprintPGM(const char *str) {
|
|
char ch;
|
|
while ((ch = pgm_read_byte(str))) {
|
|
MYSERIAL.write(ch);
|
|
str++;
|
|
}
|
|
}
|
|
|
|
void get_command();
|
|
|
|
void idle(); // the standard idle routine calls manage_inactivity(false)
|
|
|
|
void manage_inactivity(bool ignore_stepper_queue=false);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) && HAS_X_ENABLE && HAS_X2_ENABLE
|
|
#define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0)
|
|
#define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0)
|
|
#elif HAS_X_ENABLE
|
|
#define enable_x() X_ENABLE_WRITE( X_ENABLE_ON)
|
|
#define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
|
|
#else
|
|
#define enable_x() ;
|
|
#define disable_x() ;
|
|
#endif
|
|
|
|
#if HAS_Y_ENABLE
|
|
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
|
|
#define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }
|
|
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
|
|
#else
|
|
#define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON)
|
|
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
|
|
#endif
|
|
#else
|
|
#define enable_y() ;
|
|
#define disable_y() ;
|
|
#endif
|
|
|
|
#if HAS_Z_ENABLE
|
|
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
|
|
#define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }
|
|
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
|
|
#else
|
|
#define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON)
|
|
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
|
|
#endif
|
|
#else
|
|
#define enable_z() ;
|
|
#define disable_z() ;
|
|
#endif
|
|
|
|
#if HAS_E0_ENABLE
|
|
#define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_e0() /* nothing */
|
|
#define disable_e0() /* nothing */
|
|
#endif
|
|
|
|
#if (EXTRUDERS > 1) && HAS_E1_ENABLE
|
|
#define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_e1() /* nothing */
|
|
#define disable_e1() /* nothing */
|
|
#endif
|
|
|
|
#if (EXTRUDERS > 2) && HAS_E2_ENABLE
|
|
#define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_e2() /* nothing */
|
|
#define disable_e2() /* nothing */
|
|
#endif
|
|
|
|
#if (EXTRUDERS > 3) && HAS_E3_ENABLE
|
|
#define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
|
|
#define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
|
|
#else
|
|
#define enable_e3() /* nothing */
|
|
#define disable_e3() /* nothing */
|
|
#endif
|
|
|
|
/**
|
|
* The axis order in all axis related arrays is X, Y, Z, E
|
|
*/
|
|
#define NUM_AXIS 4
|
|
|
|
/**
|
|
* Axis indices as enumerated constants
|
|
*
|
|
* A_AXIS and B_AXIS are used by COREXY printers
|
|
* X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
|
|
*/
|
|
enum AxisEnum {X_AXIS=0, A_AXIS=0, Y_AXIS=1, B_AXIS=1, Z_AXIS=2, C_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5, Z_HEAD=5};
|
|
|
|
enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_MIN_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6, Z2_MIN=7, Z2_MAX=8};
|
|
|
|
void enable_all_steppers();
|
|
void disable_all_steppers();
|
|
|
|
void FlushSerialRequestResend();
|
|
void ok_to_send();
|
|
|
|
void reset_bed_level();
|
|
void prepare_move();
|
|
void kill(const char *);
|
|
void Stop();
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
void filrunout();
|
|
#endif
|
|
|
|
/**
|
|
* Debug flags - not yet widely applied
|
|
*/
|
|
enum DebugFlags {
|
|
DEBUG_ECHO = BIT(0),
|
|
DEBUG_INFO = BIT(1),
|
|
DEBUG_ERRORS = BIT(2),
|
|
DEBUG_DRYRUN = BIT(3),
|
|
DEBUG_COMMUNICATION = BIT(4)
|
|
};
|
|
extern uint8_t marlin_debug_flags;
|
|
|
|
extern bool Running;
|
|
inline bool IsRunning() { return Running; }
|
|
inline bool IsStopped() { return !Running; }
|
|
|
|
bool enqueuecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full
|
|
void enqueuecommands_P(const char *cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
|
|
|
|
void prepare_arc_move(char isclockwise);
|
|
void clamp_to_software_endstops(float target[3]);
|
|
|
|
extern millis_t previous_cmd_ms;
|
|
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
|
|
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
void setPwmFrequency(uint8_t pin, int val);
|
|
#endif
|
|
|
|
#ifndef CRITICAL_SECTION_START
|
|
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
|
|
#define CRITICAL_SECTION_END SREG = _sreg;
|
|
#endif
|
|
|
|
extern bool axis_relative_modes[];
|
|
extern int feedrate_multiplier;
|
|
extern bool volumetric_enabled;
|
|
extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
|
|
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
|
|
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
|
|
extern float current_position[NUM_AXIS];
|
|
extern float home_offset[3]; // axis[n].home_offset
|
|
extern float min_pos[3]; // axis[n].min_pos
|
|
extern float max_pos[3]; // axis[n].max_pos
|
|
extern bool axis_known_position[3]; // axis[n].is_known
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
void calculate_delta(float cartesian[3]);
|
|
#if ENABLED(DELTA)
|
|
extern float delta[3];
|
|
extern float endstop_adj[3]; // axis[n].endstop_adj
|
|
extern float delta_radius;
|
|
extern float delta_diagonal_rod;
|
|
extern float delta_segments_per_second;
|
|
void recalc_delta_settings(float radius, float diagonal_rod);
|
|
#if ENABLED(ENABLE_AUTO_BED_LEVELING)
|
|
extern int delta_grid_spacing[2];
|
|
void adjust_delta(float cartesian[3]);
|
|
#endif
|
|
#elif ENABLED(SCARA)
|
|
extern float axis_scaling[3]; // Build size scaling
|
|
void calculate_SCARA_forward_Transform(float f_scara[3]);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
extern float z_endstop_adj;
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_AUTO_BED_LEVELING)
|
|
extern float zprobe_zoffset;
|
|
#endif
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
extern float extrude_min_temp;
|
|
#endif
|
|
|
|
extern int fanSpeed;
|
|
|
|
#if ENABLED(BARICUDA)
|
|
extern int ValvePressure;
|
|
extern int EtoPPressure;
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
extern unsigned char fanSpeedSoftPwm;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_SENSOR)
|
|
extern float filament_width_nominal; //holds the theoretical filament diameter ie., 3.00 or 1.75
|
|
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
|
|
extern float filament_width_meas; //holds the filament diameter as accurately measured
|
|
extern signed char measurement_delay[]; //ring buffer to delay measurement
|
|
extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code
|
|
extern float delay_dist; //delay distance counter
|
|
extern int meas_delay_cm; //delay distance
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
extern bool autoretract_enabled;
|
|
extern bool retracted[EXTRUDERS]; // extruder[n].retracted
|
|
extern float retract_length, retract_length_swap, retract_feedrate, retract_zlift;
|
|
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
|
|
#endif
|
|
|
|
extern millis_t print_job_start_ms;
|
|
extern millis_t print_job_stop_ms;
|
|
|
|
// Handling multiple extruders pins
|
|
extern uint8_t active_extruder;
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
extern void digipot_i2c_set_current( int channel, float current );
|
|
extern void digipot_i2c_init();
|
|
#endif
|
|
|
|
extern void calculate_volumetric_multipliers();
|
|
|
|
#endif //MARLIN_H
|