1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-24 20:43:32 +00:00
MarlinFirmware/Marlin/ubl.cpp
Roxy-3D 8282d732c1 Make G26 work with all mesh leveling.
Example Configuration.h files are not updated yet.   You need to cross
your settings over to the default Configuration.h file in the \Marlin
directory.   (UBL_G26_MESH_VALIDATION enablement has moved to a new
location in the file.)
2017-11-23 21:41:27 -06:00

183 lines
5.7 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#include "math.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#include "hex_print_routines.h"
#include "temperature.h"
#include "planner.h"
uint8_t ubl_cnt = 0;
void unified_bed_leveling::echo_name() { SERIAL_PROTOCOLPGM("Unified Bed Leveling"); }
void unified_bed_leveling::report_state() {
echo_name();
SERIAL_PROTOCOLPGM(" System v" UBL_VERSION " ");
if (!planner.leveling_active) SERIAL_PROTOCOLPGM("in");
SERIAL_PROTOCOLLNPGM("active.");
safe_delay(50);
}
static void serial_echo_xy(const int16_t x, const int16_t y) {
SERIAL_CHAR('(');
SERIAL_ECHO(x);
SERIAL_CHAR(',');
SERIAL_ECHO(y);
SERIAL_CHAR(')');
safe_delay(10);
}
int8_t unified_bed_leveling::storage_slot;
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
constexpr float unified_bed_leveling::_mesh_index_to_xpos[16],
unified_bed_leveling::_mesh_index_to_ypos[16];
#if ENABLED(ULTIPANEL)
bool unified_bed_leveling::lcd_map_control = false;
#endif
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() {
ubl_cnt++; // Debug counter to insure we only have one UBL object present in memory. We can eliminate this (and all references to ubl_cnt) very soon.
reset();
}
void unified_bed_leveling::reset() {
set_bed_leveling_enabled(false);
storage_slot = -1;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.set_z_fade_height(10.0);
#endif
ZERO(z_values);
}
void unified_bed_leveling::invalidate() {
set_bed_leveling_enabled(false);
set_all_mesh_points_to_value(NAN);
}
void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
z_values[x][y] = value;
}
}
}
// display_map() currently produces three different mesh map types
// 0 : suitable for PronterFace and Repetier's serial console
// 1 : .CSV file suitable for importation into various spread sheets
// 2 : disply of the map data on a RepRap Graphical LCD Panel
void unified_bed_leveling::display_map(const int map_type) {
constexpr uint8_t spaces = 8 * (GRID_MAX_POINTS_X - 2);
SERIAL_PROTOCOLPGM("\nBed Topography Report");
if (map_type == 0) {
SERIAL_PROTOCOLPGM(":\n\n");
serial_echo_xy(0, GRID_MAX_POINTS_Y - 1);
SERIAL_ECHO_SP(spaces + 3);
serial_echo_xy(GRID_MAX_POINTS_X - 1, GRID_MAX_POINTS_Y - 1);
SERIAL_EOL();
serial_echo_xy(MESH_MIN_X, MESH_MAX_Y);
SERIAL_ECHO_SP(spaces);
serial_echo_xy(MESH_MAX_X, MESH_MAX_Y);
SERIAL_EOL();
}
else {
SERIAL_PROTOCOLPGM(" for ");
serialprintPGM(map_type == 1 ? PSTR("CSV:\n\n") : PSTR("LCD:\n\n"));
}
const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
const bool is_current = i == current_xi && j == current_yi;
// is the nozzle here? then mark the number
if (map_type == 0) SERIAL_CHAR(is_current ? '[' : ' ');
const float f = z_values[i][j];
if (isnan(f)) {
serialprintPGM(map_type == 0 ? PSTR(" . ") : PSTR("NAN"));
}
else if (map_type <= 1) {
// if we don't do this, the columns won't line up nicely
if (map_type == 0 && f >= 0.0) SERIAL_CHAR(' ');
SERIAL_PROTOCOL_F(f, 3);
}
idle();
if (map_type == 1 && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR(',');
#if TX_BUFFER_SIZE > 0
MYSERIAL.flushTX();
#endif
safe_delay(15);
if (map_type == 0) {
SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_CHAR(' ');
}
}
SERIAL_EOL();
if (j && map_type == 0) { // we want the (0,0) up tight against the block of numbers
SERIAL_CHAR(' ');
SERIAL_EOL();
}
}
if (map_type == 0) {
serial_echo_xy(MESH_MIN_X, MESH_MIN_Y);
SERIAL_ECHO_SP(spaces + 4);
serial_echo_xy(MESH_MAX_X, MESH_MIN_Y);
SERIAL_EOL();
serial_echo_xy(0, 0);
SERIAL_ECHO_SP(spaces + 5);
serial_echo_xy(GRID_MAX_POINTS_X - 1, 0);
SERIAL_EOL();
}
}
bool unified_bed_leveling::sanity_check() {
uint8_t error_flag = 0;
if (settings.calc_num_meshes() < 1) {
SERIAL_PROTOCOLLNPGM("?Insufficient EEPROM storage for a mesh of this size.");
error_flag++;
}
return !!error_flag;
}
#endif // AUTO_BED_LEVELING_UBL