1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-25 04:48:31 +00:00
MarlinFirmware/Marlin/Marlin.h
Scott Lahteine 75badae2f8 Disable PROBE_MANUALLY for UBL
Plus some other UBL tweaks.
2017-05-19 07:13:18 -05:00

501 lines
16 KiB
C

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef MARLIN_H
#define MARLIN_H
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include "MarlinConfig.h"
#include "enum.h"
#include "types.h"
#include "fastio.h"
#include "utility.h"
#include "serial.h"
#if ENABLED(PRINTCOUNTER)
#include "printcounter.h"
#else
#include "stopwatch.h"
#endif
void idle(
#if ENABLED(FILAMENT_CHANGE_FEATURE)
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
#endif
);
void manage_inactivity(bool ignore_stepper_queue = false);
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled;
#endif
#if HAS_X2_ENABLE
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#elif HAS_X_ENABLE
#define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#else
#define enable_X() NOOP
#define disable_X() NOOP
#endif
#if HAS_Y2_ENABLE
#define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#elif HAS_Y_ENABLE
#define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#else
#define enable_Y() NOOP
#define disable_Y() NOOP
#endif
#if HAS_Z2_ENABLE
#define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#elif HAS_Z_ENABLE
#define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#else
#define enable_Z() NOOP
#define disable_Z() NOOP
#endif
#if ENABLED(MIXING_EXTRUDER)
/**
* Mixing steppers synchronize their enable (and direction) together
*/
#if MIXING_STEPPERS > 3
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
#elif MIXING_STEPPERS > 2
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
#else
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
#endif
#define enable_E1() NOOP
#define disable_E1() NOOP
#define enable_E2() NOOP
#define disable_E2() NOOP
#define enable_E3() NOOP
#define disable_E3() NOOP
#define enable_E4() NOOP
#define disable_E4() NOOP
#else // !MIXING_EXTRUDER
#if HAS_E0_ENABLE
#define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E0() NOOP
#define disable_E0() NOOP
#endif
#if E_STEPPERS > 1 && HAS_E1_ENABLE
#define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E1() NOOP
#define disable_E1() NOOP
#endif
#if E_STEPPERS > 2 && HAS_E2_ENABLE
#define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E2() NOOP
#define disable_E2() NOOP
#endif
#if E_STEPPERS > 3 && HAS_E3_ENABLE
#define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E3() NOOP
#define disable_E3() NOOP
#endif
#if E_STEPPERS > 4 && HAS_E4_ENABLE
#define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
#define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_E4() NOOP
#define disable_E4() NOOP
#endif
#endif // !MIXING_EXTRUDER
#if ENABLED(G38_PROBE_TARGET)
extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
#endif
/**
* The axis order in all axis related arrays is X, Y, Z, E
*/
#define _AXIS(AXIS) AXIS ##_AXIS
void enable_all_steppers();
void disable_e_steppers();
void disable_all_steppers();
void FlushSerialRequestResend();
void ok_to_send();
void kill(const char*);
void quickstop_stepper();
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
void handle_filament_runout();
#endif
extern uint8_t marlin_debug_flags;
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
extern bool Running;
inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; }
bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure.
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
void clear_command_queue();
extern millis_t previous_cmd_ms;
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
#if ENABLED(FAST_PWM_FAN)
void setPwmFrequency(uint8_t pin, int val);
#endif
/**
* Feedrate scaling and conversion
*/
extern int feedrate_percentage;
#define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
#define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern bool axis_relative_modes[];
extern bool volumetric_enabled;
extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern bool axis_known_position[XYZ]; // axis[n].is_known
extern bool axis_homed[XYZ]; // axis[n].is_homed
extern volatile bool wait_for_heatup;
#if HAS_RESUME_CONTINUE
extern volatile bool wait_for_user;
#endif
extern float current_position[NUM_AXIS];
// Workspace offsets
#if HAS_WORKSPACE_OFFSET
#if HAS_HOME_OFFSET
extern float home_offset[XYZ];
#endif
#if HAS_POSITION_SHIFT
extern float position_shift[XYZ];
#endif
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern float workspace_offset[XYZ];
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
#elif HAS_HOME_OFFSET
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
#elif HAS_POSITION_SHIFT
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
#else
#define WORKSPACE_OFFSET(AXIS) 0
#endif
#define LOGICAL_POSITION(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
#define RAW_POSITION(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
#if HAS_POSITION_SHIFT || DISABLED(DELTA)
#define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
#define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS)
#define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS)
#else
#define LOGICAL_X_POSITION(POS) (POS)
#define LOGICAL_Y_POSITION(POS) (POS)
#define RAW_X_POSITION(POS) (POS)
#define RAW_Y_POSITION(POS) (POS)
#endif
#define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)
#define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS)
#define RAW_CURRENT_POSITION(A) RAW_##A##_POSITION(current_position[A##_AXIS])
// Hotend Offsets
#if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS];
#endif
// Software Endstops
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
#if HAS_SOFTWARE_ENDSTOPS
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else
#define soft_endstops_enabled false
#define clamp_to_software_endstops(x) NOOP
#endif
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
void update_software_endstops(const AxisEnum axis);
#endif
// GCode support for external objects
bool code_seen(char);
int code_value_int();
int16_t code_value_temp_abs();
int16_t code_value_temp_diff();
#if ENABLED(INCH_MODE_SUPPORT)
float code_value_linear_units();
float code_value_axis_units(const AxisEnum axis);
float code_value_per_axis_unit(const AxisEnum axis);
#else
#define code_value_linear_units() code_value_float()
#define code_value_axis_units(A) code_value_float()
#define code_value_per_axis_unit(A) code_value_float()
#endif
#if IS_KINEMATIC
extern float delta[ABC];
void inverse_kinematics(const float logical[XYZ]);
#endif
#if ENABLED(DELTA)
extern float endstop_adj[ABC],
delta_radius,
delta_diagonal_rod,
delta_calibration_radius,
delta_segments_per_second,
delta_tower_angle_trim[2],
delta_clip_start_height;
void recalc_delta_settings(float radius, float diagonal_rod);
#elif IS_SCARA
void forward_kinematics_SCARA(const float &a, const float &b);
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
extern int bilinear_grid_spacing[2], bilinear_start[2];
extern float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float bilinear_z_offset(const float logical[XYZ]);
void set_bed_leveling_enabled(bool enable=true);
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
typedef struct { double A, B, D; } linear_fit;
linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int);
#endif
#if HAS_LEVELING
void reset_bed_level();
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj;
#endif
#if HAS_BED_PROBE
extern float zprobe_zoffset;
void refresh_zprobe_zoffset(const bool no_babystep=false);
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
#else
#define DEPLOY_PROBE()
#define STOW_PROBE()
#endif
#if ENABLED(HOST_KEEPALIVE_FEATURE)
extern MarlinBusyState busy_state;
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else
#define KEEPALIVE_STATE(n) NOOP
#endif
#if FAN_COUNT > 0
extern int16_t fanSpeeds[FAN_COUNT];
#if ENABLED(PROBING_FANS_OFF)
extern bool fans_paused;
extern int16_t paused_fanSpeeds[FAN_COUNT];
#endif
#endif
#if ENABLED(BARICUDA)
extern int baricuda_valve_pressure;
extern int baricuda_e_to_p_pressure;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
extern bool filament_sensor; // Flag that filament sensor readings should control extrusion
extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
filament_width_meas; // Measured filament diameter
extern int8_t measurement_delay[]; // Ring buffer to delay measurement
extern int filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
extern int meas_delay_cm; // Delay distance
#endif
#if ENABLED(FILAMENT_CHANGE_FEATURE)
extern FilamentChangeMenuResponse filament_change_menu_response;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
extern int lpq_len;
#endif
#if ENABLED(FWRETRACT)
extern bool autoretract_enabled;
extern bool retracted[EXTRUDERS]; // extruder[n].retracted
extern float retract_length, retract_length_swap, retract_feedrate_mm_s, retract_zlift;
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate_mm_s;
#endif
// Print job timer
#if ENABLED(PRINTCOUNTER)
extern PrintCounter print_job_timer;
#else
extern Stopwatch print_job_timer;
#endif
// Handling multiple extruders pins
extern uint8_t active_extruder;
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heaterstates();
#endif
#if ENABLED(MIXING_EXTRUDER)
extern float mixing_factor[MIXING_STEPPERS];
#endif
void calculate_volumetric_multipliers();
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
#endif
/**
* position_is_reachable family of functions
*/
#if IS_KINEMATIC // (DELTA or SCARA)
#if ENABLED(DELTA)
#define DELTA_PRINTABLE_RADIUS_SQUARED ((float)DELTA_PRINTABLE_RADIUS * (float)DELTA_PRINTABLE_RADIUS )
#endif
#if IS_SCARA
extern const float L1, L2;
#endif
inline bool position_is_reachable_raw_xy( float raw_x, float raw_y ) {
#if ENABLED(DELTA)
return ( HYPOT2( raw_x, raw_y ) <= DELTA_PRINTABLE_RADIUS_SQUARED );
#elif IS_SCARA
#if MIDDLE_DEAD_ZONE_R > 0
const float R2 = HYPOT2(raw_x - SCARA_OFFSET_X, raw_y - SCARA_OFFSET_Y);
return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
#else
return HYPOT2(raw_x - SCARA_OFFSET_X, raw_y - SCARA_OFFSET_Y) <= sq(L1 + L2);
#endif
#else // CARTESIAN
#error
#endif
}
inline bool position_is_reachable_by_probe_raw_xy( float raw_x, float raw_y ) {
// both the nozzle and the probe must be able to reach the point
return ( position_is_reachable_raw_xy( raw_x, raw_y ) &&
position_is_reachable_raw_xy(
raw_x - X_PROBE_OFFSET_FROM_EXTRUDER,
raw_y - Y_PROBE_OFFSET_FROM_EXTRUDER ));
}
#else // CARTESIAN
inline bool position_is_reachable_raw_xy( float raw_x, float raw_y ) {
// note to reviewer: this +/-0.0001 logic is copied from original postion_is_reachable
return WITHIN(raw_x, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
&& WITHIN(raw_y, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001);
}
inline bool position_is_reachable_by_probe_raw_xy( float raw_x, float raw_y ) {
// note to reviewer: this logic is copied from UBL_G29.cpp and does not contain the +/-0.0001 above
return WITHIN(raw_x, MIN_PROBE_X, MAX_PROBE_X)
&& WITHIN(raw_y, MIN_PROBE_Y, MAX_PROBE_Y);
}
#endif // CARTESIAN
inline bool position_is_reachable_by_probe_xy( float target_x, float target_y ) {
return position_is_reachable_by_probe_raw_xy(
RAW_X_POSITION( target_x ),
RAW_Y_POSITION( target_y ));
}
inline bool position_is_reachable_xy( float target_x, float target_y ) {
return position_is_reachable_raw_xy( RAW_X_POSITION( target_x ), RAW_Y_POSITION( target_y ));
}
#endif //MARLIN_H