1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-25 04:48:31 +00:00
MarlinFirmware/Marlin/planner.cpp
2017-02-18 04:36:41 -06:00

1492 lines
54 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* planner.cpp
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
*
*
* Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
*
* s == speed, a == acceleration, t == time, d == distance
*
* Basic definitions:
* Speed[s_, a_, t_] := s + (a*t)
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
*
* Distance to reach a specific speed with a constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
* d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
*
* Speed after a given distance of travel with constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
* m -> Sqrt[2 a d + s^2]
*
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
*
* When to start braking (di) to reach a specified destination speed (s2) after accelerating
* from initial speed s1 without ever stopping at a plateau:
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
* di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
*
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*
*/
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "Marlin.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
Planner planner;
// public:
/**
* A ring buffer of moves described in steps
*/
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head = 0, // Index of the next block to be pushed
Planner::block_buffer_tail = 0;
float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
Planner::axis_steps_per_mm[XYZE_N],
Planner::steps_to_mm[XYZE_N];
#if ENABLED(DISTINCT_E_FACTORS)
uint8_t Planner::last_extruder = 0; // Respond to extruder change
#endif
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
millis_t Planner::min_segment_time;
float Planner::min_feedrate_mm_s,
Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
Planner::min_travel_feedrate_mm_s;
#if HAS_ABL
bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled
#endif
#if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner::z_fade_height = 0.0,
Planner::inverse_z_fade_height = 0.0;
#endif
#if ENABLED(AUTOTEMP)
float Planner::autotemp_max = 250,
Planner::autotemp_min = 210,
Planner::autotemp_factor = 0.1;
bool Planner::autotemp_enabled = false;
#endif
// private:
long Planner::position[NUM_AXIS] = { 0 };
uint32_t Planner::cutoff_long;
float Planner::previous_speed[NUM_AXIS],
Planner::previous_nominal_speed;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
#endif // DISABLE_INACTIVE_EXTRUDER
#ifdef XY_FREQUENCY_LIMIT
// Old direction bits. Used for speed calculations
unsigned char Planner::old_direction_bits = 0;
// Segment times (in µs). Used for speed calculations
long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
#endif
#if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_k = LIN_ADVANCE_K,
Planner::position_float[NUM_AXIS] = { 0 };
#endif
#if ENABLED(ULTRA_LCD)
volatile uint32_t Planner::block_buffer_runtime_us = 0;
#endif
/**
* Class and Instance Methods
*/
Planner::Planner() { init(); }
void Planner::init() {
block_buffer_head = block_buffer_tail = 0;
ZERO(position);
#if ENABLED(LIN_ADVANCE)
ZERO(position_float);
#endif
ZERO(previous_speed);
previous_nominal_speed = 0.0;
#if ABL_PLANAR
bed_level_matrix.set_to_identity();
#endif
}
#define MINIMAL_STEP_RATE 120
/**
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
* by the provided factors.
*/
void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
// Limit minimal step rate (Otherwise the timer will overflow.)
NOLESS(initial_rate, MINIMAL_STEP_RATE);
NOLESS(final_rate, MINIMAL_STEP_RATE);
int32_t accel = block->acceleration_steps_per_s2,
accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort accel and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0;
}
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps + plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#if ENABLED(ADVANCE)
block->initial_advance = block->advance * sq(entry_factor);
block->final_advance = block->advance * sq(exit_factor);
#endif
}
CRITICAL_SECTION_END;
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
//inline float junction_jerk(block_t *before, block_t *after) {
// return sqrt(
// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
//}
// The kernel called by recalculate() when scanning the plan from last to first entry.
void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
if (!current || !next) return;
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
float max_entry_speed = current->max_entry_speed;
if (current->entry_speed != max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
? max_entry_speed
: min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
SBI(current->flag, BLOCK_BIT_RECALCULATE);
}
}
/**
* recalculate() needs to go over the current plan twice.
* Once in reverse and once forward. This implements the reverse pass.
*/
void Planner::reverse_pass() {
if (movesplanned() > 3) {
block_t* block[3] = { NULL, NULL, NULL };
// Make a local copy of block_buffer_tail, because the interrupt can alter it
// Is a critical section REALLY needed for a single byte change?
//CRITICAL_SECTION_START;
uint8_t tail = block_buffer_tail;
//CRITICAL_SECTION_END
uint8_t b = BLOCK_MOD(block_buffer_head - 3);
while (b != tail) {
if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break;
b = prev_block_index(b);
block[2] = block[1];
block[1] = block[0];
block[0] = &block_buffer[b];
reverse_pass_kernel(block[1], block[2]);
}
}
}
// The kernel called by recalculate() when scanning the plan from first to last entry.
void Planner::forward_pass_kernel(const block_t* previous, block_t* const current) {
if (!previous) return;
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
if (previous->entry_speed < current->entry_speed) {
float entry_speed = min(current->entry_speed,
max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
// Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
SBI(current->flag, BLOCK_BIT_RECALCULATE);
}
}
}
}
/**
* recalculate() needs to go over the current plan twice.
* Once in reverse and once forward. This implements the forward pass.
*/
void Planner::forward_pass() {
block_t* block[3] = { NULL, NULL, NULL };
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[b];
forward_pass_kernel(block[0], block[1]);
}
forward_pass_kernel(block[1], block[2]);
}
/**
* Recalculate the trapezoid speed profiles for all blocks in the plan
* according to the entry_factor for each junction. Must be called by
* recalculate() after updating the blocks.
*/
void Planner::recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
block_t *current, *next = NULL;
while (block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
// Recalculate if current block entry or exit junction speed has changed.
if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
float nom = current->nominal_speed;
calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
}
}
block_index = next_block_index(block_index);
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if (next) {
float nom = next->nominal_speed;
calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
CBI(next->flag, BLOCK_BIT_RECALCULATE);
}
}
/*
* Recalculate the motion plan according to the following algorithm:
*
* 1. Go over every block in reverse order...
*
* Calculate a junction speed reduction (block_t.entry_factor) so:
*
* a. The junction jerk is within the set limit, and
*
* b. No speed reduction within one block requires faster
* deceleration than the one, true constant acceleration.
*
* 2. Go over every block in chronological order...
*
* Dial down junction speed reduction values if:
* a. The speed increase within one block would require faster
* acceleration than the one, true constant acceleration.
*
* After that, all blocks will have an entry_factor allowing all speed changes to
* be performed using only the one, true constant acceleration, and where no junction
* jerk is jerkier than the set limit, Jerky. Finally it will:
*
* 3. Recalculate "trapezoids" for all blocks.
*/
void Planner::recalculate() {
reverse_pass();
forward_pass();
recalculate_trapezoids();
}
#if ENABLED(AUTOTEMP)
void Planner::getHighESpeed() {
static float oldt = 0;
if (!autotemp_enabled) return;
if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
float high = 0.0;
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block_t* block = &block_buffer[b];
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
NOLESS(high, se);
}
}
float t = autotemp_min + high * autotemp_factor;
t = constrain(t, autotemp_min, autotemp_max);
if (oldt > t) {
t *= (1 - (AUTOTEMP_OLDWEIGHT));
t += (AUTOTEMP_OLDWEIGHT) * oldt;
}
oldt = t;
thermalManager.setTargetHotend(t, 0);
}
#endif //AUTOTEMP
/**
* Maintain fans, paste extruder pressure,
*/
void Planner::check_axes_activity() {
unsigned char axis_active[NUM_AXIS] = { 0 },
tail_fan_speed[FAN_COUNT];
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
unsigned char tail_valve_pressure = baricuda_valve_pressure;
#endif
#if HAS_HEATER_2
unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
#endif
if (blocks_queued()) {
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
#endif
block_t* block;
#if ENABLED(BARICUDA)
block = &block_buffer[block_buffer_tail];
#if HAS_HEATER_1
tail_valve_pressure = block->valve_pressure;
#endif
#if HAS_HEATER_2
tail_e_to_p_pressure = block->e_to_p_pressure;
#endif
#endif
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block = &block_buffer[b];
LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
}
}
#if ENABLED(DISABLE_X)
if (!axis_active[X_AXIS]) disable_x();
#endif
#if ENABLED(DISABLE_Y)
if (!axis_active[Y_AXIS]) disable_y();
#endif
#if ENABLED(DISABLE_Z)
if (!axis_active[Z_AXIS]) disable_z();
#endif
#if ENABLED(DISABLE_E)
if (!axis_active[E_AXIS]) {
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
#endif
#if FAN_COUNT > 0
#if defined(FAN_MIN_PWM)
#define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
#else
#define CALC_FAN_SPEED(f) tail_fan_speed[f]
#endif
#ifdef FAN_KICKSTART_TIME
static millis_t fan_kick_end[FAN_COUNT] = { 0 };
#define KICKSTART_FAN(f) \
if (tail_fan_speed[f]) { \
millis_t ms = millis(); \
if (fan_kick_end[f] == 0) { \
fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
tail_fan_speed[f] = 255; \
} else { \
if (PENDING(ms, fan_kick_end[f])) { \
tail_fan_speed[f] = 255; \
} \
} \
} else { \
fan_kick_end[f] = 0; \
}
#if HAS_FAN0
KICKSTART_FAN(0);
#endif
#if HAS_FAN1
KICKSTART_FAN(1);
#endif
#if HAS_FAN2
KICKSTART_FAN(2);
#endif
#endif //FAN_KICKSTART_TIME
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
#endif
#if HAS_FAN1
thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
#endif
#if HAS_FAN2
thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
#endif
#else
#if HAS_FAN0
analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
#endif
#if HAS_FAN1
analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
#endif
#if HAS_FAN2
analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
#endif
#endif
#endif // FAN_COUNT > 0
#if ENABLED(AUTOTEMP)
getHighESpeed();
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
analogWrite(HEATER_1_PIN, tail_valve_pressure);
#endif
#if HAS_HEATER_2
analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
#endif
#endif
}
#if PLANNER_LEVELING
/**
* lx, ly, lz - logical (cartesian, not delta) positions in mm
*/
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
#if HAS_ABL
if (!abl_enabled) return;
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float z_fade_factor = 1.0, last_raw_lz = -999.0;
if (z_fade_height) {
const float raw_lz = RAW_Z_POSITION(lz);
if (raw_lz >= z_fade_height) return;
if (last_raw_lz != raw_lz) {
last_raw_lz = raw_lz;
z_fade_factor = 1.0 - raw_lz * inverse_z_fade_height;
}
}
else
z_fade_factor = 1.0;
#endif
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active())
lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, z_fade_factor
#endif
);
#elif ABL_PLANAR
float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
dz = RAW_Z_POSITION(lz);
apply_rotation_xyz(bed_level_matrix, dx, dy, dz);
lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
lz = LOGICAL_Z_POSITION(dz);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
float tmp[XYZ] = { lx, ly, 0 };
lz += bilinear_z_offset(tmp)
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
* z_fade_factor
#endif
;
#endif
}
void Planner::unapply_leveling(float logical[XYZ]) {
#if HAS_ABL
if (!abl_enabled) return;
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (z_fade_height && RAW_Z_POSITION(logical[Z_AXIS]) >= z_fade_height) return;
#endif
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active()) {
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]), 1.0);
logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
#else
logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
#endif
}
#elif ABL_PLANAR
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
dz = RAW_Z_POSITION(logical[Z_AXIS]);
apply_rotation_xyz(inverse, dx, dy, dz);
logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = bilinear_z_offset(logical);
logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
#else
logical[Z_AXIS] -= bilinear_z_offset(logical);
#endif
#endif
}
#endif // PLANNER_LEVELING
/**
* Planner::_buffer_line
*
* Add a new linear movement to the buffer.
*
* Leveling and kinematics should be applied ahead of calling this.
*
* a,b,c,e - target positions in mm or degrees
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
const long target[XYZE] = {
lround(a * axis_steps_per_mm[X_AXIS]),
lround(b * axis_steps_per_mm[Y_AXIS]),
lround(c * axis_steps_per_mm[Z_AXIS]),
lround(e * axis_steps_per_mm[E_AXIS_N])
};
// When changing extruders recalculate steps corresponding to the E position
#if ENABLED(DISTINCT_E_FACTORS)
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
position[E_AXIS] = lround(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
last_extruder = extruder;
}
#endif
#if ENABLED(LIN_ADVANCE)
const float mm_D_float = sqrt(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
#endif
const long da = target[X_AXIS] - position[X_AXIS],
db = target[Y_AXIS] - position[Y_AXIS],
dc = target[Z_AXIS] - position[Z_AXIS];
/*
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
SERIAL_CHAR(' ');
#if IS_KINEMATIC
SERIAL_ECHOPAIR("A:", a);
SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOPAIR(") B:", b);
#else
SERIAL_ECHOPAIR("X:", a);
SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOPAIR(") Y:", b);
#endif
SERIAL_ECHOPAIR(" (", db);
#if ENABLED(DELTA)
SERIAL_ECHOPAIR(") C:", c);
#else
SERIAL_ECHOPAIR(") Z:", c);
#endif
SERIAL_ECHOPAIR(" (", dc);
SERIAL_CHAR(')');
SERIAL_EOL;
//*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (DEBUGGING(DRYRUN)) {
position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
#endif
}
long de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(LIN_ADVANCE)
float de_float = e - position_float[E_AXIS];
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (de) {
if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
#endif
// Compute direction bit-mask for this block
uint8_t dm = 0;
#if CORE_IS_XY
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
if (dc < 0) SBI(dm, Z_AXIS);
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
#elif CORE_IS_XZ
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
#elif CORE_IS_YZ
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
#else
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_AXIS);
#endif
if (de < 0) SBI(dm, E_AXIS);
const float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01;
const int32_t esteps = abs(esteps_float) + 0.5;
// Calculate the buffer head after we push this byte
const uint8_t next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle();
// Prepare to set up new block
block_t* block = &block_buffer[block_buffer_head];
// Clear all flags, including the "busy" bit
block->flag = 0;
// Set direction bits
block->direction_bits = dm;
// Number of steps for each axis
// See http://www.corexy.com/theory.html
#if CORE_IS_XY
block->steps[A_AXIS] = labs(da + db);
block->steps[B_AXIS] = labs(da - db);
block->steps[Z_AXIS] = labs(dc);
#elif CORE_IS_XZ
block->steps[A_AXIS] = labs(da + dc);
block->steps[Y_AXIS] = labs(db);
block->steps[C_AXIS] = labs(da - dc);
#elif CORE_IS_YZ
block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc);
#else
// default non-h-bot planning
block->steps[X_AXIS] = labs(da);
block->steps[Y_AXIS] = labs(db);
block->steps[Z_AXIS] = labs(dc);
#endif
block->steps[E_AXIS] = esteps;
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
// For a mixing extruder, get a magnified step_event_count for each
#if ENABLED(MIXING_EXTRUDER)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
#endif
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
block->valve_pressure = baricuda_valve_pressure;
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
block->active_extruder = extruder;
//enable active axes
#if CORE_IS_XY
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
enable_x();
enable_y();
}
#if DISABLED(Z_LATE_ENABLE)
if (block->steps[Z_AXIS]) enable_z();
#endif
#elif CORE_IS_XZ
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
enable_x();
enable_z();
}
if (block->steps[Y_AXIS]) enable_y();
#elif CORE_IS_YZ
if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
enable_y();
enable_z();
}
if (block->steps[X_AXIS]) enable_x();
#else
if (block->steps[X_AXIS]) enable_x();
if (block->steps[Y_AXIS]) enable_y();
#if DISABLED(Z_LATE_ENABLE)
if (block->steps[Z_AXIS]) enable_z();
#endif
#endif
// Enable extruder(s)
if (esteps) {
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
for (uint8_t i = 0; i < EXTRUDERS; i++)
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
switch(extruder) {
case 0:
enable_e0();
#if ENABLED(DUAL_X_CARRIAGE)
if (extruder_duplication_enabled) {
enable_e1();
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
}
#endif
g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
#if EXTRUDERS > 1
if (g_uc_extruder_last_move[1] == 0) disable_e1();
#if EXTRUDERS > 2
if (g_uc_extruder_last_move[2] == 0) disable_e2();
#if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
#endif
#endif
#endif
break;
#if EXTRUDERS > 1
case 1:
enable_e1();
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
if (g_uc_extruder_last_move[0] == 0) disable_e0();
#if EXTRUDERS > 2
if (g_uc_extruder_last_move[2] == 0) disable_e2();
#if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
#endif
#endif
break;
#if EXTRUDERS > 2
case 2:
enable_e2();
g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
if (g_uc_extruder_last_move[0] == 0) disable_e0();
if (g_uc_extruder_last_move[1] == 0) disable_e1();
#if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
#endif
break;
#if EXTRUDERS > 3
case 3:
enable_e3();
g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
if (g_uc_extruder_last_move[0] == 0) disable_e0();
if (g_uc_extruder_last_move[1] == 0) disable_e1();
if (g_uc_extruder_last_move[2] == 0) disable_e2();
break;
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
}
#else
enable_e0();
enable_e1();
enable_e2();
enable_e3();
#endif
}
if (esteps)
NOLESS(fr_mm_s, min_feedrate_mm_s);
else
NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
/**
* This part of the code calculates the total length of the movement.
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
*/
#if IS_CORE
float delta_mm[7];
#if CORE_IS_XY
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
#elif CORE_IS_XZ
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
#elif CORE_IS_YZ
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
#endif
#else
float delta_mm[4];
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
#endif
delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
block->millimeters = fabs(delta_mm[E_AXIS]);
}
else {
block->millimeters = sqrt(
#if CORE_IS_XY
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
#elif CORE_IS_XZ
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
#elif CORE_IS_YZ
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
#else
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
#endif
);
}
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate moves/second for this move. No divide by zero due to previous checks.
float inverse_mm_s = fr_mm_s * inverse_millimeters;
const uint8_t moves_queued = movesplanned();
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
#if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
#endif
#if ENABLED(SLOWDOWN)
// Segment time im micro seconds
if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2) {
if (segment_time < min_segment_time) {
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
#if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
segment_time = lround(1000000.0 / inverse_mm_s);
#endif
}
}
#endif
#if ENABLED(ULTRA_LCD)
CRITICAL_SECTION_START
block_buffer_runtime_us += segment_time;
CRITICAL_SECTION_END
#endif
block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
//FMM update ring buffer used for delay with filament measurements
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
// increment counters with next move in e axis
filwidth_e_count += delta_mm[E_AXIS];
filwidth_delay_dist += delta_mm[E_AXIS];
// Only get new measurements on forward E movement
if (filwidth_e_count > 0.0001) {
// Loop the delay distance counter (modulus by the mm length)
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
// Convert into an index into the measurement array
filwidth_delay_index[0] = (int)(filwidth_delay_dist * 0.1 + 0.0001);
// If the index has changed (must have gone forward)...
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
filwidth_e_count = 0; // Reset the E movement counter
const int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
do {
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
} while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
}
}
}
#endif
// Calculate and limit speed in mm/sec for each axis
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
LOOP_XYZE(i) {
const float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
}
// Max segment time in µs.
#ifdef XY_FREQUENCY_LIMIT
// Check and limit the xy direction change frequency
const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits;
segment_time = lround((float)segment_time / speed_factor);
long xs0 = axis_segment_time[X_AXIS][0],
xs1 = axis_segment_time[X_AXIS][1],
xs2 = axis_segment_time[X_AXIS][2],
ys0 = axis_segment_time[Y_AXIS][0],
ys1 = axis_segment_time[Y_AXIS][1],
ys2 = axis_segment_time[Y_AXIS][2];
if (TEST(direction_change, X_AXIS)) {
xs2 = axis_segment_time[X_AXIS][2] = xs1;
xs1 = axis_segment_time[X_AXIS][1] = xs0;
xs0 = 0;
}
xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
if (TEST(direction_change, Y_AXIS)) {
ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
ys0 = 0;
}
ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
const long max_x_segment_time = MAX3(xs0, xs1, xs2),
max_y_segment_time = MAX3(ys0, ys1, ys2),
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
if (min_xy_segment_time < MAX_FREQ_TIME) {
const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
NOMORE(speed_factor, low_sf);
}
#endif // XY_FREQUENCY_LIMIT
// Correct the speed
if (speed_factor < 1.0) {
LOOP_XYZE(i) current_speed[i] *= speed_factor;
block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
const float steps_per_mm = block->step_event_count * inverse_millimeters;
uint32_t accel;
if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
// convert to: acceleration steps/sec^2
accel = ceil(retract_acceleration * steps_per_mm);
}
else {
#define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
} \
}while(0)
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
} \
}while(0)
// Start with print or travel acceleration
accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
// Limit acceleration per axis
if (block->step_event_count <= cutoff_long) {
LIMIT_ACCEL_LONG(X_AXIS,0);
LIMIT_ACCEL_LONG(Y_AXIS,0);
LIMIT_ACCEL_LONG(Z_AXIS,0);
LIMIT_ACCEL_LONG(E_AXIS,extruder);
}
else {
LIMIT_ACCEL_FLOAT(X_AXIS,0);
LIMIT_ACCEL_FLOAT(Y_AXIS,0);
LIMIT_ACCEL_FLOAT(Z_AXIS,0);
LIMIT_ACCEL_FLOAT(E_AXIS,extruder);
}
}
block->acceleration_steps_per_s2 = accel;
block->acceleration = accel / steps_per_mm;
block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
// Initial limit on the segment entry velocity
float vmax_junction;
#if 0 // Use old jerk for now
float junction_deviation = 0.1;
// Compute path unit vector
double unit_vec[XYZ] = {
delta_mm[X_AXIS] * inverse_millimeters,
delta_mm[Y_AXIS] * inverse_millimeters,
delta_mm[Z_AXIS] * inverse_millimeters
};
/*
Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
Let a circle be tangent to both previous and current path line segments, where the junction
deviation is defined as the distance from the junction to the closest edge of the circle,
collinear with the circle center.
The circular segment joining the two paths represents the path of centripetal acceleration.
Solve for max velocity based on max acceleration about the radius of the circle, defined
indirectly by junction deviation.
This may be also viewed as path width or max_jerk in the previous grbl version. This approach
does not actually deviate from path, but used as a robust way to compute cornering speeds, as
it takes into account the nonlinearities of both the junction angle and junction velocity.
*/
vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed, block->nominal_speed);
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
if (cos_theta > -0.95) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation
float sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
}
}
}
#endif
/**
* Adapted from Prusa MKS firmware
*
* Start with a safe speed (from which the machine may halt to stop immediately).
*/
// Exit speed limited by a jerk to full halt of a previous last segment
static float previous_safe_speed;
float safe_speed = block->nominal_speed;
uint8_t limited = 0;
LOOP_XYZE(i) {
const float jerk = fabs(current_speed[i]), maxj = max_jerk[i];
if (jerk > maxj) {
if (limited) {
const float mjerk = maxj * block->nominal_speed;
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
}
else {
++limited;
safe_speed = maxj;
}
}
}
if (moves_queued > 1 && previous_nominal_speed > 0.0001) {
// Estimate a maximum velocity allowed at a joint of two successive segments.
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1.f;
limited = 0;
// Now limit the jerk in all axes.
LOOP_XYZE(axis) {
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
float v_exit = previous_speed[axis], v_entry = current_speed[axis];
if (prev_speed_larger) v_exit *= smaller_speed_factor;
if (limited) {
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
const float jerk = (v_exit > v_entry)
? // coasting axis reversal
( (v_entry > 0.f || v_exit < 0.f) ? (v_exit - v_entry) : max(v_exit, -v_entry) )
: // v_exit <= v_entry coasting axis reversal
( (v_entry < 0.f || v_exit > 0.f) ? (v_entry - v_exit) : max(-v_exit, v_entry) );
if (jerk > max_jerk[axis]) {
v_factor *= max_jerk[axis] / jerk;
++limited;
}
}
if (limited) vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
const float vmax_junction_threshold = vmax_junction * 0.99f;
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
// Not coasting. The machine will stop and start the movements anyway,
// better to start the segment from start.
SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
vmax_junction = safe_speed;
}
}
else {
SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
vmax_junction = safe_speed;
}
// Max entry speed of this block equals the max exit speed of the previous block.
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
// Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed));
previous_nominal_speed = block->nominal_speed;
previous_safe_speed = safe_speed;
#if ENABLED(LIN_ADVANCE)
//
// Use LIN_ADVANCE for blocks if all these are true:
//
// esteps : We have E steps todo (a printing move)
//
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
//
// extruder_advance_k : There is an advance factor set.
//
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
// In that case, the retract and move will be executed together.
// This leads to too many advance steps due to a huge e_acceleration.
// The math is good, but we must avoid retract moves with advance!
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
//
block->use_advance_lead = esteps
&& (block->steps[X_AXIS] || block->steps[Y_AXIS])
&& extruder_advance_k
&& (uint32_t)esteps != block->step_event_count
&& de_float > 0.0;
if (block->use_advance_lead)
block->abs_adv_steps_multiplier8 = lround(extruder_advance_k * (de_float / mm_D_float) * block->nominal_speed / (float)block->nominal_rate * axis_steps_per_mm[E_AXIS_N] * 256.0);
#elif ENABLED(ADVANCE)
// Calculate advance rate
if (esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS])) {
const long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
const float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256;
block->advance = advance;
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
}
else
block->advance_rate = block->advance = 0;
/**
SERIAL_ECHO_START;
SERIAL_ECHOPGM("advance :");
SERIAL_ECHO(block->advance/256.0);
SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0);
*/
#endif // ADVANCE or LIN_ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
// Move buffer head
block_buffer_head = next_buffer_head;
// Update the position (only when a move was queued)
memcpy(position, target, sizeof(position));
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
recalculate();
stepper.wake_up();
} // buffer_line()
/**
* Directly set the planner XYZ position (and stepper positions)
* converting mm (or angles for SCARA) into steps.
*
* On CORE machines stepper ABC will be translated from the given XYZ.
*/
void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
#if ENABLED(DISTINCT_E_FACTORS)
#define _EINDEX (E_AXIS + active_extruder)
last_extruder = active_extruder;
#else
#define _EINDEX E_AXIS
#endif
long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
stepper.set_position(na, nb, nc, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
ZERO(previous_speed);
}
void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
#if PLANNER_LEVELING
float lpos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
apply_leveling(lpos);
#else
const float * const lpos = position;
#endif
#if IS_KINEMATIC
inverse_kinematics(lpos);
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
#else
_set_position_mm(lpos[X_AXIS], lpos[Y_AXIS], lpos[Z_AXIS], position[E_AXIS]);
#endif
}
/**
* Sync from the stepper positions. (e.g., after an interrupted move)
*/
void Planner::sync_from_steppers() {
LOOP_XYZE(i) {
position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE)
position_float[i] = position[i] * steps_to_mm[i
#if ENABLED(DISTINCT_E_FACTORS)
+ (i == E_AXIS ? active_extruder : 0)
#endif
];
#endif
}
}
/**
* Setters for planner position (also setting stepper position).
*/
void Planner::set_position_mm(const AxisEnum axis, const float& v) {
#if ENABLED(DISTINCT_E_FACTORS)
const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
last_extruder = active_extruder;
#else
const uint8_t axis_index = axis;
#endif
position[axis] = lround(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE)
position_float[axis] = v;
#endif
stepper.set_position(axis, v);
previous_speed[axis] = 0.0;
}
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner::reset_acceleration_rates() {
#if ENABLED(DISTINCT_E_FACTORS)
#define HIGHEST_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
#else
#define HIGHEST_CONDITION true
#endif
uint32_t highest_rate = 1;
LOOP_XYZE_N(i) {
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
if (HIGHEST_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
}
cutoff_long = 4294967295UL / highest_rate;
}
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
void Planner::refresh_positioning() {
LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
set_position_mm_kinematic(current_position);
reset_acceleration_rates();
}
#if ENABLED(AUTOTEMP)
void Planner::autotemp_M104_M109() {
autotemp_enabled = code_seen('F');
if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
if (code_seen('S')) autotemp_min = code_value_temp_abs();
if (code_seen('B')) autotemp_max = code_value_temp_abs();
}
#endif
#if ENABLED(LIN_ADVANCE)
void Planner::advance_M905(const float &k) {
if (k >= 0.0) extruder_advance_k = k;
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
SERIAL_EOL;
}
#endif