1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-24 04:29:34 +00:00
MarlinFirmware/Marlin/configuration_store.cpp
2016-10-09 13:32:45 -05:00

969 lines
29 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* configuration_store.cpp
*
* Configuration and EEPROM storage
*
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*
*/
#define EEPROM_VERSION "V26"
// Change EEPROM version if these are changed:
#define EEPROM_OFFSET 100
#define MAX_EXTRUDERS 4
/**
* V24 EEPROM Layout:
*
* 100 Version (char x4)
* 104 EEPROM Checksum (uint16_t)
*
* 106 M92 XYZE planner.axis_steps_per_mm (float x4)
* 122 M203 XYZE planner.max_feedrate_mm_s (float x4)
* 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
* 154 M204 P planner.acceleration (float)
* 158 M204 R planner.retract_acceleration (float)
* 162 M204 T planner.travel_acceleration (float)
* 166 M205 S planner.min_feedrate_mm_s (float)
* 170 M205 T planner.min_travel_feedrate_mm_s (float)
* 174 M205 B planner.min_segment_time (ulong)
* 178 M205 X planner.max_jerk[X_AXIS] (float)
* 182 M205 Y planner.max_jerk[Y_AXIS] (float)
* 186 M205 Z planner.max_jerk[Z_AXIS] (float)
* 190 M205 E planner.max_jerk[E_AXIS] (float)
* 194 M206 XYZ home_offset (float x3)
*
* Mesh bed leveling:
* 206 M420 S status (uint8)
* 207 z_offset (float)
* 211 mesh_num_x (uint8 as set in firmware)
* 212 mesh_num_y (uint8 as set in firmware)
* 213 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
*
* AUTO BED LEVELING
* 249 M851 zprobe_zoffset (float)
*
* DELTA:
* 253 M666 XYZ endstop_adj (float x3)
* 265 M665 R delta_radius (float)
* 269 M665 L delta_diagonal_rod (float)
* 273 M665 S delta_segments_per_second (float)
* 277 M665 A delta_diagonal_rod_trim_tower_1 (float)
* 281 M665 B delta_diagonal_rod_trim_tower_2 (float)
* 285 M665 C delta_diagonal_rod_trim_tower_3 (float)
*
* Z_DUAL_ENDSTOPS:
* 289 M666 Z z_endstop_adj (float)
*
* ULTIPANEL:
* 293 M145 S0 H preheatHotendTemp1 (int)
* 295 M145 S0 B preheatBedTemp1 (int)
* 297 M145 S0 F preheatFanSpeed1 (int)
* 299 M145 S1 H preheatHotendTemp2 (int)
* 301 M145 S1 B preheatBedTemp2 (int)
* 303 M145 S1 F preheatFanSpeed2 (int)
*
* PIDTEMP:
* 305 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
* 321 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
* 337 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
* 353 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 369 M301 L lpq_len (int)
*
* PIDTEMPBED:
* 371 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
*
* DOGLCD:
* 383 M250 C lcd_contrast (int)
*
* FWRETRACT:
* 385 M209 S autoretract_enabled (bool)
* 386 M207 S retract_length (float)
* 390 M207 W retract_length_swap (float)
* 394 M207 F retract_feedrate_mm_s (float)
* 399 M207 Z retract_zlift (float)
* 402 M208 S retract_recover_length (float)
* 406 M208 W retract_recover_length_swap (float)
* 410 M208 F retract_recover_feedrate_mm_s (float)
*
* Volumetric Extrusion:
* 414 M200 D volumetric_enabled (bool)
* 415 M200 T D filament_size (float x4) (T0..3)
*
* 431 This Slot is Available!
*
*/
#include "Marlin.h"
#include "language.h"
#include "endstops.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "configuration_store.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
uint16_t eeprom_checksum;
const char version[4] = EEPROM_VERSION;
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
uint8_t c;
while (size--) {
eeprom_write_byte((unsigned char*)pos, *value);
c = eeprom_read_byte((unsigned char*)pos);
if (c != *value) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
}
eeprom_checksum += c;
pos++;
value++;
};
}
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
do {
uint8_t c = eeprom_read_byte((unsigned char*)pos);
*value = c;
eeprom_checksum += c;
pos++;
value++;
} while (--size);
}
/**
* Post-process after Retrieve or Reset
*/
void Config_Postprocess() {
// steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA)
recalc_delta_settings(delta_radius, delta_diagonal_rod);
#endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
#if ENABLED(PIDTEMP)
thermalManager.updatePID();
#endif
calculate_volumetric_multipliers();
// Software endstops depend on home_offset
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
}
#if ENABLED(EEPROM_SETTINGS)
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
/**
* M500 - Store Configuration
*/
void Config_StoreSettings() {
float dummy = 0.0f;
char ver[4] = "000";
EEPROM_START();
EEPROM_WRITE(ver); // invalidate data first
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
eeprom_checksum = 0; // clear before first "real data"
EEPROM_WRITE(planner.axis_steps_per_mm);
EEPROM_WRITE(planner.max_feedrate_mm_s);
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
EEPROM_WRITE(planner.acceleration);
EEPROM_WRITE(planner.retract_acceleration);
EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time);
EEPROM_WRITE(planner.max_jerk);
EEPROM_WRITE(home_offset);
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
uint8_t mesh_num_x = MESH_NUM_X_POINTS,
mesh_num_y = MESH_NUM_Y_POINTS,
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
EEPROM_WRITE(dummy_uint8);
EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else
// For disabled MBL write a default mesh
uint8_t mesh_num_x = 3,
mesh_num_y = 3,
dummy_uint8 = 0;
dummy = 0.0f;
EEPROM_WRITE(dummy_uint8);
EEPROM_WRITE(dummy);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE
float zprobe_zoffset = 0;
#endif
EEPROM_WRITE(zprobe_zoffset);
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
#if ENABLED(DELTA)
EEPROM_WRITE(endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(z_endstop_adj); // 1 float
dummy = 0.0f;
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
#else
dummy = 0.0f;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif
#if DISABLED(ULTIPANEL)
int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
#endif // !ULTIPANEL
EEPROM_WRITE(preheatHotendTemp1);
EEPROM_WRITE(preheatBedTemp1);
EEPROM_WRITE(preheatFanSpeed1);
EEPROM_WRITE(preheatHotendTemp2);
EEPROM_WRITE(preheatBedTemp2);
EEPROM_WRITE(preheatFanSpeed2);
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
#if ENABLED(PIDTEMP)
if (e < HOTENDS) {
EEPROM_WRITE(PID_PARAM(Kp, e));
EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_WRITE(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_WRITE(PID_PARAM(Kc, e));
#else
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE(dummy);
#endif
}
else
#endif // !PIDTEMP
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE(dummy); // Kp
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
}
} // Hotends Loop
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#endif
EEPROM_WRITE(lpq_len);
#if DISABLED(PIDTEMPBED)
dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#else
EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE(thermalManager.bedKd);
#endif
#if !HAS_LCD_CONTRAST
const int lcd_contrast = 32;
#endif
EEPROM_WRITE(lcd_contrast);
#if ENABLED(FWRETRACT)
EEPROM_WRITE(autoretract_enabled);
EEPROM_WRITE(retract_length);
#if EXTRUDERS > 1
EEPROM_WRITE(retract_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif
EEPROM_WRITE(retract_feedrate_mm_s);
EEPROM_WRITE(retract_zlift);
EEPROM_WRITE(retract_recover_length);
#if EXTRUDERS > 1
EEPROM_WRITE(retract_recover_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif
EEPROM_WRITE(retract_recover_feedrate_mm_s);
#endif // FWRETRACT
EEPROM_WRITE(volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_size)) dummy = filament_size[q];
EEPROM_WRITE(dummy);
}
uint16_t final_checksum = eeprom_checksum,
eeprom_size = eeprom_index;
eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE(version);
EEPROM_WRITE(final_checksum);
// Report storage size
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
SERIAL_ECHOLNPGM(" bytes)");
}
/**
* M501 - Retrieve Configuration
*/
void Config_RetrieveSettings() {
EEPROM_START();
char stored_ver[4];
EEPROM_READ(stored_ver);
uint16_t stored_checksum;
EEPROM_READ(stored_checksum);
// SERIAL_ECHOPAIR("Version: [", ver);
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
// SERIAL_CHAR(']');
// SERIAL_EOL;
if (strncmp(version, stored_ver, 3) != 0) {
Config_ResetDefault();
}
else {
float dummy = 0;
eeprom_checksum = 0; // clear before reading first "real data"
// version number match
EEPROM_READ(planner.axis_steps_per_mm);
EEPROM_READ(planner.max_feedrate_mm_s);
EEPROM_READ(planner.max_acceleration_mm_per_s2);
EEPROM_READ(planner.acceleration);
EEPROM_READ(planner.retract_acceleration);
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time);
EEPROM_READ(planner.max_jerk);
EEPROM_READ(home_offset);
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
EEPROM_READ(dummy_uint8);
EEPROM_READ(dummy);
EEPROM_READ(mesh_num_x);
EEPROM_READ(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
mbl.status = dummy_uint8;
mbl.z_offset = dummy;
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
}
else {
// EEPROM data is stale
mbl.reset();
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
}
#else
// MBL is disabled - skip the stored data
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE
float zprobe_zoffset = 0;
#endif
EEPROM_READ(zprobe_zoffset);
#if ENABLED(DELTA)
EEPROM_READ(endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(z_endstop_adj);
dummy = 0.0f;
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
#else
dummy = 0.0f;
for (uint8_t q=9; q--;) EEPROM_READ(dummy);
#endif
#if DISABLED(ULTIPANEL)
int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
#endif
EEPROM_READ(preheatHotendTemp1);
EEPROM_READ(preheatBedTemp1);
EEPROM_READ(preheatFanSpeed1);
EEPROM_READ(preheatHotendTemp2);
EEPROM_READ(preheatBedTemp2);
EEPROM_READ(preheatFanSpeed2);
#if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy;
EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(PID_PARAM(Kc, e));
#else
EEPROM_READ(dummy);
#endif
}
else {
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len;
#endif
EEPROM_READ(lpq_len);
#if ENABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
#endif
#if !HAS_LCD_CONTRAST
int lcd_contrast;
#endif
EEPROM_READ(lcd_contrast);
#if ENABLED(FWRETRACT)
EEPROM_READ(autoretract_enabled);
EEPROM_READ(retract_length);
#if EXTRUDERS > 1
EEPROM_READ(retract_length_swap);
#else
EEPROM_READ(dummy);
#endif
EEPROM_READ(retract_feedrate_mm_s);
EEPROM_READ(retract_zlift);
EEPROM_READ(retract_recover_length);
#if EXTRUDERS > 1
EEPROM_READ(retract_recover_length_swap);
#else
EEPROM_READ(dummy);
#endif
EEPROM_READ(retract_recover_feedrate_mm_s);
#endif // FWRETRACT
EEPROM_READ(volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (q < COUNT(filament_size)) filament_size[q] = dummy;
}
if (eeprom_checksum == stored_checksum) {
Config_Postprocess();
SERIAL_ECHO_START;
SERIAL_ECHO(version);
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
SERIAL_ECHOLNPGM(" bytes)");
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
Config_ResetDefault();
}
}
#if ENABLED(EEPROM_CHITCHAT)
Config_PrintSettings();
#endif
}
#endif // EEPROM_SETTINGS
/**
* M502 - Reset Configuration
*/
void Config_ResetDefault() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION;
LOOP_XYZE(i) {
planner.axis_steps_per_mm[i] = tmp1[i];
planner.max_feedrate_mm_s[i] = tmp2[i];
planner.max_acceleration_mm_per_s2[i] = tmp3[i];
}
planner.acceleration = DEFAULT_ACCELERATION;
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
#if ENABLED(MESH_BED_LEVELING)
mbl.reset();
#endif
#if HAS_BED_PROBE
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ;
endstop_adj[A_AXIS] = adj[A_AXIS];
endstop_adj[B_AXIS] = adj[B_AXIS];
endstop_adj[C_AXIS] = adj[C_AXIS];
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
#elif ENABLED(Z_DUAL_ENDSTOPS)
z_endstop_adj = 0;
#endif
#if ENABLED(ULTIPANEL)
preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND;
preheatBedTemp1 = PREHEAT_1_TEMP_BED;
preheatFanSpeed1 = PREHEAT_1_FAN_SPEED;
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND;
preheatBedTemp2 = PREHEAT_2_TEMP_BED;
preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
#endif
#if HAS_LCD_CONTRAST
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
HOTEND_LOOP()
#else
int e = 0; UNUSED(e); // only need to write once
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#if ENABLED(PID_EXTRUSION_SCALING)
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
#if ENABLED(PID_EXTRUSION_SCALING)
lpq_len = 20; // default last-position-queue size
#endif
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
thermalManager.bedKp = DEFAULT_bedKp;
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
#endif
#if ENABLED(FWRETRACT)
autoretract_enabled = false;
retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP;
#endif
retract_feedrate_mm_s = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif
retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
#endif
volumetric_enabled = false;
for (uint8_t q = 0; q < COUNT(filament_size); q++)
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
(true)
#else
(false)
#endif
);
Config_Postprocess();
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}
#if DISABLED(DISABLE_M503)
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
/**
* M503 - Print Configuration
*/
void Config_PrintSettings(bool forReplay) {
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Steps per unit:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
SERIAL_EOL;
#if ENABLED(MESH_BED_LEVELING)
if (!forReplay) {
SERIAL_ECHOLNPGM("Mesh bed leveling:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
SERIAL_EOL;
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" G29 S3 X", px);
SERIAL_ECHOPAIR(" Y", py);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
SERIAL_EOL;
}
}
#endif
#if ENABLED(DELTA)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
SERIAL_ECHOPAIR(" R", delta_radius);
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
SERIAL_EOL;
#elif ENABLED(Z_DUAL_ENDSTOPS)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
SERIAL_EOL;
#endif // DELTA
#if ENABLED(ULTIPANEL)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Material heatup parameters:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
SERIAL_ECHOPAIR(" B", preheatBedTemp1);
SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
SERIAL_EOL;
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
SERIAL_ECHOPAIR(" B", preheatBedTemp2);
SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
SERIAL_EOL;
#endif // ULTIPANEL
#if HAS_PID_HEATING
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 E", e);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
SERIAL_EOL;
#endif
#endif // PIDTEMP || PIDTEMPBED
#if HAS_LCD_CONTRAST
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("LCD Contrast:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
SERIAL_EOL;
#endif
#if ENABLED(FWRETRACT)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M207 S", retract_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
SERIAL_EOL;
#endif // FWRETRACT
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM("Filament settings:");
if (volumetric_enabled)
SERIAL_EOL;
else
SERIAL_ECHOLNPGM(" Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_EOL;
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_EOL;
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_EOL;
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
SERIAL_EOL;
#endif
#endif
#endif
if (!volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0");
}
/**
* Auto Bed Leveling
*/
#if HAS_BED_PROBE
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
SERIAL_EOL;
#endif
}
#endif // !DISABLE_M503