0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-22 09:42:34 +00:00
MarlinFirmware/Marlin/src/module/motion.cpp

1690 lines
56 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* motion.cpp
*/
#include "motion.h"
#include "endstops.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "../gcode/gcode.h"
#include "../inc/MarlinConfig.h"
#if IS_SCARA
#include "../libs/buzzer.h"
#include "../lcd/ultralcd.h"
#endif
#if HAS_BED_PROBE
#include "probe.h"
#endif
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(BLTOUCH)
#include "../feature/bltouch.h"
#endif
#if HAS_DISPLAY
#include "../lcd/ultralcd.h"
#endif
#if ENABLED(SENSORLESS_HOMING)
#include "../feature/tmc_util.h"
#endif
#if ENABLED(FWRETRACT)
#include "../feature/fwretract.h"
#endif
#if ENABLED(BABYSTEP_DISPLAY_TOTAL)
#include "../feature/babystep.h"
#endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../core/debug_out.h"
#define XYZ_CONSTS(type, array, CONFIG) const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }
XYZ_CONSTS(float, base_min_pos, MIN_POS);
XYZ_CONSTS(float, base_max_pos, MAX_POS);
XYZ_CONSTS(float, base_home_pos, HOME_POS);
XYZ_CONSTS(float, max_length, MAX_LENGTH);
XYZ_CONSTS(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS(signed char, home_dir, HOME_DIR);
/**
* axis_homed
* Flags that each linear axis was homed.
* XYZ on cartesian, ABC on delta, ABZ on SCARA.
*
* axis_known_position
* Flags that the position is known in each linear axis. Set when homed.
* Cleared whenever a stepper powers off, potentially losing its position.
*/
uint8_t axis_homed, axis_known_position; // = 0
// Relative Mode. Enable with G91, disable with G90.
bool relative_mode; // = false;
/**
* Cartesian Current Position
* Used to track the native machine position as moves are queued.
* Used by 'line_to_current_position' to do a move after changing it.
* Used by 'sync_plan_position' to update 'planner.position'.
*/
float current_position[XYZE] = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS };
/**
* Cartesian Destination
* The destination for a move, filled in by G-code movement commands,
* and expected by functions like 'prepare_move_to_destination'.
* Set with 'get_destination_from_command' or 'set_destination_from_current'.
*/
float destination[XYZE]; // = { 0 }
// The active extruder (tool). Set with T<extruder> command.
#if EXTRUDERS > 1
uint8_t active_extruder; // = 0
#endif
// Extruder offsets
#if HAS_HOTEND_OFFSET
float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
void reset_hotend_offsets() {
constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
static_assert(
tmp[X_AXIS][0] == 0 && tmp[Y_AXIS][0] == 0 && tmp[Z_AXIS][0] == 0,
"Offsets for the first hotend must be 0.0."
);
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp[i][e];
#if ENABLED(DUAL_X_CARRIAGE)
hotend_offset[X_AXIS][1] = _MAX(X2_HOME_POS, X2_MAX_POS);
#endif
}
#endif
// The feedrate for the current move, often used as the default if
// no other feedrate is specified. Overridden for special moves.
// Set by the last G0 through G5 command's "F" parameter.
// Functions that override this for custom moves *must always* restore it!
float feedrate_mm_s = MMM_TO_MMS(1500.0f);
int16_t feedrate_percentage = 100;
// Homing feedrate is const progmem - compare to constexpr in the header
const float homing_feedrate_mm_s[XYZ] PROGMEM = {
#if ENABLED(DELTA)
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
#else
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
#endif
MMM_TO_MMS(HOMING_FEEDRATE_Z)
};
// Cartesian conversion result goes here:
float cartes[XYZ];
#if IS_KINEMATIC
float delta[ABC];
#if HAS_SCARA_OFFSET
float scara_home_offset[ABC];
#endif
#if HAS_SOFTWARE_ENDSTOPS
float delta_max_radius, delta_max_radius_2;
#elif IS_SCARA
constexpr float delta_max_radius = SCARA_PRINTABLE_RADIUS,
delta_max_radius_2 = sq(SCARA_PRINTABLE_RADIUS);
#else // DELTA
constexpr float delta_max_radius = DELTA_PRINTABLE_RADIUS,
delta_max_radius_2 = sq(DELTA_PRINTABLE_RADIUS);
#endif
#endif
/**
* The workspace can be offset by some commands, or
* these offsets may be omitted to save on computation.
*/
#if HAS_POSITION_SHIFT
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
// The above two are combined to save on computes
float workspace_offset[XYZ] = { 0 };
#endif
#if HAS_ABL_NOT_UBL
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
#endif
/**
* Output the current position to serial
*/
void report_current_position() {
SERIAL_ECHOPAIR("X:", LOGICAL_X_POSITION(current_position[X_AXIS]));
SERIAL_ECHOPAIR(" Y:", LOGICAL_Y_POSITION(current_position[Y_AXIS]));
SERIAL_ECHOPAIR(" Z:", LOGICAL_Z_POSITION(current_position[Z_AXIS]));
SERIAL_ECHOPAIR(" E:", current_position[E_AXIS]);
stepper.report_positions();
#if IS_SCARA
scara_report_positions();
#endif
}
/**
* sync_plan_position
*
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
*/
void sync_plan_position() {
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
/**
* Get the stepper positions in the cartes[] array.
* Forward kinematics are applied for DELTA and SCARA.
*
* The result is in the current coordinate space with
* leveling applied. The coordinates need to be run through
* unapply_leveling to obtain the "ideal" coordinates
* suitable for current_position, etc.
*/
void get_cartesian_from_steppers() {
#if ENABLED(DELTA)
forward_kinematics_DELTA(
planner.get_axis_position_mm(A_AXIS),
planner.get_axis_position_mm(B_AXIS),
planner.get_axis_position_mm(C_AXIS)
);
#else
#if IS_SCARA
forward_kinematics_SCARA(
planner.get_axis_position_degrees(A_AXIS),
planner.get_axis_position_degrees(B_AXIS)
);
#else
cartes[X_AXIS] = planner.get_axis_position_mm(X_AXIS);
cartes[Y_AXIS] = planner.get_axis_position_mm(Y_AXIS);
#endif
cartes[Z_AXIS] = planner.get_axis_position_mm(Z_AXIS);
#endif
}
/**
* Set the current_position for an axis based on
* the stepper positions, removing any leveling that
* may have been applied.
*
* To prevent small shifts in axis position always call
* sync_plan_position after updating axes with this.
*
* To keep hosts in sync, always call report_current_position
* after updating the current_position.
*/
void set_current_from_steppers_for_axis(const AxisEnum axis) {
get_cartesian_from_steppers();
#if HAS_POSITION_MODIFIERS
float pos[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], current_position[E_AXIS] };
planner.unapply_modifiers(pos
#if HAS_LEVELING
, true
#endif
);
const float (&cartes)[XYZE] = pos;
#endif
if (axis == ALL_AXES)
COPY(current_position, cartes);
else
current_position[axis] = cartes[axis];
}
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
*/
void line_to_current_position(const float &fr_mm_s/*=feedrate_mm_s*/) {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s, active_extruder);
}
/**
* Move the planner to the position stored in the destination array, which is
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
*/
void buffer_line_to_destination(const float fr_mm_s) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
}
#if IS_KINEMATIC
/**
* Calculate delta, start a line, and set current_position to destination
*/
void prepare_uninterpolated_move_to_destination(const float &fr_mm_s/*=0.0*/) {
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
#if UBL_SEGMENTED
// ubl segmented line will do z-only moves in single segment
ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
#else
if ( current_position[X_AXIS] == destination[X_AXIS]
&& current_position[Y_AXIS] == destination[Y_AXIS]
&& current_position[Z_AXIS] == destination[Z_AXIS]
&& current_position[E_AXIS] == destination[E_AXIS]
) return;
planner.buffer_line(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
#endif
set_current_from_destination();
}
#endif // IS_KINEMATIC
/**
* Plan a move to (X, Y, Z) and set the current_position
*/
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s/*=0.0*/) {
if (DEBUGGING(LEVELING)) DEBUG_XYZ(">>> do_blocking_move_to", rx, ry, rz);
const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS),
xy_feedrate = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
#if ENABLED(DELTA)
if (!position_is_reachable(rx, ry)) return;
REMEMBER(fr, feedrate_mm_s, xy_feedrate);
set_destination_from_current(); // sync destination at the start
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
// when in the danger zone
if (current_position[Z_AXIS] > delta_clip_start_height) {
if (rz > delta_clip_start_height) { // staying in the danger zone
destination[X_AXIS] = rx; // move directly (uninterpolated)
destination[Y_AXIS] = ry;
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(); // set_current_from_destination()
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
return;
}
destination[Z_AXIS] = delta_clip_start_height;
prepare_uninterpolated_move_to_destination(); // set_current_from_destination()
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
}
if (rz > current_position[Z_AXIS]) { // raising?
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination()
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
}
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
prepare_move_to_destination(); // set_current_from_destination()
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
if (rz < current_position[Z_AXIS]) { // lowering?
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination()
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
}
#elif IS_SCARA
if (!position_is_reachable(rx, ry)) return;
set_destination_from_current();
// If Z needs to raise, do it before moving XY
if (destination[Z_AXIS] < rz) {
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate);
}
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
prepare_uninterpolated_move_to_destination(xy_feedrate);
// If Z needs to lower, do it after moving XY
if (destination[Z_AXIS] > rz) {
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate);
}
#else
// If Z needs to raise, do it before moving XY
if (current_position[Z_AXIS] < rz) {
current_position[Z_AXIS] = rz;
line_to_current_position(z_feedrate);
}
current_position[X_AXIS] = rx;
current_position[Y_AXIS] = ry;
line_to_current_position(xy_feedrate);
// If Z needs to lower, do it after moving XY
if (current_position[Z_AXIS] > rz) {
current_position[Z_AXIS] = rz;
line_to_current_position(z_feedrate);
}
#endif
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< do_blocking_move_to");
planner.synchronize();
}
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
}
void do_blocking_move_to_y(const float &ry, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[Y_AXIS], ry, current_position[Z_AXIS], fr_mm_s);
}
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
}
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
}
//
// Prepare to do endstop or probe moves with custom feedrates.
// - Save / restore current feedrate and multiplier
//
static float saved_feedrate_mm_s;
static int16_t saved_feedrate_percentage;
void setup_for_endstop_or_probe_move() {
saved_feedrate_mm_s = feedrate_mm_s;
saved_feedrate_percentage = feedrate_percentage;
feedrate_percentage = 100;
}
void clean_up_after_endstop_or_probe_move() {
feedrate_mm_s = saved_feedrate_mm_s;
feedrate_percentage = saved_feedrate_percentage;
}
#if HAS_SOFTWARE_ENDSTOPS
bool soft_endstops_enabled = true;
// Software Endstops are based on the configured limits.
axis_limits_t soft_endstop[XYZ] = { { X_MIN_BED, X_MAX_BED }, { Y_MIN_BED, Y_MAX_BED }, { Z_MIN_POS, Z_MAX_POS } };
/**
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(const AxisEnum axis
#if HAS_HOTEND_OFFSET
, const uint8_t old_tool_index/*=0*/, const uint8_t new_tool_index/*=0*/
#endif
) {
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) {
// In Dual X mode hotend_offset[X] is T1's home position
const float dual_max_x = _MAX(hotend_offset[X_AXIS][1], X2_MAX_POS);
if (new_tool_index != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop[X_AXIS].min = X2_MIN_POS;
soft_endstop[X_AXIS].max = dual_max_x;
}
else if (dxc_is_duplicating()) {
// In Duplication Mode, T0 can move as far left as X1_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop[X_AXIS].min = X1_MIN_POS;
soft_endstop[X_AXIS].max = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset);
}
else {
// In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
soft_endstop[X_AXIS].min = X1_MIN_POS;
soft_endstop[X_AXIS].max = X1_MAX_POS;
}
}
#elif ENABLED(DELTA)
soft_endstop[axis].min = base_min_pos(axis);
soft_endstop[axis].max = (axis == Z_AXIS ? delta_height
#if HAS_BED_PROBE
- zprobe_zoffset
#endif
: base_max_pos(axis));
switch (axis) {
case X_AXIS:
case Y_AXIS:
// Get a minimum radius for clamping
delta_max_radius = _MIN(ABS(_MAX(soft_endstop[X_AXIS].min, soft_endstop[Y_AXIS].min)), soft_endstop[X_AXIS].max, soft_endstop[Y_AXIS].max);
delta_max_radius_2 = sq(delta_max_radius);
break;
case Z_AXIS:
delta_clip_start_height = soft_endstop[axis].max - delta_safe_distance_from_top();
default: break;
}
#elif HAS_HOTEND_OFFSET
// Software endstops are relative to the tool 0 workspace, so
// the movement limits must be shifted by the tool offset to
// retain the same physical limit when other tools are selected.
if (old_tool_index != new_tool_index) {
const float offs = hotend_offset[axis][new_tool_index] - hotend_offset[axis][old_tool_index];
soft_endstop[axis].min += offs;
soft_endstop[axis].max += offs;
}
else {
const float offs = hotend_offset[axis][active_extruder];
soft_endstop[axis].min = base_min_pos(axis) + offs;
soft_endstop[axis].max = base_max_pos(axis) + offs;
}
#else
soft_endstop[axis].min = base_min_pos(axis);
soft_endstop[axis].max = base_max_pos(axis);
#endif
if (DEBUGGING(LEVELING))
SERIAL_ECHOLNPAIR("Axis ", axis_codes[axis], " min:", soft_endstop[axis].min, " max:", soft_endstop[axis].max);
}
/**
* Constrain the given coordinates to the software endstops.
*
* For DELTA/SCARA the XY constraint is based on the smallest
* radius within the set software endstops.
*/
void apply_motion_limits(float target[XYZ]) {
if (!soft_endstops_enabled) return;
#if IS_KINEMATIC
#if HAS_HOTEND_OFFSET && ENABLED(DELTA)
// The effector center position will be the target minus the hotend offset.
const float offx = hotend_offset[X_AXIS][active_extruder], offy = hotend_offset[Y_AXIS][active_extruder];
#else
// SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset.
constexpr float offx = 0, offy = 0;
#endif
const float dist_2 = HYPOT2(target[X_AXIS] - offx, target[Y_AXIS] - offy);
if (dist_2 > delta_max_radius_2) {
const float ratio = (delta_max_radius) / SQRT(dist_2); // 200 / 300 = 0.66
target[X_AXIS] *= ratio;
target[Y_AXIS] *= ratio;
}
#else
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X)
NOLESS(target[X_AXIS], soft_endstop[X_AXIS].min);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X)
NOMORE(target[X_AXIS], soft_endstop[X_AXIS].max);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
NOLESS(target[Y_AXIS], soft_endstop[Y_AXIS].min);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
NOMORE(target[Y_AXIS], soft_endstop[Y_AXIS].max);
#endif
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
NOLESS(target[Z_AXIS], soft_endstop[Z_AXIS].min);
#endif
#if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
NOMORE(target[Z_AXIS], soft_endstop[Z_AXIS].max);
#endif
}
#endif // HAS_SOFTWARE_ENDSTOPS
#if !UBL_SEGMENTED
#if IS_KINEMATIC
#if IS_SCARA
/**
* Before raising this value, use M665 S[seg_per_sec] to decrease
* the number of segments-per-second. Default is 200. Some deltas
* do better with 160 or lower. It would be good to know how many
* segments-per-second are actually possible for SCARA on AVR.
*
* Longer segments result in less kinematic overhead
* but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
* and compare the difference.
*/
#define SCARA_MIN_SEGMENT_LENGTH 0.5f
#endif
/**
* Prepare a linear move in a DELTA or SCARA setup.
*
* Called from prepare_move_to_destination as the
* default Delta/SCARA segmenter.
*
* This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA.
*
* For Unified Bed Leveling (Delta or Segmented Cartesian)
* the ubl.prepare_segmented_line_to method replaces this.
*
* For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES
* this is replaced by segmented_line_to_destination below.
*/
inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {
// Get the top feedrate of the move in the XY plane
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],
ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS];
// If the move is only in Z/E don't split up the move
if (!xdiff && !ydiff) {
planner.buffer_line(rtarget, _feedrate_mm_s, active_extruder);
return false; // caller will update current_position
}
// Fail if attempting move outside printable radius
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
// Remaining cartesian distances
const float zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],
ediff = rtarget[E_AXIS] - current_position[E_AXIS];
// Get the linear distance in XYZ
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
// If the move is very short, check the E move distance
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
// No E move either? Game over.
if (UNEAR_ZERO(cartesian_mm)) return true;
// Minimum number of seconds to move the given distance
const float seconds = cartesian_mm / _feedrate_mm_s;
// The number of segments-per-second times the duration
// gives the number of segments
uint16_t segments = delta_segments_per_second * seconds;
// For SCARA enforce a minimum segment size
#if IS_SCARA
NOMORE(segments, cartesian_mm * (1.0f / float(SCARA_MIN_SEGMENT_LENGTH)));
#endif
// At least one segment is required
NOLESS(segments, 1U);
// The approximate length of each segment
const float inv_segments = 1.0f / float(segments),
segment_distance[XYZE] = {
xdiff * inv_segments,
ydiff * inv_segments,
zdiff * inv_segments,
ediff * inv_segments
},
cartesian_segment_mm = cartesian_mm * inv_segments;
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = _feedrate_mm_s / cartesian_segment_mm;
#endif
/*
SERIAL_ECHOPAIR("mm=", cartesian_mm);
SERIAL_ECHOPAIR(" seconds=", seconds);
SERIAL_ECHOPAIR(" segments=", segments);
SERIAL_ECHOPAIR(" segment_mm=", cartesian_segment_mm);
SERIAL_EOL();
//*/
// Get the current position as starting point
float raw[XYZE];
COPY(raw, current_position);
// Calculate and execute the segments
while (--segments) {
static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed.
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
LOOP_XYZE(i) raw[i] += segment_distance[i];
if (!planner.buffer_line(raw, _feedrate_mm_s, active_extruder, cartesian_segment_mm
#if ENABLED(SCARA_FEEDRATE_SCALING)
, inv_duration
#endif
))
break;
}
// Ensure last segment arrives at target location.
planner.buffer_line(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm
#if ENABLED(SCARA_FEEDRATE_SCALING)
, inv_duration
#endif
);
return false; // caller will update current_position
}
#else // !IS_KINEMATIC
#if ENABLED(SEGMENT_LEVELED_MOVES)
/**
* Prepare a segmented move on a CARTESIAN setup.
*
* This calls planner.buffer_line several times, adding
* small incremental moves. This allows the planner to
* apply more detailed bed leveling to the full move.
*/
inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
// If the move is only in Z/E don't split up the move
if (!xdiff && !ydiff) {
planner.buffer_line(destination, fr_mm_s, active_extruder);
return;
}
// Remaining cartesian distances
const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
ediff = destination[E_AXIS] - current_position[E_AXIS];
// Get the linear distance in XYZ
// If the move is very short, check the E move distance
// No E move either? Game over.
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(ediff);
if (UNEAR_ZERO(cartesian_mm)) return;
// The length divided by the segment size
// At least one segment is required
uint16_t segments = cartesian_mm / segment_size;
NOLESS(segments, 1U);
// The approximate length of each segment
const float inv_segments = 1.0f / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments,
segment_distance[XYZE] = {
xdiff * inv_segments,
ydiff * inv_segments,
zdiff * inv_segments,
ediff * inv_segments
};
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = _feedrate_mm_s / cartesian_segment_mm;
#endif
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOLNPAIR(" segments=", segments);
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
// Get the raw current position as starting point
float raw[XYZE];
COPY(raw, current_position);
// Calculate and execute the segments
while (--segments) {
static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed.
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
LOOP_XYZE(i) raw[i] += segment_distance[i];
if (!planner.buffer_line(raw, fr_mm_s, active_extruder, cartesian_segment_mm
#if ENABLED(SCARA_FEEDRATE_SCALING)
, inv_duration
#endif
))
break;
}
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
planner.buffer_line(destination, fr_mm_s, active_extruder, cartesian_segment_mm
#if ENABLED(SCARA_FEEDRATE_SCALING)
, inv_duration
#endif
);
}
#endif // SEGMENT_LEVELED_MOVES
/**
* Prepare a linear move in a Cartesian setup.
*
* When a mesh-based leveling system is active, moves are segmented
* according to the configuration of the leveling system.
*
* Returns true if current_position[] was set to destination[]
*/
inline bool prepare_move_to_destination_cartesian() {
#if HAS_MESH
if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
return true; // all moves, including Z-only moves.
#elif ENABLED(SEGMENT_LEVELED_MOVES)
segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false; // caller will update current_position
#else
/**
* For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
* Otherwise fall through to do a direct single move.
*/
if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
#if ENABLED(MESH_BED_LEVELING)
mbl.line_to_destination(MMS_SCALED(feedrate_mm_s));
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
#endif
return true;
}
#endif
}
#endif // HAS_MESH
buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false; // caller will update current_position
}
#endif // !IS_KINEMATIC
#endif // !UBL_SEGMENTED
#if HAS_DUPLICATION_MODE
bool extruder_duplication_enabled,
mirrored_duplication_mode;
#if ENABLED(MULTI_NOZZLE_DUPLICATION)
uint8_t duplication_e_mask; // = 0
#endif
#endif
#if ENABLED(DUAL_X_CARRIAGE)
DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1
raised_parked_position[XYZE], // used in mode 1
duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
bool active_extruder_parked = false; // used in mode 1 & 2
millis_t delayed_move_time = 0; // used in mode 1
int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
float x_home_pos(const int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS);
else
/**
* In dual carriage mode the extruder offset provides an override of the
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
* This allows soft recalibration of the second extruder home position
* without firmware reflash (through the M218 command).
*/
return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
}
/**
* Prepare a linear move in a dual X axis setup
*
* Return true if current_position[] was set to destination[]
*/
inline bool dual_x_carriage_unpark() {
if (active_extruder_parked) {
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
break;
case DXC_AUTO_PARK_MODE:
if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_from_destination();
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis();
return true;
}
}
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
#define CUR_X current_position[X_AXIS]
#define CUR_Y current_position[Y_AXIS]
#define CUR_Z current_position[Z_AXIS]
#define CUR_E current_position[E_AXIS]
#define RAISED_X raised_parked_position[X_AXIS]
#define RAISED_Y raised_parked_position[Y_AXIS]
#define RAISED_Z raised_parked_position[Z_AXIS]
if ( planner.buffer_line(RAISED_X, RAISED_Y, RAISED_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder))
if (planner.buffer_line( CUR_X, CUR_Y, RAISED_Z, CUR_E, PLANNER_XY_FEEDRATE(), active_extruder))
planner.buffer_line( CUR_X, CUR_Y, CUR_Z, CUR_E, planner.settings.max_feedrate_mm_s[Z_AXIS], active_extruder);
delayed_move_time = 0;
active_extruder_parked = false;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Clear active_extruder_parked");
break;
case DXC_MIRRORED_MODE:
case DXC_DUPLICATION_MODE:
if (active_extruder == 0) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Set planner X", inactive_extruder_x_pos, " ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
// move duplicate extruder into correct duplication position.
planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
if (!planner.buffer_line(
dual_x_carriage_mode == DXC_DUPLICATION_MODE ? duplicate_extruder_x_offset + current_position[X_AXIS] : inactive_extruder_x_pos,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
planner.settings.max_feedrate_mm_s[X_AXIS], 1
)
) break;
planner.synchronize();
sync_plan_position();
extruder_duplication_enabled = true;
active_extruder_parked = false;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
}
else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0");
break;
}
}
stepper.set_directions();
return false;
}
#endif // DUAL_X_CARRIAGE
/**
* Prepare a single move and get ready for the next one
*
* This may result in several calls to planner.buffer_line to
* do smaller moves for DELTA, SCARA, mesh moves, etc.
*
* Make sure current_position[E] and destination[E] are good
* before calling or cold/lengthy extrusion may get missed.
*/
void prepare_move_to_destination() {
apply_motion_limits(destination);
#if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
if (!DEBUGGING(DRYRUN)) {
if (destination[E_AXIS] != current_position[E_AXIS]) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(active_extruder)) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_MSG(MSG_ERR_COLD_EXTRUDE_STOP);
}
#endif // PREVENT_COLD_EXTRUSION
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
const float e_delta = ABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder];
if (e_delta > (EXTRUDE_MAXLENGTH)) {
#if ENABLED(MIXING_EXTRUDER)
bool ignore_e = false;
float collector[MIXING_STEPPERS];
mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
MIXER_STEPPER_LOOP(e)
if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) { ignore_e = true; break; }
#else
constexpr bool ignore_e = true;
#endif
if (ignore_e) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_MSG(MSG_ERR_LONG_EXTRUDE_STOP);
}
}
#endif // PREVENT_LENGTHY_EXTRUDE
}
}
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_unpark()) return;
#endif
if (
#if UBL_SEGMENTED
//ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s)) // This doesn't seem to work correctly on UBL.
#if IS_KINEMATIC // Use Kinematic / Cartesian cases as a workaround for now.
ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
#else
prepare_move_to_destination_cartesian()
#endif
#elif IS_KINEMATIC
prepare_kinematic_move_to(destination)
#else
prepare_move_to_destination_cartesian()
#endif
) return;
set_current_from_destination();
}
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
#if ENABLED(HOME_AFTER_DEACTIVATE)
const bool xx = x && !TEST(axis_known_position, X_AXIS),
yy = y && !TEST(axis_known_position, Y_AXIS),
zz = z && !TEST(axis_known_position, Z_AXIS);
#else
const bool xx = x && !TEST(axis_homed, X_AXIS),
yy = y && !TEST(axis_homed, Y_AXIS),
zz = z && !TEST(axis_homed, Z_AXIS);
#endif
if (xx || yy || zz) {
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_HOME " ");
if (xx) SERIAL_CHAR('X');
if (yy) SERIAL_CHAR('Y');
if (zz) SERIAL_CHAR('Z');
SERIAL_ECHOLNPGM(" " MSG_FIRST);
#if HAS_DISPLAY
ui.status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
#endif
return true;
}
return false;
}
/**
* Homing bump feedrate (mm/s)
*/
float get_homing_bump_feedrate(const AxisEnum axis) {
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_SPEED_SLOW);
#endif
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
if (hbd < 1) {
hbd = 10;
SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1");
}
return homing_feedrate(axis) / hbd;
}
#if ENABLED(SENSORLESS_HOMING)
/**
* Set sensorless homing if the axis has it, accounting for Core Kinematics.
*/
sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) {
sensorless_t stealth_states { false };
switch (axis) {
default: break;
#if X_SENSORLESS
case X_AXIS:
stealth_states.x = tmc_enable_stallguard(stepperX);
#if AXIS_HAS_STALLGUARD(X2)
stealth_states.x2 = tmc_enable_stallguard(stepperX2);
#endif
#if CORE_IS_XY && Y_SENSORLESS
stealth_states.y = tmc_enable_stallguard(stepperY);
#elif CORE_IS_XZ && Z_SENSORLESS
stealth_states.z = tmc_enable_stallguard(stepperZ);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
stealth_states.y = tmc_enable_stallguard(stepperY);
#if AXIS_HAS_STALLGUARD(Y2)
stealth_states.y2 = tmc_enable_stallguard(stepperY2);
#endif
#if CORE_IS_XY && X_SENSORLESS
stealth_states.x = tmc_enable_stallguard(stepperX);
#elif CORE_IS_YZ && Z_SENSORLESS
stealth_states.z = tmc_enable_stallguard(stepperZ);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
stealth_states.z = tmc_enable_stallguard(stepperZ);
#if AXIS_HAS_STALLGUARD(Z2)
stealth_states.z2 = tmc_enable_stallguard(stepperZ2);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
stealth_states.z3 = tmc_enable_stallguard(stepperZ3);
#endif
#if CORE_IS_XZ && X_SENSORLESS
stealth_states.x = tmc_enable_stallguard(stepperX);
#elif CORE_IS_YZ && Y_SENSORLESS
stealth_states.y = tmc_enable_stallguard(stepperY);
#endif
break;
#endif
}
#if ENABLED(SPI_ENDSTOPS)
switch (axis) {
#if X_SPI_SENSORLESS
case X_AXIS: endstops.tmc_spi_homing.x = true; break;
#endif
#if Y_SPI_SENSORLESS
case Y_AXIS: endstops.tmc_spi_homing.y = true; break;
#endif
#if Z_SPI_SENSORLESS
case Z_AXIS: endstops.tmc_spi_homing.z = true; break;
#endif
default: break;
}
#endif
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
sg_guard_period = millis() + default_sg_guard_duration;
#endif
return stealth_states;
}
void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) {
switch (axis) {
default: break;
#if X_SENSORLESS
case X_AXIS:
tmc_disable_stallguard(stepperX, enable_stealth.x);
#if AXIS_HAS_STALLGUARD(X2)
tmc_disable_stallguard(stepperX2, enable_stealth.x2);
#endif
#if CORE_IS_XY && Y_SENSORLESS
tmc_disable_stallguard(stepperY, enable_stealth.y);
#elif CORE_IS_XZ && Z_SENSORLESS
tmc_disable_stallguard(stepperZ, enable_stealth.z);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
tmc_disable_stallguard(stepperY, enable_stealth.y);
#if AXIS_HAS_STALLGUARD(Y2)
tmc_disable_stallguard(stepperY2, enable_stealth.y2);
#endif
#if CORE_IS_XY && X_SENSORLESS
tmc_disable_stallguard(stepperX, enable_stealth.x);
#elif CORE_IS_YZ && Z_SENSORLESS
tmc_disable_stallguard(stepperZ, enable_stealth.z);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
tmc_disable_stallguard(stepperZ, enable_stealth.z);
#if AXIS_HAS_STALLGUARD(Z2)
tmc_disable_stallguard(stepperZ2, enable_stealth.z2);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
tmc_disable_stallguard(stepperZ3, enable_stealth.z3);
#endif
#if CORE_IS_XZ && X_SENSORLESS
tmc_disable_stallguard(stepperX, enable_stealth.x);
#elif CORE_IS_YZ && Y_SENSORLESS
tmc_disable_stallguard(stepperY, enable_stealth.y);
#endif
break;
#endif
}
#if ENABLED(SPI_ENDSTOPS)
switch (axis) {
#if X_SPI_SENSORLESS
case X_AXIS: endstops.tmc_spi_homing.x = false; break;
#endif
#if Y_SPI_SENSORLESS
case Y_AXIS: endstops.tmc_spi_homing.y = false; break;
#endif
#if Z_SPI_SENSORLESS
case Z_AXIS: endstops.tmc_spi_homing.z = false; break;
#endif
default: break;
}
#endif
}
#endif // SENSORLESS_HOMING
/**
* Home an individual linear axis
*/
void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOPAIR(">>> do_homing_move(", axis_codes[axis], ", ", distance, ", ");
if (fr_mm_s)
DEBUG_ECHO(fr_mm_s);
else
DEBUG_ECHOPAIR("[", homing_feedrate(axis), "]");
DEBUG_ECHOLNPGM(")");
}
#if HOMING_Z_WITH_PROBE && HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
// Wait for bed to heat back up between probing points
if (axis == Z_AXIS && distance < 0 && thermalManager.isHeatingBed()) {
serialprintPGM(msg_wait_for_bed_heating);
LCD_MESSAGEPGM(MSG_BED_HEATING);
thermalManager.wait_for_bed();
ui.reset_status();
}
#endif
// Only do some things when moving towards an endstop
const int8_t axis_home_dir =
#if ENABLED(DUAL_X_CARRIAGE)
(axis == X_AXIS) ? x_home_dir(active_extruder) :
#endif
home_dir(axis);
const bool is_home_dir = (axis_home_dir > 0) == (distance > 0);
#if ENABLED(SENSORLESS_HOMING)
sensorless_t stealth_states;
#endif
if (is_home_dir) {
#if HOMING_Z_WITH_PROBE && QUIET_PROBING
if (axis == Z_AXIS) probing_pause(true);
#endif
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
stealth_states = start_sensorless_homing_per_axis(axis);
#endif
}
#if IS_SCARA
// Tell the planner the axis is at 0
current_position[axis] = 0;
sync_plan_position();
current_position[axis] = distance;
planner.buffer_line(current_position, fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
#else
float target[ABCE] = { planner.get_axis_position_mm(A_AXIS), planner.get_axis_position_mm(B_AXIS), planner.get_axis_position_mm(C_AXIS), planner.get_axis_position_mm(E_AXIS) };
target[axis] = 0;
planner.set_machine_position_mm(target);
target[axis] = distance;
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
const float delta_mm_cart[XYZE] = {0, 0, 0, 0};
#endif
// Set delta/cartesian axes directly
planner.buffer_segment(target
#if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
, delta_mm_cart
#endif
, fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder
);
#endif
planner.synchronize();
if (is_home_dir) {
#if HOMING_Z_WITH_PROBE && QUIET_PROBING
if (axis == Z_AXIS) probing_pause(false);
#endif
endstops.validate_homing_move();
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
end_sensorless_homing_per_axis(axis, stealth_states);
#endif
}
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< do_homing_move(", axis_codes[axis], ")");
}
/**
* Set an axis' current position to its home position (after homing).
*
* For Core and Cartesian robots this applies one-to-one when an
* individual axis has been homed.
*
* DELTA should wait until all homing is done before setting the XYZ
* current_position to home, because homing is a single operation.
* In the case where the axis positions are already known and previously
* homed, DELTA could home to X or Y individually by moving either one
* to the center. However, homing Z always homes XY and Z.
*
* SCARA should wait until all XY homing is done before setting the XY
* current_position to home, because neither X nor Y is at home until
* both are at home. Z can however be homed individually.
*
* Callers must sync the planner position after calling this!
*/
void set_axis_is_at_home(const AxisEnum axis) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_at_home(", axis_codes[axis], ")");
SBI(axis_known_position, axis);
SBI(axis_homed, axis);
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
current_position[X_AXIS] = x_home_pos(active_extruder);
return;
}
#endif
#if ENABLED(MORGAN_SCARA)
scara_set_axis_is_at_home(axis);
#elif ENABLED(DELTA)
current_position[axis] = (axis == Z_AXIS ? delta_height
#if HAS_BED_PROBE
- zprobe_zoffset
#endif
: base_home_pos(axis));
#else
current_position[axis] = base_home_pos(axis);
#endif
/**
* Z Probe Z Homing? Account for the probe's Z offset.
*/
#if HAS_BED_PROBE && Z_HOME_DIR < 0
if (axis == Z_AXIS) {
#if HOMING_Z_WITH_PROBE
current_position[Z_AXIS] -= zprobe_zoffset;
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***\n> zprobe_zoffset = ", zprobe_zoffset);
#else
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z HOMED TO ENDSTOP ***");
#endif
}
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.homed(axis);
#endif
#if ENABLED(BABYSTEP_DISPLAY_TOTAL)
babystep.reset_total(axis);
#endif
if (DEBUGGING(LEVELING)) {
#if HAS_HOME_OFFSET
DEBUG_ECHOLNPAIR("> home_offset[", axis_codes[axis], "] = ", home_offset[axis]);
#endif
DEBUG_POS("", current_position);
DEBUG_ECHOLNPAIR("<<< set_axis_is_at_home(", axis_codes[axis], ")");
}
}
/**
* Set an axis' to be unhomed.
*/
void set_axis_is_not_at_home(const AxisEnum axis) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_not_at_home(", axis_codes[axis], ")");
CBI(axis_known_position, axis);
CBI(axis_homed, axis);
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_is_not_at_home(", axis_codes[axis], ")");
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.unhomed(axis);
#endif
}
/**
* Home an individual "raw axis" to its endstop.
* This applies to XYZ on Cartesian and Core robots, and
* to the individual ABC steppers on DELTA and SCARA.
*
* At the end of the procedure the axis is marked as
* homed and the current position of that axis is updated.
* Kinematic robots should wait till all axes are homed
* before updating the current position.
*/
void homeaxis(const AxisEnum axis) {
#if IS_SCARA
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#else
#define _CAN_HOME(A) \
(axis == _AXIS(A) && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
#if X_SPI_SENSORLESS
#define CAN_HOME_X true
#else
#define CAN_HOME_X _CAN_HOME(X)
#endif
#if Y_SPI_SENSORLESS
#define CAN_HOME_Y true
#else
#define CAN_HOME_Y _CAN_HOME(Y)
#endif
#if Z_SPI_SENSORLESS
#define CAN_HOME_Z true
#else
#define CAN_HOME_Z _CAN_HOME(Z)
#endif
if (!CAN_HOME_X && !CAN_HOME_Y && !CAN_HOME_Z) return;
#endif
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> homeaxis(", axis_codes[axis], ")");
const int axis_home_dir = (
#if ENABLED(DUAL_X_CARRIAGE)
axis == X_AXIS ? x_home_dir(active_extruder) :
#endif
home_dir(axis)
);
// Homing Z towards the bed? Deploy the Z probe or endstop.
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
#endif
// Set flags for X, Y, Z motor locking
#if HAS_EXTRA_ENDSTOPS
switch (axis) {
#if ENABLED(X_DUAL_ENDSTOPS)
case X_AXIS:
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
case Y_AXIS:
#endif
#if Z_MULTI_ENDSTOPS
case Z_AXIS:
#endif
stepper.set_separate_multi_axis(true);
default: break;
}
#endif
// Fast move towards endstop until triggered
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 1 Fast:");
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
if (axis == Z_AXIS && bltouch.deploy()) return; // The initial DEPLOY
#endif
do_homing_move(axis, 1.5f * max_length(
#if ENABLED(DELTA)
Z_AXIS
#else
axis
#endif
) * axis_home_dir
);
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
if (axis == Z_AXIS) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE)
#endif
// When homing Z with probe respect probe clearance
const float bump = axis_home_dir * (
#if HOMING_Z_WITH_PROBE
(axis == Z_AXIS && (Z_HOME_BUMP_MM)) ? _MAX(Z_CLEARANCE_BETWEEN_PROBES, Z_HOME_BUMP_MM) :
#endif
home_bump_mm(axis)
);
// If a second homing move is configured...
if (bump) {
// Move away from the endstop by the axis HOME_BUMP_MM
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Move Away:");
do_homing_move(axis, -bump
#if HOMING_Z_WITH_PROBE
, axis == Z_AXIS ? MMM_TO_MMS(Z_PROBE_SPEED_FAST) : 0.0
#endif
);
// Slow move towards endstop until triggered
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home 2 Slow:");
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) && DISABLED(BLTOUCH_HS_MODE)
if (axis == Z_AXIS && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE)
#endif
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
if (axis == Z_AXIS) bltouch.stow(); // The final STOW
#endif
}
#if HAS_EXTRA_ENDSTOPS
const bool pos_dir = axis_home_dir > 0;
#if ENABLED(X_DUAL_ENDSTOPS)
if (axis == X_AXIS) {
const float adj = ABS(endstops.x2_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_x_lock(false);
stepper.set_x2_lock(false);
}
}
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
if (axis == Y_AXIS) {
const float adj = ABS(endstops.y2_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_y_lock(false);
stepper.set_y2_lock(false);
}
}
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) {
const float adj = ABS(endstops.z2_endstop_adj);
if (adj) {
if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
do_homing_move(axis, pos_dir ? -adj : adj);
stepper.set_z_lock(false);
stepper.set_z2_lock(false);
}
}
#endif
#if ENABLED(Z_TRIPLE_ENDSTOPS)
if (axis == Z_AXIS) {
// we push the function pointers for the stepper lock function into an array
void (*lock[3]) (bool)= {&stepper.set_z_lock, &stepper.set_z2_lock, &stepper.set_z3_lock};
float adj[3] = {0, endstops.z2_endstop_adj, endstops.z3_endstop_adj};
void (*tempLock) (bool);
float tempAdj;
// manual bubble sort by adjust value
if (adj[1] < adj[0]) {
tempLock = lock[0], tempAdj = adj[0];
lock[0] = lock[1], adj[0] = adj[1];
lock[1] = tempLock, adj[1] = tempAdj;
}
if (adj[2] < adj[1]) {
tempLock = lock[1], tempAdj = adj[1];
lock[1] = lock[2], adj[1] = adj[2];
lock[2] = tempLock, adj[2] = tempAdj;
}
if (adj[1] < adj[0]) {
tempLock = lock[0], tempAdj = adj[0];
lock[0] = lock[1], adj[0] = adj[1];
lock[1] = tempLock, adj[1] = tempAdj;
}
if (pos_dir) {
// normalize adj to smallest value and do the first move
(*lock[0])(true);
do_homing_move(axis, adj[1] - adj[0]);
// lock the second stepper for the final correction
(*lock[1])(true);
do_homing_move(axis, adj[2] - adj[1]);
}
else {
(*lock[2])(true);
do_homing_move(axis, adj[1] - adj[2]);
(*lock[1])(true);
do_homing_move(axis, adj[0] - adj[1]);
}
stepper.set_z_lock(false);
stepper.set_z2_lock(false);
stepper.set_z3_lock(false);
}
#endif
// Reset flags for X, Y, Z motor locking
switch (axis) {
#if ENABLED(X_DUAL_ENDSTOPS)
case X_AXIS:
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
case Y_AXIS:
#endif
#if Z_MULTI_ENDSTOPS
case Z_AXIS:
#endif
stepper.set_separate_multi_axis(false);
default: break;
}
#endif
#if IS_SCARA
set_axis_is_at_home(axis);
sync_plan_position();
#elif ENABLED(DELTA)
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
// retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum steps
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("delta_endstop_adj:");
do_homing_move(axis, delta_endstop_adj[axis] - (MIN_STEPS_PER_SEGMENT + 1) * planner.steps_to_mm[axis] * Z_HOME_DIR);
}
#else // CARTESIAN / CORE
set_axis_is_at_home(axis);
sync_plan_position();
destination[axis] = current_position[axis];
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
#endif
// Put away the Z probe
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS && STOW_PROBE()) return;
#endif
#ifdef HOMING_BACKOFF_MM
constexpr float endstop_backoff[XYZ] = HOMING_BACKOFF_MM;
const float backoff_mm = endstop_backoff[
#if ENABLED(DELTA)
Z_AXIS
#else
axis
#endif
];
if (backoff_mm) {
current_position[axis] -= ABS(backoff_mm) * axis_home_dir;
line_to_current_position(Z_PROBE_SPEED_FAST);
}
#endif
// Clear retracted status if homing the Z axis
#if ENABLED(FWRETRACT)
if (axis == Z_AXIS) fwretract.current_hop = 0.0;
#endif
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< homeaxis(", axis_codes[axis], ")");
} // homeaxis()
#if HAS_WORKSPACE_OFFSET
void update_workspace_offset(const AxisEnum axis) {
workspace_offset[axis] = home_offset[axis] + position_shift[axis];
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Axis ", axis_codes[axis], " home_offset = ", home_offset[axis], " position_shift = ", position_shift[axis]);
}
#endif
#if HAS_M206_COMMAND
/**
* Change the home offset for an axis.
* Also refreshes the workspace offset.
*/
void set_home_offset(const AxisEnum axis, const float v) {
home_offset[axis] = v;
update_workspace_offset(axis);
}
#endif // HAS_M206_COMMAND