1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-12-14 14:31:33 +00:00
MarlinFirmware/Marlin/src/libs/MAX31865.cpp
Scott Lahteine b77a5d4c8d ✏️ MAX31856 => MAX31865
2021-12-25 01:37:21 -06:00

500 lines
14 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Based on Based on Adafruit MAX31865 library:
*
* This is a library for the Adafruit PT100/P1000 RTD Sensor w/MAX31865
* Designed specifically to work with the Adafruit RTD Sensor
* https://www.adafruit.com/products/3328
*
* This sensor uses SPI to communicate, 4 pins are required to interface.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Limor Fried/Ladyada for Adafruit Industries.
*
* Modifications by JoAnn Manges (@GadgetAngel)
* Copyright (c) 2020, JoAnn Manges
* All rights reserved.
*/
// Useful for RTD debugging.
//#define MAX31865_DEBUG
//#define MAX31865_DEBUG_SPI
#include "../inc/MarlinConfig.h"
#if HAS_MAX31865 && !USE_ADAFRUIT_MAX31865
#include "MAX31865.h"
#ifdef TARGET_LPC1768
#include <SoftwareSPI.h>
#endif
// The maximum speed the MAX31865 can do is 5 MHz
SPISettings MAX31865::spiConfig = SPISettings(
TERN(TARGET_LPC1768, SPI_QUARTER_SPEED, TERN(ARDUINO_ARCH_STM32, SPI_CLOCK_DIV4, 500000)),
MSBFIRST,
SPI_MODE1 // CPOL0 CPHA1
);
#ifndef LARGE_PINMAP
/**
* Create the interface object using software (bitbang) SPI for PIN values
* less than or equal to 127.
*
* @param spi_cs the SPI CS pin to use
* @param spi_mosi the SPI MOSI pin to use
* @param spi_miso the SPI MISO pin to use
* @param spi_clk the SPI clock pin to use
*/
MAX31865::MAX31865(int8_t spi_cs, int8_t spi_mosi, int8_t spi_miso, int8_t spi_clk) {
_cs = spi_cs;
_mosi = spi_mosi;
_miso = spi_miso;
_sclk = spi_clk;
}
/**
* Create the interface object using hardware SPI for PIN for PIN values less
* than or equal to 127.
*
* @param spi_cs the SPI CS pin to use along with the default SPI device
*/
MAX31865::MAX31865(int8_t spi_cs) {
_cs = spi_cs;
_sclk = _miso = _mosi = -1;
}
#else // LARGE_PINMAP
/**
* Create the interface object using software (bitbang) SPI for PIN values
* which are larger than 127. If you have PIN values less than or equal to
* 127 use the other call for SW SPI.
*
* @param spi_cs the SPI CS pin to use
* @param spi_mosi the SPI MOSI pin to use
* @param spi_miso the SPI MISO pin to use
* @param spi_clk the SPI clock pin to use
* @param pin_mapping set to 1 for positive pin values
*/
MAX31865::MAX31865(uint32_t spi_cs, uint32_t spi_mosi, uint32_t spi_miso, uint32_t spi_clk, uint8_t pin_mapping) {
_cs = spi_cs;
_mosi = spi_mosi;
_miso = spi_miso;
_sclk = spi_clk;
}
/**
* Create the interface object using hardware SPI for PIN values which are
* larger than 127. If you have PIN values less than or equal to 127 use
* the other call for HW SPI.
*
* @param spi_cs the SPI CS pin to use along with the default SPI device
* @param pin_mapping set to 1 for positive pin values
*/
MAX31865::MAX31865(uint32_t spi_cs, uint8_t pin_mapping) {
_cs = spi_cs;
_sclk = _miso = _mosi = -1UL; //-1UL or 0xFFFFFFFF or 4294967295
}
#endif // LARGE_PINMAP
/**
*
* Instance & Class methods
*
*/
/**
* Initialize the SPI interface and set the number of RTD wires used
*
* @param wires The number of wires in enum format. Can be MAX31865_2WIRE, MAX31865_3WIRE, or MAX31865_4WIRE.
* @param zero The resistance of the RTD at 0 degC, in ohms.
* @param ref The resistance of the reference resistor, in ohms.
*/
void MAX31865::begin(max31865_numwires_t wires, float zero, float ref) {
Rzero = zero;
Rref = ref;
OUT_WRITE(_cs, HIGH);
if (_sclk != TERN(LARGE_PINMAP, -1UL, -1)) {
softSpiBegin(SPI_QUARTER_SPEED); // Define pin modes for Software SPI
}
else {
#ifdef MAX31865_DEBUG
SERIAL_ECHOLNPGM("Initializing MAX31865 Hardware SPI");
#endif
SPI.begin(); // Start and configure hardware SPI
}
setWires(wires);
enableBias(false);
autoConvert(false);
clearFault();
#ifdef MAX31865_DEBUG_SPI
SERIAL_ECHOLNPGM(
TERN(LARGE_PINMAP, "LARGE_PINMAP", "Regular")
" begin call with _cs: ", _cs,
" _miso: ", _miso,
" _sclk: ", _sclk,
" _mosi: ", _mosi,
" config: ", readRegister8(MAX31865_CONFIG_REG)
);
#endif
}
/**
* Read the raw 8-bit FAULTSTAT register
*
* @return The raw unsigned 8-bit FAULT status register
*/
uint8_t MAX31865::readFault() {
return readRegister8(MAX31865_FAULTSTAT_REG);
}
/**
* Clear all faults in FAULTSTAT.
*/
void MAX31865::clearFault() {
setConfig(MAX31865_CONFIG_FAULTSTAT, 1);
}
/**
* Whether we want to have continuous conversions (50/60 Hz)
*
* @param b If true, auto conversion is enabled
*/
void MAX31865::autoConvert(bool b) {
setConfig(MAX31865_CONFIG_MODEAUTO, b);
}
/**
* Whether we want filter out 50Hz noise or 60Hz noise
*
* @param b If true, 50Hz noise is filtered, else 60Hz(default)
*/
void MAX31865::enable50HzFilter(bool b) {
setConfig(MAX31865_CONFIG_FILT50HZ, b);
}
/**
* Enable the bias voltage on the RTD sensor
*
* @param b If true bias is enabled, else disabled
*/
void MAX31865::enableBias(bool b) {
setConfig(MAX31865_CONFIG_BIAS, b);
// From the datasheet:
// Note that if VBIAS is off (to reduce supply current between conversions), any filter
// capacitors at the RTDIN inputs need to charge before an accurate conversion can be
// performed. Therefore, enable VBIAS and wait at least 10.5 time constants of the input
// RC network plus an additional 1ms before initiating the conversion.
if (b)
DELAY_US(11500); //11.5ms
}
/**
* Start a one-shot temperature reading.
*/
void MAX31865::oneShot() {
setConfig(MAX31865_CONFIG_1SHOT, 1);
// From the datasheet:
// Note that a single conversion requires approximately 52ms in 60Hz filter
// mode or 62.5ms in 50Hz filter mode to complete. 1-Shot is a self-clearing bit.
// TODO: switch this out depending on the filter mode.
DELAY_US(65000); // 65ms
}
/**
* How many wires we have in our RTD setup, can be MAX31865_2WIRE,
* MAX31865_3WIRE, or MAX31865_4WIRE
*
* @param wires The number of wires in enum format
*/
void MAX31865::setWires(max31865_numwires_t wires) {
uint8_t t = readRegister8(MAX31865_CONFIG_REG);
if (wires == MAX31865_3WIRE)
t |= MAX31865_CONFIG_3WIRE;
else // 2 or 4 wire
t &= ~MAX31865_CONFIG_3WIRE;
writeRegister8(MAX31865_CONFIG_REG, t);
}
/**
* Read the raw 16-bit value from the RTD_REG in one shot mode. This will include
* the fault bit, D0.
*
* @return The raw unsigned 16-bit register value with ERROR bit attached, NOT temperature!
*/
uint16_t MAX31865::readRaw() {
clearFault();
enableBias(true);
oneShot();
uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG);
#ifdef MAX31865_DEBUG
SERIAL_ECHOLNPGM("RTD MSB:", (rtd >> 8), " RTD LSB:", (rtd & 0x00FF));
#endif
// Disable the bias to lower power dissipation between reads.
// If the ref resistor heats up, the temperature reading will be skewed.
enableBias(false);
return rtd;
}
/**
* Calculate and return the resistance value of the connected RTD.
*
* @param refResistor The value of the matching reference resistor, usually 430 or 4300
* @return The raw RTD resistance value, NOT temperature!
*/
float MAX31865::readResistance() {
// Strip the error bit (D0) and convert to a float ratio.
// less precise method: (readRaw() * Rref) >> 16
return (((readRaw() >> 1) / 32768.0f) * Rref);
}
/**
* Read the RTD and pass it to temperature(float) for calculation.
*
* @return Temperature in C
*/
float MAX31865::temperature() {
return temperature(readResistance());
}
/**
* Given the 15-bit ADC value, calculate the resistance and pass it to temperature(float) for calculation.
*
* @return Temperature in C
*/
float MAX31865::temperature(uint16_t adcVal) {
return temperature(((adcVal) / 32768.0f) * Rref);
}
/**
* Calculate the temperature in C from the RTD resistance.
* Uses the technique outlined in this PDF:
* http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf
*
* @param Rrtd the resistance value in ohms
* @return the temperature in degC
*/
float MAX31865::temperature(float Rrtd) {
float temp = (RTD_Z1 + sqrt(RTD_Z2 + (RTD_Z3 * Rrtd))) / RTD_Z4;
// From the PDF...
//
// The previous equation is valid only for temperatures of 0°C and above.
// The equation for RRTD(t) that defines negative temperature behavior is a
// fourth-order polynomial (after expanding the third term) and is quite
// impractical to solve for a single expression of temperature as a function
// of resistance.
//
if (temp < 0) {
Rrtd = (Rrtd / Rzero) * 100; // normalize to 100 ohm
float rpoly = Rrtd;
temp = -242.02 + (2.2228 * rpoly);
rpoly *= Rrtd; // square
temp += 2.5859e-3 * rpoly;
rpoly *= Rrtd; // ^3
temp -= 4.8260e-6 * rpoly;
rpoly *= Rrtd; // ^4
temp -= 2.8183e-8 * rpoly;
rpoly *= Rrtd; // ^5
temp += 1.5243e-10 * rpoly;
}
return temp;
}
//
// private:
//
/**
* Set a value in the configuration register.
*
* @param config 8-bit value for the config item
* @param enable whether to enable or disable the value
*/
void MAX31865::setConfig(uint8_t config, bool enable) {
uint8_t t = readRegister8(MAX31865_CONFIG_REG);
if (enable)
t |= config;
else
t &= ~config; // disable
writeRegister8(MAX31865_CONFIG_REG, t);
}
/**
* Read a single byte from the specified register address.
*
* @param addr the register address
* @return the register contents
*/
uint8_t MAX31865::readRegister8(uint8_t addr) {
uint8_t ret = 0;
readRegisterN(addr, &ret, 1);
return ret;
}
/**
* Read two bytes: 1 from the specified register address, and 1 from the next address.
*
* @param addr the first register address
* @return both register contents as a single 16-bit int
*/
uint16_t MAX31865::readRegister16(uint8_t addr) {
uint8_t buffer[2] = {0, 0};
readRegisterN(addr, buffer, 2);
uint16_t ret = buffer[0];
ret <<= 8;
ret |= buffer[1];
return ret;
}
/**
* Read +n+ bytes from a specified address into +buffer+. Set D7 to 0 to specify a read.
*
* @param addr the first register address
* @param buffer storage for the read bytes
* @param n the number of bytes to read
*/
void MAX31865::readRegisterN(uint8_t addr, uint8_t buffer[], uint8_t n) {
addr &= 0x7F; // make sure top bit is not set
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
SPI.beginTransaction(spiConfig);
else
WRITE(_sclk, LOW);
WRITE(_cs, LOW);
#ifdef TARGET_LPC1768
DELAY_CYCLES(_spi_speed);
#endif
spiTransfer(addr);
while (n--) {
buffer[0] = spiTransfer(0xFF);
#ifdef MAX31865_DEBUG_SPI
SERIAL_ECHOLNPGM("buffer read ", n, " data: ", buffer[0]);
#endif
buffer++;
}
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
SPI.endTransaction();
WRITE(_cs, HIGH);
}
/**
* Write an 8-bit value to a register. Set D7 to 1 to specify a write.
*
* @param addr the address to write to
* @param data the data to write
*/
void MAX31865::writeRegister8(uint8_t addr, uint8_t data) {
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
SPI.beginTransaction(spiConfig);
else
WRITE(_sclk, LOW);
WRITE(_cs, LOW);
#ifdef TARGET_LPC1768
DELAY_CYCLES(_spi_speed);
#endif
spiTransfer(addr | 0x80); // make sure top bit is set
spiTransfer(data);
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
SPI.endTransaction();
WRITE(_cs, HIGH);
}
/**
* Transfer SPI data +x+ and read the response. From the datasheet...
* Input data (SDI) is latched on the internal strobe edge and output data (SDO) is
* shifted out on the shift edge. There is one clock for each bit transferred.
* Address and data bits are transferred in groups of eight, MSB first.
*
* @param x an 8-bit chunk of data to write
* @return the 8-bit response
*/
uint8_t MAX31865::spiTransfer(uint8_t x) {
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
return SPI.transfer(x);
#ifdef TARGET_LPC1768
return swSpiTransfer(x, _spi_speed, _sclk, _miso, _mosi);
#else
uint8_t reply = 0;
for (int i = 7; i >= 0; i--) {
WRITE(_sclk, HIGH); DELAY_NS_VAR(_spi_delay);
reply <<= 1;
WRITE(_mosi, x & _BV(i)); DELAY_NS_VAR(_spi_delay);
if (READ(_miso)) reply |= 1;
WRITE(_sclk, LOW); DELAY_NS_VAR(_spi_delay);
}
return reply;
#endif
}
void MAX31865::softSpiBegin(const uint8_t spi_speed) {
#ifdef MAX31865_DEBUG
SERIAL_ECHOLNPGM("Initializing MAX31865 Software SPI");
#endif
#ifdef TARGET_LPC1768
swSpiBegin(_sclk, _miso, _mosi);
_spi_speed = swSpiInit(spi_speed, _sclk, _mosi);
#else
_spi_delay = (100UL << spi_speed) / 3; // Calculate delay in ns. Top speed is ~10MHz, or 100ns delay between bits.
OUT_WRITE(_sclk, LOW);
SET_OUTPUT(_mosi);
SET_INPUT(_miso);
#endif
}
#endif // HAS_MAX31865 && !USE_ADAFRUIT_MAX31865