mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-25 04:48:31 +00:00
8282d732c1
Example Configuration.h files are not updated yet. You need to cross your settings over to the default Configuration.h file in the \Marlin directory. (UBL_G26_MESH_VALIDATION enablement has moved to a new location in the file.)
722 lines
30 KiB
C++
722 lines
30 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
#include "MarlinConfig.h"
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
#include "Marlin.h"
|
|
#include "ubl.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include <avr/io.h>
|
|
#include <math.h>
|
|
|
|
extern float destination[XYZE];
|
|
|
|
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
|
|
inline void set_current_from_destination() { COPY(current_position, destination); }
|
|
#else
|
|
extern void set_current_from_destination();
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
extern float delta[ABC];
|
|
|
|
extern float delta_endstop_adj[ABC],
|
|
delta_radius,
|
|
delta_tower_angle_trim[ABC],
|
|
delta_tower[ABC][2],
|
|
delta_diagonal_rod,
|
|
delta_calibration_radius,
|
|
delta_diagonal_rod_2_tower[ABC],
|
|
delta_segments_per_second,
|
|
delta_clip_start_height;
|
|
|
|
extern float delta_safe_distance_from_top();
|
|
|
|
#endif
|
|
|
|
|
|
static void debug_echo_axis(const AxisEnum axis) {
|
|
if (current_position[axis] == destination[axis])
|
|
SERIAL_ECHOPGM("-------------");
|
|
else
|
|
SERIAL_ECHO_F(destination[X_AXIS], 6);
|
|
}
|
|
|
|
void debug_current_and_destination(const char *title) {
|
|
|
|
// if the title message starts with a '!' it is so important, we are going to
|
|
// ignore the status of the g26_debug_flag
|
|
if (*title != '!' && !g26_debug_flag) return;
|
|
|
|
const float de = destination[E_AXIS] - current_position[E_AXIS];
|
|
|
|
if (de == 0.0) return; // Printing moves only
|
|
|
|
const float dx = destination[X_AXIS] - current_position[X_AXIS],
|
|
dy = destination[Y_AXIS] - current_position[Y_AXIS],
|
|
xy_dist = HYPOT(dx, dy);
|
|
|
|
if (xy_dist == 0.0) return;
|
|
|
|
SERIAL_ECHOPGM(" fpmm=");
|
|
const float fpmm = de / xy_dist;
|
|
SERIAL_ECHO_F(fpmm, 6);
|
|
|
|
SERIAL_ECHOPGM(" current=( ");
|
|
SERIAL_ECHO_F(current_position[X_AXIS], 6);
|
|
SERIAL_ECHOPGM(", ");
|
|
SERIAL_ECHO_F(current_position[Y_AXIS], 6);
|
|
SERIAL_ECHOPGM(", ");
|
|
SERIAL_ECHO_F(current_position[Z_AXIS], 6);
|
|
SERIAL_ECHOPGM(", ");
|
|
SERIAL_ECHO_F(current_position[E_AXIS], 6);
|
|
SERIAL_ECHOPGM(" ) destination=( ");
|
|
debug_echo_axis(X_AXIS);
|
|
SERIAL_ECHOPGM(", ");
|
|
debug_echo_axis(Y_AXIS);
|
|
SERIAL_ECHOPGM(", ");
|
|
debug_echo_axis(Z_AXIS);
|
|
SERIAL_ECHOPGM(", ");
|
|
debug_echo_axis(E_AXIS);
|
|
SERIAL_ECHOPGM(" ) ");
|
|
SERIAL_ECHO(title);
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
|
|
/**
|
|
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
|
* as possible to determine if this is the case. If this move is within the same cell, we will
|
|
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
|
*/
|
|
const float start[XYZE] = {
|
|
current_position[X_AXIS],
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS],
|
|
current_position[E_AXIS]
|
|
},
|
|
end[XYZE] = {
|
|
destination[X_AXIS],
|
|
destination[Y_AXIS],
|
|
destination[Z_AXIS],
|
|
destination[E_AXIS]
|
|
};
|
|
|
|
const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
|
|
cell_start_yi = get_cell_index_y(start[Y_AXIS]),
|
|
cell_dest_xi = get_cell_index_x(end[X_AXIS]),
|
|
cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
|
|
|
|
if (g26_debug_flag) {
|
|
SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
|
|
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
|
|
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
|
|
}
|
|
|
|
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
|
|
/**
|
|
* we don't need to break up the move
|
|
*
|
|
* If we are moving off the print bed, we are going to allow the move at this level.
|
|
* But we detect it and isolate it. For now, we just pass along the request.
|
|
*/
|
|
|
|
if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
|
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
|
// a reasonable correction would be.
|
|
|
|
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
|
|
set_current_from_destination();
|
|
|
|
if (g26_debug_flag)
|
|
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
|
|
|
|
return;
|
|
}
|
|
|
|
FINAL_MOVE:
|
|
|
|
/**
|
|
* Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
|
|
* generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
|
|
* We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
|
|
* We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
|
|
* instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
|
|
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
|
*/
|
|
|
|
const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
|
|
|
|
float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
|
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
|
|
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
|
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
|
|
|
|
if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
|
|
|
|
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
|
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
|
|
|
const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
|
|
float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
|
|
|
|
/**
|
|
* If part of the Mesh is undefined, it will show up as NAN
|
|
* in z_values[][] and propagate through the
|
|
* calculations. If our correction is NAN, we throw it out
|
|
* because part of the Mesh is undefined and we don't have the
|
|
* information we need to complete the height correction.
|
|
*/
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
|
|
|
|
if (g26_debug_flag)
|
|
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
|
|
|
|
set_current_from_destination();
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* If we get here, we are processing a move that crosses at least one Mesh Line. We will check
|
|
* for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
|
|
* of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
|
|
* computation and in fact most lines are of this nature. We will check for that in the following
|
|
* blocks of code:
|
|
*/
|
|
|
|
const float dx = end[X_AXIS] - start[X_AXIS],
|
|
dy = end[Y_AXIS] - start[Y_AXIS];
|
|
|
|
const int left_flag = dx < 0.0 ? 1 : 0,
|
|
down_flag = dy < 0.0 ? 1 : 0;
|
|
|
|
const float adx = left_flag ? -dx : dx,
|
|
ady = down_flag ? -dy : dy;
|
|
|
|
const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
|
|
dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
|
|
|
|
/**
|
|
* Compute the scaling factor for the extruder for each partial move.
|
|
* We need to watch out for zero length moves because it will cause us to
|
|
* have an infinate scaling factor. We are stuck doing a floating point
|
|
* divide to get our scaling factor, but after that, we just multiply by this
|
|
* number. We also pick our scaling factor based on whether the X or Y
|
|
* component is larger. We use the biggest of the two to preserve precision.
|
|
*/
|
|
|
|
const bool use_x_dist = adx > ady;
|
|
|
|
float on_axis_distance = use_x_dist ? dx : dy,
|
|
e_position = end[E_AXIS] - start[E_AXIS],
|
|
z_position = end[Z_AXIS] - start[Z_AXIS];
|
|
|
|
const float e_normalized_dist = e_position / on_axis_distance,
|
|
z_normalized_dist = z_position / on_axis_distance;
|
|
|
|
int current_xi = cell_start_xi,
|
|
current_yi = cell_start_yi;
|
|
|
|
const float m = dy / dx,
|
|
c = start[Y_AXIS] - m * start[X_AXIS];
|
|
|
|
const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
|
|
inf_m_flag = (isinf(m) != 0);
|
|
/**
|
|
* This block handles vertical lines. These are lines that stay within the same
|
|
* X Cell column. They do not need to be perfectly vertical. They just can
|
|
* not cross into another X Cell column.
|
|
*/
|
|
if (dxi == 0) { // Check for a vertical line
|
|
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
|
while (current_yi != cell_dest_yi + down_flag) {
|
|
current_yi += dyi;
|
|
const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
|
|
|
|
/**
|
|
* if the slope of the line is infinite, we won't do the calculations
|
|
* else, we know the next X is the same so we can recover and continue!
|
|
* Calculate X at the next Y mesh line
|
|
*/
|
|
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
|
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi)
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
/**
|
|
* If part of the Mesh is undefined, it will show up as NAN
|
|
* in z_values[][] and propagate through the
|
|
* calculations. If our correction is NAN, we throw it out
|
|
* because part of the Mesh is undefined and we don't have the
|
|
* information we need to complete the height correction.
|
|
*/
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
const float y = mesh_index_to_ypos(current_yi);
|
|
|
|
/**
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
|
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
|
* happens, it might be best to remove the check and always 'schedule' the move because
|
|
* the planner._buffer_line() routine will filter it if that happens.
|
|
*/
|
|
if (y != start[Y_AXIS]) {
|
|
if (!inf_normalized_flag) {
|
|
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end[E_AXIS];
|
|
z_position = end[Z_AXIS];
|
|
}
|
|
|
|
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder);
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
}
|
|
|
|
if (g26_debug_flag)
|
|
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
|
|
|
|
//
|
|
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
|
//
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
goto FINAL_MOVE;
|
|
|
|
set_current_from_destination();
|
|
return;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* This block handles horizontal lines. These are lines that stay within the same
|
|
* Y Cell row. They do not need to be perfectly horizontal. They just can
|
|
* not cross into another Y Cell row.
|
|
*
|
|
*/
|
|
|
|
if (dyi == 0) { // Check for a horizontal line
|
|
current_xi += left_flag; // Line is heading left, we just want to go to the left
|
|
// edge of this cell for the first move.
|
|
while (current_xi != cell_dest_xi + left_flag) {
|
|
current_xi += dxi;
|
|
const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
|
|
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
|
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi)
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
/**
|
|
* If part of the Mesh is undefined, it will show up as NAN
|
|
* in z_values[][] and propagate through the
|
|
* calculations. If our correction is NAN, we throw it out
|
|
* because part of the Mesh is undefined and we don't have the
|
|
* information we need to complete the height correction.
|
|
*/
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
const float x = mesh_index_to_xpos(current_xi);
|
|
|
|
/**
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
|
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
|
* that happens, it might be best to remove the check and always 'schedule' the move because
|
|
* the planner._buffer_line() routine will filter it if that happens.
|
|
*/
|
|
if (x != start[X_AXIS]) {
|
|
if (!inf_normalized_flag) {
|
|
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end[E_AXIS];
|
|
z_position = end[Z_AXIS];
|
|
}
|
|
|
|
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder);
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
}
|
|
|
|
if (g26_debug_flag)
|
|
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
|
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
goto FINAL_MOVE;
|
|
|
|
set_current_from_destination();
|
|
return;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* This block handles the generic case of a line crossing both X and Y Mesh lines.
|
|
*
|
|
*/
|
|
|
|
int xi_cnt = cell_start_xi - cell_dest_xi,
|
|
yi_cnt = cell_start_yi - cell_dest_yi;
|
|
|
|
if (xi_cnt < 0) xi_cnt = -xi_cnt;
|
|
if (yi_cnt < 0) yi_cnt = -yi_cnt;
|
|
|
|
current_xi += left_flag;
|
|
current_yi += down_flag;
|
|
|
|
while (xi_cnt > 0 || yi_cnt > 0) {
|
|
|
|
const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
|
|
next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
|
|
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
|
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
|
// (No need to worry about m being zero.
|
|
// If that was the case, it was already detected
|
|
// as a vertical line move above.)
|
|
|
|
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
|
|
// Yes! Crossing a Y Mesh Line next
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi)
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
/**
|
|
* If part of the Mesh is undefined, it will show up as NAN
|
|
* in z_values[][] and propagate through the
|
|
* calculations. If our correction is NAN, we throw it out
|
|
* because part of the Mesh is undefined and we don't have the
|
|
* information we need to complete the height correction.
|
|
*/
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
if (!inf_normalized_flag) {
|
|
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end[E_AXIS];
|
|
z_position = end[Z_AXIS];
|
|
}
|
|
planner._buffer_line(x, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
|
|
current_yi += dyi;
|
|
yi_cnt--;
|
|
}
|
|
else {
|
|
// Yes! Crossing a X Mesh Line next
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag)
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
/**
|
|
* If part of the Mesh is undefined, it will show up as NAN
|
|
* in z_values[][] and propagate through the
|
|
* calculations. If our correction is NAN, we throw it out
|
|
* because part of the Mesh is undefined and we don't have the
|
|
* information we need to complete the height correction.
|
|
*/
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
if (!inf_normalized_flag) {
|
|
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
}
|
|
else {
|
|
e_position = end[E_AXIS];
|
|
z_position = end[Z_AXIS];
|
|
}
|
|
|
|
planner._buffer_line(next_mesh_line_x, y, z_position + z0, e_position, feed_rate, extruder);
|
|
current_xi += dxi;
|
|
xi_cnt--;
|
|
}
|
|
|
|
if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
|
|
}
|
|
|
|
if (g26_debug_flag)
|
|
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
|
|
|
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
|
goto FINAL_MOVE;
|
|
|
|
set_current_from_destination();
|
|
}
|
|
|
|
#if UBL_DELTA
|
|
|
|
// macro to inline copy exactly 4 floats, don't rely on sizeof operator
|
|
#define COPY_XYZE( target, source ) { \
|
|
target[X_AXIS] = source[X_AXIS]; \
|
|
target[Y_AXIS] = source[Y_AXIS]; \
|
|
target[Z_AXIS] = source[Z_AXIS]; \
|
|
target[E_AXIS] = source[E_AXIS]; \
|
|
}
|
|
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
static float scara_feed_factor, scara_oldA, scara_oldB;
|
|
#endif
|
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float &rx, const float &ry, const float rz, const float &e, const float &fr) {
|
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
|
const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
|
|
- HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
|
|
delta_tower[A_AXIS][Y_AXIS] - ry ));
|
|
|
|
const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
|
|
- HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
|
|
delta_tower[B_AXIS][Y_AXIS] - ry ));
|
|
|
|
const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
|
|
- HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
|
|
delta_tower[C_AXIS][Y_AXIS] - ry ));
|
|
|
|
planner._buffer_line(delta_A, delta_B, delta_C, e, fr, active_extruder);
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics
|
|
|
|
const float lseg[XYZ] = { rx, ry, rz };
|
|
|
|
inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
|
|
// should move the feedrate scaling to scara inverse_kinematics
|
|
|
|
const float adiff = FABS(delta[A_AXIS] - scara_oldA),
|
|
bdiff = FABS(delta[B_AXIS] - scara_oldB);
|
|
scara_oldA = delta[A_AXIS];
|
|
scara_oldB = delta[B_AXIS];
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], e, s_feedrate, active_extruder);
|
|
|
|
#else // CARTESIAN
|
|
|
|
planner._buffer_line(rx, ry, rz, e, fr, active_extruder);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
|
* This calls planner._buffer_line multiple times for small incremental moves.
|
|
* Returns true if did NOT move, false if moved (requires current_position update).
|
|
*/
|
|
|
|
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate) {
|
|
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
return true; // did not move, so current_position still accurate
|
|
|
|
const float tot_dx = rtarget[X_AXIS] - current_position[X_AXIS],
|
|
tot_dy = rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
tot_dz = rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
tot_de = rtarget[E_AXIS] - current_position[E_AXIS];
|
|
|
|
const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
|
|
|
|
#if IS_KINEMATIC
|
|
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
|
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
|
|
seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
|
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
|
|
#else
|
|
uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
|
#endif
|
|
|
|
NOLESS(segments, 1); // must have at least one segment
|
|
const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
|
|
|
|
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
|
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
|
|
scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
|
|
scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
|
|
#endif
|
|
|
|
const float seg_dx = tot_dx * inv_segments,
|
|
seg_dy = tot_dy * inv_segments,
|
|
seg_dz = tot_dz * inv_segments,
|
|
seg_de = tot_de * inv_segments;
|
|
|
|
// Note that E segment distance could vary slightly as z mesh height
|
|
// changes for each segment, but small enough to ignore.
|
|
|
|
float seg_rx = current_position[X_AXIS],
|
|
seg_ry = current_position[Y_AXIS],
|
|
seg_rz = current_position[Z_AXIS],
|
|
seg_le = current_position[E_AXIS];
|
|
|
|
const bool above_fade_height = (
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
planner.z_fade_height != 0 && planner.z_fade_height < rtarget[Z_AXIS]
|
|
#else
|
|
false
|
|
#endif
|
|
);
|
|
|
|
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
|
|
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
|
|
do {
|
|
|
|
if (--segments) { // not the last segment
|
|
seg_rx += seg_dx;
|
|
seg_ry += seg_dy;
|
|
seg_rz += seg_dz;
|
|
seg_le += seg_de;
|
|
} else { // last segment, use exact destination
|
|
seg_rx = rtarget[X_AXIS];
|
|
seg_ry = rtarget[Y_AXIS];
|
|
seg_rz = rtarget[Z_AXIS];
|
|
seg_le = rtarget[E_AXIS];
|
|
}
|
|
|
|
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz, seg_le, feedrate);
|
|
|
|
} while (segments);
|
|
|
|
return false; // moved but did not set_current_from_destination();
|
|
}
|
|
|
|
// Otherwise perform per-segment leveling
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
|
|
#else
|
|
constexpr float fade_scaling_factor = 1.0;
|
|
#endif
|
|
|
|
// increment to first segment destination
|
|
seg_rx += seg_dx;
|
|
seg_ry += seg_dy;
|
|
seg_rz += seg_dz;
|
|
seg_le += seg_de;
|
|
|
|
for(;;) { // for each mesh cell encountered during the move
|
|
|
|
// Compute mesh cell invariants that remain constant for all segments within cell.
|
|
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
|
|
// the bilinear interpolation from the adjacent cell within the mesh will still work.
|
|
// Inner loop will exit each time (because out of cell bounds) but will come back
|
|
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
// for mesh inset area.
|
|
|
|
int8_t cell_xi = (seg_rx - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
|
cell_yi = (seg_ry - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
|
|
|
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
|
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
|
|
|
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
|
y0 = mesh_index_to_ypos(cell_yi);
|
|
|
|
float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
|
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
|
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
|
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
|
|
|
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
|
|
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
|
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
|
|
float cx = seg_rx - x0, // cell-relative x and y
|
|
cy = seg_ry - y0;
|
|
|
|
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
|
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
|
|
|
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
|
|
|
|
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
|
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
|
|
|
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
|
|
|
|
// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
|
|
|
|
// As subsequent segments step through this cell, the z_cxy0 intercept will change
|
|
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
|
// each change by a constant for fixed segment lengths.
|
|
|
|
const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
|
|
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
|
|
|
|
for(;;) { // for all segments within this mesh cell
|
|
|
|
float z_cxcy = (z_cxy0 + z_cxym * cy) * fade_scaling_factor; // interpolated mesh z height along cx at cy, scaled for fade
|
|
|
|
if (--segments == 0) { // if this is last segment, use rtarget for exact
|
|
seg_rx = rtarget[X_AXIS];
|
|
seg_ry = rtarget[Y_AXIS];
|
|
seg_rz = rtarget[Z_AXIS];
|
|
seg_le = rtarget[E_AXIS];
|
|
}
|
|
|
|
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate);
|
|
|
|
if (segments == 0) // done with last segment
|
|
return false; // did not set_current_from_destination()
|
|
|
|
seg_rx += seg_dx;
|
|
seg_ry += seg_dy;
|
|
seg_rz += seg_dz;
|
|
seg_le += seg_de;
|
|
|
|
cx += seg_dx;
|
|
cy += seg_dy;
|
|
|
|
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
|
|
break;
|
|
}
|
|
|
|
// Next segment still within same mesh cell, adjust the per-segment
|
|
// slope and intercept to compute next z height.
|
|
|
|
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
|
|
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
|
|
|
|
} // segment loop
|
|
} // cell loop
|
|
}
|
|
|
|
#endif // UBL_DELTA
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|