1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-25 04:48:31 +00:00
MarlinFirmware/Marlin/temperature.cpp
Sebastianv650 271ced7341 Prevent re-entering of temperature ISR
If Marlin is inside the temperature ISR, the stepper ISR is enabled. If
a stepper event is now happening Marlin will proceed with the stepper
ISR. Now, at the end of the stepper ISR, the temperatre ISR gets enabled
again. While Marlin proceed the rest of the temperature ISR, it's now
vulnerable to a second ISR call.
2017-02-14 07:52:03 -06:00

1963 lines
60 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* temperature.cpp - temperature control
*/
#include "Marlin.h"
#include "ultralcd.h"
#include "temperature.h"
#include "thermistortables.h"
#include "language.h"
#if ENABLED(BABYSTEPPING)
#include "stepper.h"
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
#include "endstops.h"
#endif
#if ENABLED(USE_WATCHDOG)
#include "watchdog.h"
#endif
#ifdef K1 // Defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE);
static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN);
#endif
Temperature thermalManager;
// public:
float Temperature::current_temperature[HOTENDS] = { 0.0 },
Temperature::current_temperature_bed = 0.0;
int Temperature::current_temperature_raw[HOTENDS] = { 0 },
Temperature::target_temperature[HOTENDS] = { 0 },
Temperature::current_temperature_bed_raw = 0,
Temperature::target_temperature_bed = 0;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
float Temperature::redundant_temperature = 0.0;
#endif
uint8_t Temperature::soft_pwm_bed;
#if ENABLED(FAN_SOFT_PWM)
uint8_t Temperature::fanSpeedSoftPwm[FAN_COUNT];
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp),
Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)),
Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT));
#if ENABLED(PID_EXTRUSION_SCALING)
float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc);
#endif
#else
float Temperature::Kp = DEFAULT_Kp,
Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
#if ENABLED(PID_EXTRUSION_SCALING)
float Temperature::Kc = DEFAULT_Kc;
#endif
#endif
#endif
#if ENABLED(PIDTEMPBED)
float Temperature::bedKp = DEFAULT_bedKp,
Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
#endif
#if ENABLED(BABYSTEPPING)
volatile int Temperature::babystepsTodo[XYZ] = { 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
int Temperature::watch_target_temp[HOTENDS] = { 0 };
millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
int Temperature::watch_target_bed_temp = 0;
millis_t Temperature::watch_bed_next_ms = 0;
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
bool Temperature::allow_cold_extrude = false;
float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
#endif
// private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
int Temperature::redundant_temperature_raw = 0;
float Temperature::redundant_temperature = 0.0;
#endif
volatile bool Temperature::temp_meas_ready = false;
#if ENABLED(PIDTEMP)
float Temperature::temp_iState[HOTENDS] = { 0 },
Temperature::temp_dState[HOTENDS] = { 0 },
Temperature::pTerm[HOTENDS],
Temperature::iTerm[HOTENDS],
Temperature::dTerm[HOTENDS];
#if ENABLED(PID_EXTRUSION_SCALING)
float Temperature::cTerm[HOTENDS];
long Temperature::last_e_position;
long Temperature::lpq[LPQ_MAX_LEN];
int Temperature::lpq_ptr = 0;
#endif
float Temperature::pid_error[HOTENDS];
bool Temperature::pid_reset[HOTENDS];
#endif
#if ENABLED(PIDTEMPBED)
float Temperature::temp_iState_bed = { 0 },
Temperature::temp_dState_bed = { 0 },
Temperature::pTerm_bed,
Temperature::iTerm_bed,
Temperature::dTerm_bed,
Temperature::pid_error_bed;
#else
millis_t Temperature::next_bed_check_ms;
#endif
unsigned long Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
unsigned long Temperature::raw_temp_bed_value = 0;
// Init min and max temp with extreme values to prevent false errors during startup
int Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP),
Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP),
Temperature::minttemp[HOTENDS] = { 0 },
Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
int Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
unsigned long Temperature::preheat_end_time[HOTENDS] = { 0 };
#endif
#ifdef BED_MINTEMP
int Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
int Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int Temperature::meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN
millis_t Temperature::next_auto_fan_check_ms = 0;
#endif
uint8_t Temperature::soft_pwm[HOTENDS];
#if ENABLED(FAN_SOFT_PWM)
uint8_t Temperature::soft_pwm_fan[FAN_COUNT];
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif
#if HAS_PID_HEATING
void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
float input = 0.0;
int cycles = 0;
bool heating = true;
millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
long t_high = 0, t_low = 0;
long bias, d;
float Ku, Tu;
float workKp = 0, workKi = 0, workKd = 0;
float max = 0, min = 10000;
#if HAS_AUTO_FAN
next_auto_fan_check_ms = temp_ms + 2500UL;
#endif
if (hotend >=
#if ENABLED(PIDTEMP)
HOTENDS
#else
0
#endif
|| hotend <
#if ENABLED(PIDTEMPBED)
-1
#else
0
#endif
) {
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
return;
}
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_all_heaters(); // switch off all heaters.
#if HAS_PID_FOR_BOTH
if (hotend < 0)
soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
else
soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
#elif ENABLED(PIDTEMP)
soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
#else
soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
#endif
wait_for_heatup = true;
// PID Tuning loop
while (wait_for_heatup) {
millis_t ms = millis();
if (temp_meas_ready) { // temp sample ready
updateTemperaturesFromRawValues();
input =
#if HAS_PID_FOR_BOTH
hotend < 0 ? current_temperature_bed : current_temperature[hotend]
#elif ENABLED(PIDTEMP)
current_temperature[hotend]
#else
current_temperature_bed
#endif
;
NOLESS(max, input);
NOMORE(min, input);
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) {
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
if (heating && input > temp) {
if (ELAPSED(ms, t2 + 5000UL)) {
heating = false;
#if HAS_PID_FOR_BOTH
if (hotend < 0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[hotend] = (bias - d) >> 1;
#elif ENABLED(PIDTEMP)
soft_pwm[hotend] = (bias - d) >> 1;
#elif ENABLED(PIDTEMPBED)
soft_pwm_bed = (bias - d) >> 1;
#endif
t1 = ms;
t_high = t1 - t2;
max = temp;
}
}
if (!heating && input < temp) {
if (ELAPSED(ms, t1 + 5000UL)) {
heating = true;
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
long max_pow =
#if HAS_PID_FOR_BOTH
hotend < 0 ? MAX_BED_POWER : PID_MAX
#elif ENABLED(PIDTEMP)
PID_MAX
#else
MAX_BED_POWER
#endif
;
bias += (d * (t_high - t_low)) / (t_low + t_high);
bias = constrain(bias, 20, max_pow - 20);
d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
SERIAL_PROTOCOLPAIR(MSG_D, d);
SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
if (cycles > 2) {
Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
Tu = ((float)(t_low + t_high) * 0.001);
SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
workKp = 0.6 * Ku;
workKi = 2 * workKp / Tu;
workKd = workKp * Tu * 0.125;
SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
/**
workKp = 0.33*Ku;
workKi = workKp/Tu;
workKd = workKp*Tu/3;
SERIAL_PROTOCOLLNPGM(" Some overshoot");
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
workKp = 0.2*Ku;
workKi = 2*workKp/Tu;
workKd = workKp*Tu/3;
SERIAL_PROTOCOLLNPGM(" No overshoot");
SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
*/
}
}
#if HAS_PID_FOR_BOTH
if (hotend < 0)
soft_pwm_bed = (bias + d) >> 1;
else
soft_pwm[hotend] = (bias + d) >> 1;
#elif ENABLED(PIDTEMP)
soft_pwm[hotend] = (bias + d) >> 1;
#else
soft_pwm_bed = (bias + d) >> 1;
#endif
cycles++;
min = temp;
}
}
}
#define MAX_OVERSHOOT_PID_AUTOTUNE 20
if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
return;
}
// Every 2 seconds...
if (ELAPSED(ms, temp_ms + 2000UL)) {
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
print_heaterstates();
SERIAL_EOL;
#endif
temp_ms = ms;
} // every 2 seconds
// Over 2 minutes?
if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
return;
}
if (cycles > ncycles) {
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
#if HAS_PID_FOR_BOTH
const char* estring = hotend < 0 ? "bed" : "";
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL;
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL;
SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL;
#elif ENABLED(PIDTEMP)
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL;
SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL;
SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL;
#else
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL;
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL;
SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL;
#endif
#define _SET_BED_PID() do { \
bedKp = workKp; \
bedKi = scalePID_i(workKi); \
bedKd = scalePID_d(workKd); \
updatePID(); } while(0)
#define _SET_EXTRUDER_PID() do { \
PID_PARAM(Kp, hotend) = workKp; \
PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
updatePID(); } while(0)
// Use the result? (As with "M303 U1")
if (set_result) {
#if HAS_PID_FOR_BOTH
if (hotend < 0)
_SET_BED_PID();
else
_SET_EXTRUDER_PID();
#elif ENABLED(PIDTEMP)
_SET_EXTRUDER_PID();
#else
_SET_BED_PID();
#endif
}
return;
}
lcd_update();
}
if (!wait_for_heatup) disable_all_heaters();
}
#endif // HAS_PID_HEATING
/**
* Class and Instance Methods
*/
Temperature::Temperature() { }
void Temperature::updatePID() {
#if ENABLED(PIDTEMP)
#if ENABLED(PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
#endif
}
int Temperature::getHeaterPower(int heater) {
return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
}
#if HAS_AUTO_FAN
void Temperature::checkExtruderAutoFans() {
const int8_t fanPin[] = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN };
const int fanBit[] = {
0,
AUTO_1_IS_0 ? 0 : 1,
AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3
};
uint8_t fanState = 0;
HOTEND_LOOP() {
if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, fanBit[e]);
}
uint8_t fanDone = 0;
for (uint8_t f = 0; f < COUNT(fanPin); f++) {
int8_t pin = fanPin[f];
if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
uint8_t newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling).
digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed);
SBI(fanDone, fanBit[f]);
}
}
}
#endif // HAS_AUTO_FAN
//
// Temperature Error Handlers
//
void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
static bool killed = false;
if (IsRunning()) {
SERIAL_ERROR_START;
serialprintPGM(serial_msg);
SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
}
#if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
if (!killed) {
Running = false;
killed = true;
kill(lcd_msg);
}
else
disable_all_heaters(); // paranoia
#endif
}
void Temperature::max_temp_error(int8_t e) {
#if HAS_TEMP_BED
_temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
#else
_temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
#if HOTENDS == 1
UNUSED(e);
#endif
#endif
}
void Temperature::min_temp_error(int8_t e) {
#if HAS_TEMP_BED
_temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
#else
_temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
#if HOTENDS == 1
UNUSED(e);
#endif
#endif
}
float Temperature::get_pid_output(int e) {
#if HOTENDS == 1
UNUSED(e);
#define _HOTEND_TEST true
#else
#define _HOTEND_TEST e == active_extruder
#endif
float pid_output;
#if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP)
pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[HOTEND_INDEX] = true;
}
else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
pid_output = 0;
pid_reset[HOTEND_INDEX] = true;
}
else {
if (pid_reset[HOTEND_INDEX]) {
temp_iState[HOTEND_INDEX] = 0.0;
pid_reset[HOTEND_INDEX] = false;
}
pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
#if ENABLED(PID_EXTRUSION_SCALING)
cTerm[HOTEND_INDEX] = 0;
if (_HOTEND_TEST) {
long e_position = stepper.position(E_AXIS);
if (e_position > last_e_position) {
lpq[lpq_ptr] = e_position - last_e_position;
last_e_position = e_position;
}
else {
lpq[lpq_ptr] = 0;
}
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
pid_output += cTerm[HOTEND_INDEX];
}
#endif // PID_EXTRUSION_SCALING
if (pid_output > PID_MAX) {
if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = 0;
}
}
#else
pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
#endif //PID_OPENLOOP
#if ENABLED(PID_DEBUG)
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
#endif
SERIAL_EOL;
#endif //PID_DEBUG
#else /* PID off */
pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
#endif
return pid_output;
}
#if ENABLED(PIDTEMPBED)
float Temperature::get_pid_output_bed() {
float pid_output;
#if DISABLED(PID_OPENLOOP)
pid_error_bed = target_temperature_bed - current_temperature_bed;
pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
iTerm_bed = bedKi * temp_iState_bed;
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
temp_dState_bed = current_temperature_bed;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = MAX_BED_POWER;
}
else if (pid_output < 0) {
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = 0;
}
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
#if ENABLED(PID_BED_DEBUG)
SERIAL_ECHO_START;
SERIAL_ECHOPGM(" PID_BED_DEBUG ");
SERIAL_ECHOPGM(": Input ");
SERIAL_ECHO(current_temperature_bed);
SERIAL_ECHOPGM(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHOPGM(" pTerm ");
SERIAL_ECHO(pTerm_bed);
SERIAL_ECHOPGM(" iTerm ");
SERIAL_ECHO(iTerm_bed);
SERIAL_ECHOPGM(" dTerm ");
SERIAL_ECHOLN(dTerm_bed);
#endif //PID_BED_DEBUG
return pid_output;
}
#endif //PIDTEMPBED
/**
* Manage heating activities for extruder hot-ends and a heated bed
* - Acquire updated temperature readings
* - Also resets the watchdog timer
* - Invoke thermal runaway protection
* - Manage extruder auto-fan
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
void Temperature::manage_heater() {
if (!temp_meas_ready) return;
updateTemperaturesFromRawValues(); // also resets the watchdog
#if ENABLED(HEATER_0_USES_MAX6675)
if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1)) max_temp_error(0);
if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
#endif
#if (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0) || (ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0) || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
millis_t ms = millis();
#endif
// Loop through all hotends
HOTEND_LOOP() {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif
float pid_output = get_pid_output(e);
// Check if temperature is within the correct range
soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
// Check if the temperature is failing to increase
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
// Is it time to check this extruder's heater?
if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
// Has it failed to increase enough?
if (degHotend(e) < watch_target_temp[e]) {
// Stop!
_temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
}
else {
// Start again if the target is still far off
start_watching_heater(e);
}
}
#endif // THERMAL_PROTECTION_HOTENDS
// Check if the temperature is failing to increase
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
// Is it time to check the bed?
if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
// Has it failed to increase enough?
if (degBed() < watch_target_bed_temp) {
// Stop!
_temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
}
else {
// Start again if the target is still far off
start_watching_bed();
}
}
#endif // THERMAL_PROTECTION_HOTENDS
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
_temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
}
#endif
} // HOTEND_LOOP
#if HAS_AUTO_FAN
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
checkExtruderAutoFans();
next_auto_fan_check_ms = ms + 2500UL;
}
#endif
// Control the extruder rate based on the width sensor
#if ENABLED(FILAMENT_WIDTH_SENSOR)
if (filament_sensor) {
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
float vm = pow((measurement_delay[meas_shift_index] + 100.0) * 0.01, 2);
NOLESS(vm, 0.01);
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
}
#endif //FILAMENT_WIDTH_SENSOR
#if DISABLED(PIDTEMPBED)
if (PENDING(ms, next_bed_check_ms)) return;
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
#endif
#if TEMP_SENSOR_BED != 0
#if HAS_THERMALLY_PROTECTED_BED
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif
#if ENABLED(PIDTEMPBED)
float pid_output = get_pid_output_bed();
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
#elif ENABLED(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct band
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
soft_pwm_bed = MAX_BED_POWER >> 1;
}
else {
soft_pwm_bed = 0;
WRITE_HEATER_BED(LOW);
}
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
// Check if temperature is within the correct range
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
}
else {
soft_pwm_bed = 0;
WRITE_HEATER_BED(LOW);
}
#endif
#endif //TEMP_SENSOR_BED != 0
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float Temperature::analog2temp(int raw, uint8_t e) {
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (e > HOTENDS)
#else
if (e >= HOTENDS)
#endif
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
kill(PSTR(MSG_KILLED));
return 0.0;
}
#if ENABLED(HEATER_0_USES_MAX6675)
if (e == 0) return 0.25 * raw;
#endif
if (heater_ttbl_map[e] != NULL) {
float celsius = 0;
uint8_t i;
short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
for (i = 1; i < heater_ttbllen_map[e]; i++) {
if (PGM_RD_W((*tt)[i][0]) > raw) {
celsius = PGM_RD_W((*tt)[i - 1][1]) +
(raw - PGM_RD_W((*tt)[i - 1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float Temperature::analog2tempBed(int raw) {
#if ENABLED(BED_USES_THERMISTOR)
float celsius = 0;
byte i;
for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
return celsius;
#elif defined(BED_USES_AD595)
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
#else
UNUSED(raw);
return 0;
#endif
}
/**
* Get the raw values into the actual temperatures.
* The raw values are created in interrupt context,
* and this function is called from normal context
* as it would block the stepper routine.
*/
void Temperature::updateTemperaturesFromRawValues() {
#if ENABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = read_max6675();
#endif
HOTEND_LOOP()
current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
filament_width_meas = analog2widthFil();
#endif
#if ENABLED(USE_WATCHDOG)
// Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
#endif
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
}
#if ENABLED(FILAMENT_WIDTH_SENSOR)
// Convert raw Filament Width to millimeters
float Temperature::analog2widthFil() {
return current_raw_filwidth / 16383.0 * 5.0;
//return current_raw_filwidth;
}
// Convert raw Filament Width to a ratio
int Temperature::widthFil_to_size_ratio() {
float temp = filament_width_meas;
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else NOMORE(temp, MEASURED_UPPER_LIMIT);
return filament_width_nominal / temp * 100;
}
#endif
/**
* Initialize the temperature manager
* The manager is implemented by periodic calls to manage_heater()
*/
void Temperature::init() {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR = _BV(JTD);
MCUCR = _BV(JTD);
#endif
// Finish init of mult hotend arrays
HOTEND_LOOP() maxttemp[e] = maxttemp[0];
#if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
#if HAS_HEATER_0
SET_OUTPUT(HEATER_0_PIN);
#endif
#if HAS_HEATER_1
SET_OUTPUT(HEATER_1_PIN);
#endif
#if HAS_HEATER_2
SET_OUTPUT(HEATER_2_PIN);
#endif
#if HAS_HEATER_3
SET_OUTPUT(HEATER_3_PIN);
#endif
#if HAS_HEATER_BED
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if HAS_FAN0
SET_OUTPUT(FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#if ENABLED(FAN_SOFT_PWM)
soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
#endif
#endif
#if HAS_FAN1
SET_OUTPUT(FAN1_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#if ENABLED(FAN_SOFT_PWM)
soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
#endif
#endif
#if HAS_FAN2
SET_OUTPUT(FAN2_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#if ENABLED(FAN_SOFT_PWM)
soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
#endif
#endif
#if ENABLED(HEATER_0_USES_MAX6675)
OUT_WRITE(SCK_PIN, LOW);
OUT_WRITE(MOSI_PIN, HIGH);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN, HIGH);
OUT_WRITE(SS_PIN, HIGH);
OUT_WRITE(MAX6675_SS, HIGH);
#endif //HEATER_0_USES_MAX6675
#ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
#else
#define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
#endif
// Set analog inputs
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
#if HAS_TEMP_0
ANALOG_SELECT(TEMP_0_PIN);
#endif
#if HAS_TEMP_1
ANALOG_SELECT(TEMP_1_PIN);
#endif
#if HAS_TEMP_2
ANALOG_SELECT(TEMP_2_PIN);
#endif
#if HAS_TEMP_3
ANALOG_SELECT(TEMP_3_PIN);
#endif
#if HAS_TEMP_BED
ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
ANALOG_SELECT(FILWIDTH_PIN);
#endif
#if HAS_AUTO_FAN_0
#if E0_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E0_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E0_AUTO_FAN_PIN);
#endif
#endif
#if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
#if E1_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E1_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E1_AUTO_FAN_PIN);
#endif
#endif
#if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
#if E2_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E2_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E2_AUTO_FAN_PIN);
#endif
#endif
#if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
#if E3_AUTO_FAN_PIN == FAN1_PIN
SET_OUTPUT(E3_AUTO_FAN_PIN);
#if ENABLED(FAST_PWM_FAN)
setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#else
SET_OUTPUT(E3_AUTO_FAN_PIN);
#endif
#endif
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
SBI(TIMSK0, OCIE0B);
// Wait for temperature measurement to settle
delay(250);
#define TEMP_MIN_ROUTINE(NR) \
minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
minttemp_raw[NR] += OVERSAMPLENR; \
else \
minttemp_raw[NR] -= OVERSAMPLENR; \
}
#define TEMP_MAX_ROUTINE(NR) \
maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
maxttemp_raw[NR] -= OVERSAMPLENR; \
else \
maxttemp_raw[NR] += OVERSAMPLENR; \
}
#ifdef HEATER_0_MINTEMP
TEMP_MIN_ROUTINE(0);
#endif
#ifdef HEATER_0_MAXTEMP
TEMP_MAX_ROUTINE(0);
#endif
#if HOTENDS > 1
#ifdef HEATER_1_MINTEMP
TEMP_MIN_ROUTINE(1);
#endif
#ifdef HEATER_1_MAXTEMP
TEMP_MAX_ROUTINE(1);
#endif
#if HOTENDS > 2
#ifdef HEATER_2_MINTEMP
TEMP_MIN_ROUTINE(2);
#endif
#ifdef HEATER_2_MAXTEMP
TEMP_MAX_ROUTINE(2);
#endif
#if HOTENDS > 3
#ifdef HEATER_3_MINTEMP
TEMP_MIN_ROUTINE(3);
#endif
#ifdef HEATER_3_MAXTEMP
TEMP_MAX_ROUTINE(3);
#endif
#endif // HOTENDS > 3
#endif // HOTENDS > 2
#endif // HOTENDS > 1
#ifdef BED_MINTEMP
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
}
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
void Temperature::start_watching_heater(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
}
else
watch_heater_next_ms[HOTEND_INDEX] = 0;
}
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
/**
* Start Heating Sanity Check for hotends that are below
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M140, M190)
*/
void Temperature::start_watching_bed() {
if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
}
else
watch_bed_next_ms = 0;
}
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
#endif
#if HAS_THERMALLY_PROTECTED_BED
Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
millis_t Temperature::thermal_runaway_bed_timer;
#endif
void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
/**
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
SERIAL_ECHOPAIR(" ; State:", *state);
SERIAL_ECHOPAIR(" ; Timer:", *timer);
SERIAL_ECHOPAIR(" ; Temperature:", temperature);
SERIAL_ECHOPAIR(" ; Target Temp:", target_temperature);
SERIAL_EOL;
*/
int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
// If the target temperature changes, restart
if (tr_target_temperature[heater_index] != target_temperature) {
tr_target_temperature[heater_index] = target_temperature;
*state = target_temperature > 0 ? TRFirstHeating : TRInactive;
}
switch (*state) {
// Inactive state waits for a target temperature to be set
case TRInactive: break;
// When first heating, wait for the temperature to be reached then go to Stable state
case TRFirstHeating:
if (temperature < tr_target_temperature[heater_index]) break;
*state = TRStable;
// While the temperature is stable watch for a bad temperature
case TRStable:
if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc) {
*timer = millis() + period_seconds * 1000UL;
break;
}
else if (PENDING(millis(), *timer)) break;
*state = TRRunaway;
case TRRunaway:
_temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
}
}
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
void Temperature::disable_all_heaters() {
HOTEND_LOOP() setTargetHotend(0, e);
setTargetBed(0);
// If all heaters go down then for sure our print job has stopped
print_job_timer.stop();
#define DISABLE_HEATER(NR) { \
setTargetHotend(0, NR); \
soft_pwm[NR] = 0; \
WRITE_HEATER_ ## NR (LOW); \
}
#if HAS_TEMP_HOTEND
DISABLE_HEATER(0);
#endif
#if HOTENDS > 1 && HAS_TEMP_1
DISABLE_HEATER(1);
#endif
#if HOTENDS > 2 && HAS_TEMP_2
DISABLE_HEATER(2);
#endif
#if HOTENDS > 3 && HAS_TEMP_3
DISABLE_HEATER(3);
#endif
#if HAS_TEMP_BED
target_temperature_bed = 0;
soft_pwm_bed = 0;
#if HAS_HEATER_BED
WRITE_HEATER_BED(LOW);
#endif
#endif
}
#if ENABLED(HEATER_0_USES_MAX6675)
#define MAX6675_HEAT_INTERVAL 250u
#if ENABLED(MAX6675_IS_MAX31855)
uint32_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 7
#define MAX6675_DISCARD_BITS 18
#define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
#else
uint16_t max6675_temp = 2000;
#define MAX6675_ERROR_MASK 4
#define MAX6675_DISCARD_BITS 3
#define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
#endif
int Temperature::read_max6675() {
static millis_t next_max6675_ms = 0;
millis_t ms = millis();
if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
CBI(
#ifdef PRR
PRR
#elif defined(PRR0)
PRR0
#endif
, PRSPI);
SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
WRITE(MAX6675_SS, 0); // enable TT_MAX6675
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// Read a big-endian temperature value
max6675_temp = 0;
for (uint8_t i = sizeof(max6675_temp); i--;) {
SPDR = 0;
for (;!TEST(SPSR, SPIF););
max6675_temp |= SPDR;
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
}
WRITE(MAX6675_SS, 1); // disable TT_MAX6675
if (max6675_temp & MAX6675_ERROR_MASK) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM("Temp measurement error! ");
#if MAX6675_ERROR_MASK == 7
SERIAL_ERRORPGM("MAX31855 ");
if (max6675_temp & 1)
SERIAL_ERRORLNPGM("Open Circuit");
else if (max6675_temp & 2)
SERIAL_ERRORLNPGM("Short to GND");
else if (max6675_temp & 4)
SERIAL_ERRORLNPGM("Short to VCC");
#else
SERIAL_ERRORLNPGM("MAX6675");
#endif
max6675_temp = MAX6675_TMAX * 4; // thermocouple open
}
else
max6675_temp >>= MAX6675_DISCARD_BITS;
#if ENABLED(MAX6675_IS_MAX31855)
// Support negative temperature
if (max6675_temp & 0x00002000) max6675_temp |= 0xffffc000;
#endif
return (int)max6675_temp;
}
#endif //HEATER_0_USES_MAX6675
/**
* Get raw temperatures
*/
void Temperature::set_current_temp_raw() {
#if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = raw_temp_value[0];
#endif
#if HAS_TEMP_1
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature_raw = raw_temp_value[1];
#else
current_temperature_raw[1] = raw_temp_value[1];
#endif
#if HAS_TEMP_2
current_temperature_raw[2] = raw_temp_value[2];
#if HAS_TEMP_3
current_temperature_raw[3] = raw_temp_value[3];
#endif
#endif
#endif
current_temperature_bed_raw = raw_temp_bed_value;
temp_meas_ready = true;
}
#if ENABLED(PINS_DEBUGGING)
/**
* monitors endstops & Z probe for changes
*
* If a change is detected then the LED is toggled and
* a message is sent out the serial port
*
* Yes, we could miss a rapid back & forth change but
* that won't matter because this is all manual.
*
*/
void endstop_monitor() {
static uint16_t old_endstop_bits_local = 0;
static uint8_t local_LED_status = 0;
uint16_t current_endstop_bits_local = 0;
#if HAS_X_MIN
if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
#endif
#if HAS_X_MAX
if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
#endif
#if HAS_Y_MIN
if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
#endif
#if HAS_Y_MAX
if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
#endif
#if HAS_Z_MIN
if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
#endif
#if HAS_Z_MAX
if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
#endif
#if HAS_Z_MIN_PROBE_PIN
if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
#endif
#if HAS_Z2_MIN
if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
#endif
#if HAS_Z2_MAX
if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
#endif
uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
if (endstop_change) {
#if HAS_X_MIN
if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR("X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
#endif
#if HAS_X_MAX
if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
#endif
#if HAS_Y_MIN
if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
#endif
#if HAS_Y_MAX
if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
#endif
#if HAS_Z_MIN
if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
#endif
#if HAS_Z_MAX
if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
#endif
#if HAS_Z_MIN_PROBE_PIN
if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
#endif
#if HAS_Z2_MIN
if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
#endif
#if HAS_Z2_MAX
if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
#endif
SERIAL_PROTOCOLPGM("\n\n");
analogWrite(LED_PIN, local_LED_status);
local_LED_status ^= 255;
old_endstop_bits_local = current_endstop_bits_local;
}
}
#endif // PINS_DEBUGGING
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
* This ISR uses the compare method so it runs at the base
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
* in OCR0B above (128 or halfway between OVFs).
*
* - Manage PWM to all the heaters and fan
* - Update the raw temperature values
* - Check new temperature values for MIN/MAX errors
* - Step the babysteps value for each axis towards 0
*/
ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
volatile bool Temperature::in_temp_isr = false;
void Temperature::isr() {
// The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
// at the end of its run, potentially causing re-entry. This flag prevents it.
if (in_temp_isr) return;
in_temp_isr = true;
// Allow UART and stepper ISRs
CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
sei();
static uint8_t temp_count = 0;
static TempState temp_state = StartupDelay;
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
// Static members for each heater
#if ENABLED(SLOW_PWM_HEATERS)
static uint8_t slow_pwm_count = 0;
#define ISR_STATICS(n) \
static uint8_t soft_pwm_ ## n; \
static uint8_t state_heater_ ## n = 0; \
static uint8_t state_timer_heater_ ## n = 0
#else
#define ISR_STATICS(n) static uint8_t soft_pwm_ ## n
#endif
// Statics per heater
ISR_STATICS(0);
#if HOTENDS > 1
ISR_STATICS(1);
#if HOTENDS > 2
ISR_STATICS(2);
#if HOTENDS > 3
ISR_STATICS(3);
#endif
#endif
#endif
#if HAS_HEATER_BED
ISR_STATICS(BED);
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static unsigned long raw_filwidth_value = 0;
#endif
#if DISABLED(SLOW_PWM_HEATERS)
/**
* Standard PWM modulation
*/
if (pwm_count == 0) {
soft_pwm_0 = soft_pwm[0];
WRITE_HEATER_0(soft_pwm_0 > 0 ? 1 : 0);
#if HOTENDS > 1
soft_pwm_1 = soft_pwm[1];
WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
#if HOTENDS > 2
soft_pwm_2 = soft_pwm[2];
WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
#if HOTENDS > 3
soft_pwm_3 = soft_pwm[3];
WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
#endif
#endif
#endif
#if HAS_HEATER_BED
soft_pwm_BED = soft_pwm_bed;
WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
WRITE_FAN(soft_pwm_fan[0] > 0 ? 1 : 0);
#endif
#if HAS_FAN1
soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
WRITE_FAN1(soft_pwm_fan[1] > 0 ? 1 : 0);
#endif
#if HAS_FAN2
soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
WRITE_FAN2(soft_pwm_fan[2] > 0 ? 1 : 0);
#endif
#endif
}
if (soft_pwm_0 < pwm_count) WRITE_HEATER_0(0);
#if HOTENDS > 1
if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
#if HOTENDS > 2
if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
#if HOTENDS > 3
if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
#endif
#endif
#endif
#if HAS_HEATER_BED
if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
#endif
#if HAS_FAN1
if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
#endif
#if HAS_FAN2
if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
#endif
#endif
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count += _BV(SOFT_PWM_SCALE);
pwm_count &= 0x7F;
#else // SLOW_PWM_HEATERS
/**
* SLOW PWM HEATERS
*
* For relay-driven heaters
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
// Macros for Slow PWM timer logic
#define _SLOW_PWM_ROUTINE(NR, src) \
soft_pwm_ ## NR = src; \
if (soft_pwm_ ## NR > 0) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 1; \
WRITE_HEATER_ ## NR(1); \
} \
} \
else { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR(0); \
} \
}
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
#define PWM_OFF_ROUTINE(NR) \
if (soft_pwm_ ## NR < slow_pwm_count) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR (0); \
} \
}
if (slow_pwm_count == 0) {
SLOW_PWM_ROUTINE(0); // EXTRUDER 0
#if HOTENDS > 1
SLOW_PWM_ROUTINE(1); // EXTRUDER 1
#if HOTENDS > 2
SLOW_PWM_ROUTINE(2); // EXTRUDER 2
#if HOTENDS > 3
SLOW_PWM_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
#if HAS_HEATER_BED
_SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
#endif
} // slow_pwm_count == 0
PWM_OFF_ROUTINE(0); // EXTRUDER 0
#if HOTENDS > 1
PWM_OFF_ROUTINE(1); // EXTRUDER 1
#if HOTENDS > 2
PWM_OFF_ROUTINE(2); // EXTRUDER 2
#if HOTENDS > 3
PWM_OFF_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
#if HAS_HEATER_BED
PWM_OFF_ROUTINE(BED); // BED
#endif
#if ENABLED(FAN_SOFT_PWM)
if (pwm_count == 0) {
#if HAS_FAN0
soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
WRITE_FAN(soft_pwm_fan[0] > 0 ? 1 : 0);
#endif
#if HAS_FAN1
soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
WRITE_FAN1(soft_pwm_fan[1] > 0 ? 1 : 0);
#endif
#if HAS_FAN2
soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
WRITE_FAN2(soft_pwm_fan[2] > 0 ? 1 : 0);
#endif
}
#if HAS_FAN0
if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
#endif
#if HAS_FAN1
if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
#endif
#if HAS_FAN2
if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
#endif
#endif //FAN_SOFT_PWM
// SOFT_PWM_SCALE to frequency:
//
// 0: 16000000/64/256/128 = 7.6294 Hz
// 1: / 64 = 15.2588 Hz
// 2: / 32 = 30.5176 Hz
// 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz
pwm_count += _BV(SOFT_PWM_SCALE);
pwm_count &= 0x7F;
// increment slow_pwm_count only every 64 pwm_count (e.g., every 8s)
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// EXTRUDER 0
if (state_timer_heater_0 > 0) state_timer_heater_0--;
#if HOTENDS > 1 // EXTRUDER 1
if (state_timer_heater_1 > 0) state_timer_heater_1--;
#if HOTENDS > 2 // EXTRUDER 2
if (state_timer_heater_2 > 0) state_timer_heater_2--;
#if HOTENDS > 3 // EXTRUDER 3
if (state_timer_heater_3 > 0) state_timer_heater_3--;
#endif
#endif
#endif
#if HAS_HEATER_BED
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
#endif
} // (pwm_count % 64) == 0
#endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
#ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
// Prepare or measure a sensor, each one every 12th frame
switch (temp_state) {
case PrepareTemp_0:
#if HAS_TEMP_0
START_ADC(TEMP_0_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_0;
break;
case MeasureTemp_0:
#if HAS_TEMP_0
raw_temp_value[0] += ADC;
#endif
temp_state = PrepareTemp_BED;
break;
case PrepareTemp_BED:
#if HAS_TEMP_BED
START_ADC(TEMP_BED_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_BED;
break;
case MeasureTemp_BED:
#if HAS_TEMP_BED
raw_temp_bed_value += ADC;
#endif
temp_state = PrepareTemp_1;
break;
case PrepareTemp_1:
#if HAS_TEMP_1
START_ADC(TEMP_1_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_1;
break;
case MeasureTemp_1:
#if HAS_TEMP_1
raw_temp_value[1] += ADC;
#endif
temp_state = PrepareTemp_2;
break;
case PrepareTemp_2:
#if HAS_TEMP_2
START_ADC(TEMP_2_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_2;
break;
case MeasureTemp_2:
#if HAS_TEMP_2
raw_temp_value[2] += ADC;
#endif
temp_state = PrepareTemp_3;
break;
case PrepareTemp_3:
#if HAS_TEMP_3
START_ADC(TEMP_3_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_3;
break;
case MeasureTemp_3:
#if HAS_TEMP_3
raw_temp_value[3] += ADC;
#endif
temp_state = Prepare_FILWIDTH;
break;
case Prepare_FILWIDTH:
#if ENABLED(FILAMENT_WIDTH_SENSOR)
START_ADC(FILWIDTH_PIN);
#endif
lcd_buttons_update();
temp_state = Measure_FILWIDTH;
break;
case Measure_FILWIDTH:
#if ENABLED(FILAMENT_WIDTH_SENSOR)
// raw_filwidth_value += ADC; //remove to use an IIR filter approach
if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
raw_filwidth_value -= (raw_filwidth_value >> 7); //multiply raw_filwidth_value by 127/128
raw_filwidth_value += ((unsigned long)ADC << 7); //add new ADC reading
}
#endif
temp_state = PrepareTemp_0;
temp_count++;
break;
case StartupDelay:
temp_state = PrepareTemp_0;
break;
// default:
// SERIAL_ERROR_START;
// SERIAL_ERRORLNPGM("Temp measurement error!");
// break;
} // switch(temp_state)
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
// Filament Sensor - can be read any time since IIR filtering is used
#if ENABLED(FILAMENT_WIDTH_SENSOR)
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
ZERO(raw_temp_value);
raw_temp_bed_value = 0;
int constexpr temp_dir[] = {
#if ENABLED(HEATER_0_USES_MAX6675)
0
#elif HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
-1
#else
1
#endif
#if HAS_TEMP_1 && HOTENDS > 1
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
, -1
#else
, 1
#endif
#endif
#if HAS_TEMP_2 && HOTENDS > 2
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
, -1
#else
, 1
#endif
#endif
#if HAS_TEMP_3 && HOTENDS > 3
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
, -1
#else
, 1
#endif
#endif
};
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
const int tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0.0f) max_temp_error(e);
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0.0f) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(e);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[e] = 0;
#endif
}
#if HAS_TEMP_BED
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
#define GEBED <=
#else
#define GEBED >=
#endif
if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0.0f) max_temp_error(-1);
if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0.0f) min_temp_error(-1);
#endif
} // temp_count >= OVERSAMPLENR
#if ENABLED(BABYSTEPPING)
LOOP_XYZ(axis) {
int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
if (curTodo > 0) {
stepper.babystep((AxisEnum)axis,/*fwd*/true);
babystepsTodo[axis]--; //fewer to do next time
}
else if (curTodo < 0) {
stepper.babystep((AxisEnum)axis,/*fwd*/false);
babystepsTodo[axis]++; //fewer to do next time
}
}
#endif //BABYSTEPPING
#if ENABLED(PINS_DEBUGGING)
extern bool endstop_monitor_flag;
// run the endstop monitor at 15Hz
static uint8_t endstop_monitor_count = 16; // offset this check from the others
if (endstop_monitor_flag) {
endstop_monitor_count += _BV(1); // 15 Hz
endstop_monitor_count &= 0x7F;
if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
}
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
extern volatile uint8_t e_hit;
if (e_hit && ENDSTOPS_ENABLED) {
endstops.update(); // call endstop update routine
e_hit--;
}
#endif
cli();
in_temp_isr = false;
SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
}