1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-27 13:56:24 +00:00
MarlinFirmware/Marlin/ultralcd.cpp
2016-05-05 21:04:30 -07:00

2774 lines
85 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "ultralcd.h"
#if ENABLED(ULTRA_LCD)
#include "Marlin.h"
#include "language.h"
#include "cardreader.h"
#include "temperature.h"
#include "stepper.h"
#include "configuration_store.h"
/**
* REVERSE_MENU_DIRECTION
*
* To reverse the menu direction we need a general way to reverse
* the direction of the encoder everywhere. So encoderDirection is
* added to allow the encoder to go the other way.
*
* This behavior is limited to scrolling Menus and SD card listings,
* and is disabled in other contexts.
*/
#if ENABLED(REVERSE_MENU_DIRECTION)
int8_t encoderDirection = 1;
#define ENCODER_DIRECTION_NORMAL() (encoderDirection = 1)
#define ENCODER_DIRECTION_MENUS() (encoderDirection = -1)
#else
#define ENCODER_DIRECTION_NORMAL() ;
#define ENCODER_DIRECTION_MENUS() ;
#endif
int8_t encoderDiff; // updated from interrupt context and added to encoderPosition every LCD update
bool encoderRateMultiplierEnabled;
int32_t lastEncoderMovementMillis;
int plaPreheatHotendTemp;
int plaPreheatHPBTemp;
int plaPreheatFanSpeed;
int absPreheatHotendTemp;
int absPreheatHPBTemp;
int absPreheatFanSpeed;
#if ENABLED(FILAMENT_LCD_DISPLAY)
millis_t previous_lcd_status_ms = 0;
#endif
// Function pointer to menu functions.
typedef void (*menuFunc_t)();
uint8_t lcd_status_message_level;
char lcd_status_message[3 * (LCD_WIDTH) + 1] = WELCOME_MSG; // worst case is kana with up to 3*LCD_WIDTH+1
#if ENABLED(DOGLCD)
#include "dogm_lcd_implementation.h"
#else
#include "ultralcd_implementation_hitachi_HD44780.h"
#endif
// The main status screen
static void lcd_status_screen();
#if ENABLED(ULTIPANEL)
#if HAS_POWER_SWITCH
extern bool powersupply;
#endif
const float manual_feedrate[] = MANUAL_FEEDRATE;
static void lcd_main_menu();
static void lcd_tune_menu();
static void lcd_prepare_menu();
static void lcd_move_menu();
static void lcd_control_menu();
static void lcd_control_temperature_menu();
static void lcd_control_temperature_preheat_pla_settings_menu();
static void lcd_control_temperature_preheat_abs_settings_menu();
static void lcd_control_motion_menu();
static void lcd_control_volumetric_menu();
#if ENABLED(HAS_LCD_CONTRAST)
static void lcd_set_contrast();
#endif
#if ENABLED(FWRETRACT)
static void lcd_control_retract_menu();
#endif
#if ENABLED(DELTA_CALIBRATION_MENU)
static void lcd_delta_calibrate_menu();
#endif
#if ENABLED(MANUAL_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
/* Different types of actions that can be used in menu items. */
static void menu_action_back();
static void menu_action_submenu(menuFunc_t data);
static void menu_action_gcode(const char* pgcode);
static void menu_action_function(menuFunc_t data);
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
static void menu_action_setting_edit_float3(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float32(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float43(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float5(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float51(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_float52(const char* pstr, float* ptr, float minValue, float maxValue);
static void menu_action_setting_edit_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue);
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float3(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float32(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float43(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float5(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float51(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_float52(const char* pstr, float* ptr, float minValue, float maxValue, menuFunc_t callbackFunc);
static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned long* ptr, unsigned long minValue, unsigned long maxValue, menuFunc_t callbackFunc);
#if ENABLED(SDSUPPORT)
static void lcd_sdcard_menu();
static void menu_action_sdfile(const char* filename, char* longFilename);
static void menu_action_sddirectory(const char* filename, char* longFilename);
#endif
#define ENCODER_FEEDRATE_DEADZONE 10
#if DISABLED(LCD_I2C_VIKI)
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 5
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#else
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#endif
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1
#endif
#endif
/* Helper macros for menus */
/**
* START_MENU generates the init code for a menu function
*/
#define START_MENU() do { \
ENCODER_DIRECTION_MENUS(); \
encoderRateMultiplierEnabled = false; \
if (encoderPosition > 0x8000) encoderPosition = 0; \
uint8_t encoderLine = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM; \
NOMORE(currentMenuViewOffset, encoderLine); \
uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \
bool wasClicked = LCD_CLICKED, itemSelected; \
for (uint8_t _drawLineNr = 0; _drawLineNr < LCD_HEIGHT; _drawLineNr++, _lineNr++) { \
_menuItemNr = 0;
/**
* MENU_ITEM generates draw & handler code for a menu item, potentially calling:
*
* lcd_implementation_drawmenu_[type](sel, row, label, arg3...)
* menu_action_[type](arg3...)
*
* Examples:
* MENU_ITEM(back, MSG_WATCH)
* lcd_implementation_drawmenu_back(sel, row, PSTR(MSG_WATCH))
* menu_action_back()
*
* MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause)
* lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause)
* menu_action_function(lcd_sdcard_pause)
*
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999)
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
* lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
*
*/
#define _MENU_ITEM_PART_1(type, label, args...) \
if (_menuItemNr == _lineNr) { \
itemSelected = encoderLine == _menuItemNr; \
if (lcdDrawUpdate) \
lcd_implementation_drawmenu_ ## type(itemSelected, _drawLineNr, PSTR(label), ## args); \
if (wasClicked && itemSelected) { \
lcd_quick_feedback()
#define _MENU_ITEM_PART_2(type, args...) \
menu_action_ ## type(args); \
return; \
} \
} \
_menuItemNr++
#define MENU_ITEM(type, label, args...) do { \
_MENU_ITEM_PART_1(type, label, ## args); \
_MENU_ITEM_PART_2(type, ## args); \
} while(0)
#if ENABLED(ENCODER_RATE_MULTIPLIER)
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
/**
* MENU_MULTIPLIER_ITEM generates drawing and handling code for a multiplier menu item
*/
#define MENU_MULTIPLIER_ITEM(type, label, args...) do { \
_MENU_ITEM_PART_1(type, label, ## args); \
encoderRateMultiplierEnabled = true; \
lastEncoderMovementMillis = 0; \
_MENU_ITEM_PART_2(type, ## args); \
} while(0)
#endif //ENCODER_RATE_MULTIPLIER
#define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0)
#define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## args)
#define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args)
#if ENABLED(ENCODER_RATE_MULTIPLIER)
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_ ## type, label, PSTR(label), ## args)
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args)
#else //!ENCODER_RATE_MULTIPLIER
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label), ## args)
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label), ## args)
#endif //!ENCODER_RATE_MULTIPLIER
#define END_MENU() \
if (encoderLine >= _menuItemNr) { encoderPosition = _menuItemNr * (ENCODER_STEPS_PER_MENU_ITEM) - 1; encoderLine = _menuItemNr - 1; }\
if (encoderLine >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = encoderLine - (LCD_HEIGHT) + 1; lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \
} } while(0)
/** Used variables to keep track of the menu */
volatile uint8_t buttons; //the last checked buttons in a bit array.
#if ENABLED(REPRAPWORLD_KEYPAD)
volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shift register values
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
volatile uint8_t slow_buttons; // Bits of the pressed buttons.
#endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
millis_t next_button_update_ms;
uint8_t lastEncoderBits;
uint32_t encoderPosition;
#if PIN_EXISTS(SD_DETECT)
uint8_t lcd_sd_status;
#endif
#endif // ULTIPANEL
typedef struct {
menuFunc_t menu_function;
#if ENABLED(ULTIPANEL)
uint32_t encoder_position;
#endif
} menuPosition;
menuFunc_t currentMenu = lcd_status_screen; // pointer to the currently active menu handler
menuPosition menu_history[10];
uint8_t menu_history_depth = 0;
millis_t next_lcd_update_ms;
uint8_t lcd_status_update_delay;
bool ignore_click = false;
bool wait_for_unclick;
bool defer_return_to_status = false;
enum LCDViewAction {
LCDVIEW_NONE,
LCDVIEW_REDRAW_NOW,
LCDVIEW_CALL_REDRAW_NEXT,
LCDVIEW_CLEAR_CALL_REDRAW,
LCDVIEW_CALL_NO_REDRAW
};
uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to draw, decrements after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial)
// Variables used when editing values.
const char* editLabel;
void* editValue;
int32_t minEditValue, maxEditValue;
menuFunc_t callbackFunc; // call this after editing
// place-holders for Ki and Kd edits
float raw_Ki, raw_Kd;
/**
* General function to go directly to a menu
* Remembers the previous position
*/
static void lcd_goto_menu(menuFunc_t menu, const bool feedback = false, const uint32_t encoder = 0) {
if (currentMenu != menu) {
currentMenu = menu;
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
#if ENABLED(NEWPANEL)
encoderPosition = encoder;
if (feedback) lcd_quick_feedback();
#endif
if (menu == lcd_status_screen) {
defer_return_to_status = false;
menu_history_depth = 0;
}
#if ENABLED(LCD_PROGRESS_BAR)
// For LCD_PROGRESS_BAR re-initialize custom characters
lcd_set_custom_characters(menu == lcd_status_screen);
#endif
}
}
static void lcd_return_to_status() { lcd_goto_menu(lcd_status_screen); }
inline void lcd_save_previous_menu() {
if (menu_history_depth < COUNT(menu_history)) {
menu_history[menu_history_depth].menu_function = currentMenu;
#if ENABLED(ULTIPANEL)
menu_history[menu_history_depth].encoder_position = encoderPosition;
#endif
++menu_history_depth;
}
}
static void lcd_goto_previous_menu(bool feedback=false) {
if (menu_history_depth > 0) {
--menu_history_depth;
lcd_goto_menu(menu_history[menu_history_depth].menu_function, feedback
#if ENABLED(ULTIPANEL)
, menu_history[menu_history_depth].encoder_position
#endif
);
}
else
lcd_return_to_status();
}
/**
*
* "Info Screen"
*
* This is very display-dependent, so the lcd implementation draws this.
*/
static void lcd_status_screen() {
ENCODER_DIRECTION_NORMAL();
encoderRateMultiplierEnabled = false;
#if ENABLED(LCD_PROGRESS_BAR)
millis_t ms = millis();
#if DISABLED(PROGRESS_MSG_ONCE)
if (ELAPSED(ms, progress_bar_ms + PROGRESS_BAR_MSG_TIME + PROGRESS_BAR_BAR_TIME)) {
progress_bar_ms = ms;
}
#endif
#if PROGRESS_MSG_EXPIRE > 0
// Handle message expire
if (expire_status_ms > 0) {
#if ENABLED(SDSUPPORT)
if (card.isFileOpen()) {
// Expire the message when printing is active
if (IS_SD_PRINTING) {
if (ELAPSED(ms, expire_status_ms)) {
lcd_status_message[0] = '\0';
expire_status_ms = 0;
}
}
else {
expire_status_ms += LCD_UPDATE_INTERVAL;
}
}
else {
expire_status_ms = 0;
}
#else
expire_status_ms = 0;
#endif //SDSUPPORT
}
#endif
#endif //LCD_PROGRESS_BAR
lcd_implementation_status_screen();
#if ENABLED(ULTIPANEL)
bool current_click = LCD_CLICKED;
if (ignore_click) {
if (wait_for_unclick) {
if (!current_click)
ignore_click = wait_for_unclick = false;
else
current_click = false;
}
else if (current_click) {
lcd_quick_feedback();
wait_for_unclick = true;
current_click = false;
}
}
if (current_click) {
lcd_goto_menu(lcd_main_menu, true);
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if ENABLED(LCD_PROGRESS_BAR)
currentMenu == lcd_status_screen
#endif
);
#if ENABLED(FILAMENT_LCD_DISPLAY)
previous_lcd_status_ms = millis(); // get status message to show up for a while
#endif
}
#if ENABLED(ULTIPANEL_FEEDMULTIPLY)
int new_frm = feedrate_multiplier + (int32_t)encoderPosition;
// Dead zone at 100% feedrate
if ((feedrate_multiplier < 100 && new_frm > 100) || (feedrate_multiplier > 100 && new_frm < 100)) {
feedrate_multiplier = 100;
encoderPosition = 0;
}
else if (feedrate_multiplier == 100) {
if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) {
feedrate_multiplier += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
encoderPosition = 0;
}
else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) {
feedrate_multiplier += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0;
}
}
else {
feedrate_multiplier = new_frm;
encoderPosition = 0;
}
#endif // ULTIPANEL_FEEDMULTIPLY
feedrate_multiplier = constrain(feedrate_multiplier, 10, 999);
#endif //ULTIPANEL
}
#if ENABLED(ULTIPANEL)
inline void line_to_current(AxisEnum axis) {
#if ENABLED(DELTA)
calculate_delta(current_position);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
#else
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
#endif
}
#if ENABLED(SDSUPPORT)
static void lcd_sdcard_pause() { card.pauseSDPrint(); }
static void lcd_sdcard_resume() { card.startFileprint(); }
static void lcd_sdcard_stop() {
stepper.quick_stop();
card.sdprinting = false;
card.closefile();
thermalManager.autotempShutdown();
cancel_heatup = true;
lcd_setstatus(MSG_PRINT_ABORTED, true);
}
#endif //SDSUPPORT
/**
*
* "Main" menu
*
*/
static void lcd_main_menu() {
START_MENU();
MENU_ITEM(back, MSG_WATCH);
if (planner.movesplanned() || IS_SD_PRINTING) {
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
}
else {
MENU_ITEM(submenu, MSG_PREPARE, lcd_prepare_menu);
#if ENABLED(DELTA_CALIBRATION_MENU)
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE, lcd_delta_calibrate_menu);
#endif
}
MENU_ITEM(submenu, MSG_CONTROL, lcd_control_menu);
#if ENABLED(SDSUPPORT)
if (card.cardOK) {
if (card.isFileOpen()) {
if (card.sdprinting)
MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
else
MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop);
}
else {
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
}
else {
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif //SDSUPPORT
END_MENU();
}
/**
*
* "Tune" submenu items
*
*/
/**
* Set the home offset based on the current_position
*/
void lcd_set_home_offsets() {
// M428 Command
enqueue_and_echo_commands_P(PSTR("M428"));
lcd_return_to_status();
}
#if ENABLED(BABYSTEPPING)
int babysteps_done = 0;
static void _lcd_babystep(const AxisEnum axis, const char* msg) {
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
int distance = (int32_t)encoderPosition * BABYSTEP_MULTIPLICATOR;
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
thermalManager.babystep_axis(axis, distance);
babysteps_done += distance;
}
if (lcdDrawUpdate) lcd_implementation_drawedit(msg, itostr3sign(babysteps_done));
if (LCD_CLICKED) lcd_goto_previous_menu(true);
}
#if ENABLED(BABYSTEP_XY)
static void _lcd_babystep_x() { _lcd_babystep(X_AXIS, PSTR(MSG_BABYSTEPPING_X)); }
static void _lcd_babystep_y() { _lcd_babystep(Y_AXIS, PSTR(MSG_BABYSTEPPING_Y)); }
static void lcd_babystep_x() { babysteps_done = 0; lcd_goto_menu(_lcd_babystep_x); }
static void lcd_babystep_y() { babysteps_done = 0; lcd_goto_menu(_lcd_babystep_y); }
#endif
static void _lcd_babystep_z() { _lcd_babystep(Z_AXIS, PSTR(MSG_BABYSTEPPING_Z)); }
static void lcd_babystep_z() { babysteps_done = 0; lcd_goto_menu(_lcd_babystep_z); }
#endif //BABYSTEPPING
/**
* Watch temperature callbacks
*/
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
#if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() { thermalManager.start_watching_heater(0); }
#endif
#if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1() { thermalManager.start_watching_heater(1); }
#endif // EXTRUDERS > 1
#if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2() { thermalManager.start_watching_heater(2); }
#endif // EXTRUDERS > 2
#if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3() { thermalManager.start_watching_heater(3); }
#endif // EXTRUDERS > 3
#else
#if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() {}
#endif
#if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1() {}
#endif // EXTRUDERS > 1
#if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2() {}
#endif // EXTRUDERS > 2
#if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3() {}
#endif // EXTRUDERS > 3
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
#if TEMP_SENSOR_BED != 0
void watch_temp_callback_bed() { thermalManager.start_watching_bed(); }
#endif
#else
#if TEMP_SENSOR_BED != 0
void watch_temp_callback_bed() {}
#endif
#endif
/**
*
* "Tune" submenu
*
*/
static void lcd_tune_menu() {
START_MENU();
//
// ^ Main
//
MENU_ITEM(back, MSG_MAIN);
//
// Speed:
//
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999);
// Manual bed leveling, Bed Z:
#if ENABLED(MANUAL_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
//
// Nozzle:
// Nozzle [1-4]:
//
#if EXTRUDERS == 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#else //EXTRUDERS > 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#endif
#if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#endif
#if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
//
// Bed:
//
#if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif
//
// Fan Speed:
//
#if FAN_COUNT > 0
#if HAS_FAN0
#if FAN_COUNT > 1
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
#else
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
#endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255);
#endif
#if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255);
#endif
#if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255);
#endif
#endif // FAN_COUNT > 0
//
// Flow:
// Flow 1:
// Flow 2:
// Flow 3:
// Flow 4:
//
#if EXTRUDERS == 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[0], 10, 999);
#else // EXTRUDERS > 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[active_extruder], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &extruder_multiplier[0], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &extruder_multiplier[1], 10, 999);
#if EXTRUDERS > 2
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &extruder_multiplier[2], 10, 999);
#if EXTRUDERS > 3
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N4, &extruder_multiplier[3], 10, 999);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
//
// Babystep X:
// Babystep Y:
// Babystep Z:
//
#if ENABLED(BABYSTEPPING)
#if ENABLED(BABYSTEP_XY)
MENU_ITEM(submenu, MSG_BABYSTEP_X, lcd_babystep_x);
MENU_ITEM(submenu, MSG_BABYSTEP_Y, lcd_babystep_y);
#endif //BABYSTEP_XY
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);
#endif
//
// Change filament
//
#if ENABLED(FILAMENTCHANGEENABLE)
MENU_ITEM(gcode, MSG_FILAMENTCHANGE, PSTR("M600"));
#endif
END_MENU();
}
/**
*
* "Prepare" submenu items
*
*/
void _lcd_preheat(int endnum, const float temph, const float tempb, const int fan) {
if (temph > 0) thermalManager.setTargetHotend(temph, endnum);
#if TEMP_SENSOR_BED != 0
thermalManager.setTargetBed(tempb);
#else
UNUSED(tempb);
#endif
#if FAN_COUNT > 0
#if FAN_COUNT > 1
fanSpeeds[active_extruder < FAN_COUNT ? active_extruder : 0] = fan;
#else
fanSpeeds[0] = fan;
#endif
#else
UNUSED(fan);
#endif
lcd_return_to_status();
}
#if TEMP_SENSOR_0 != 0
void lcd_preheat_pla0() { _lcd_preheat(0, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif
#if EXTRUDERS > 1
void lcd_preheat_pla1() { _lcd_preheat(1, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs1() { _lcd_preheat(1, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#if EXTRUDERS > 2
void lcd_preheat_pla2() { _lcd_preheat(2, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs2() { _lcd_preheat(2, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#if EXTRUDERS > 3
void lcd_preheat_pla3() { _lcd_preheat(3, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs3() { _lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif
#endif
void lcd_preheat_pla0123() {
#if EXTRUDERS > 1
thermalManager.setTargetHotend(plaPreheatHotendTemp, 1);
#if EXTRUDERS > 2
thermalManager.setTargetHotend(plaPreheatHotendTemp, 2);
#if EXTRUDERS > 3
thermalManager.setTargetHotend(plaPreheatHotendTemp, 3);
#endif
#endif
#endif
lcd_preheat_pla0();
}
void lcd_preheat_abs0123() {
#if EXTRUDERS > 1
thermalManager.setTargetHotend(absPreheatHotendTemp, 1);
#if EXTRUDERS > 2
thermalManager.setTargetHotend(absPreheatHotendTemp, 2);
#if EXTRUDERS > 3
thermalManager.setTargetHotend(absPreheatHotendTemp, 3);
#endif
#endif
#endif
lcd_preheat_abs0();
}
#endif // EXTRUDERS > 1
#if TEMP_SENSOR_BED != 0
void lcd_preheat_pla_bedonly() { _lcd_preheat(0, 0, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs_bedonly() { _lcd_preheat(0, 0, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif
#if TEMP_SENSOR_0 != 0 && (TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0)
static void lcd_preheat_pla_menu() {
START_MENU();
MENU_ITEM(back, MSG_PREPARE);
#if EXTRUDERS == 1
MENU_ITEM(function, MSG_PREHEAT_PLA, lcd_preheat_pla0);
#else
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H1, lcd_preheat_pla0);
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H2, lcd_preheat_pla1);
#if EXTRUDERS > 2
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H3, lcd_preheat_pla2);
#if EXTRUDERS > 3
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H4, lcd_preheat_pla3);
#endif
#endif
MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_PLA_BEDONLY, lcd_preheat_pla_bedonly);
#endif
END_MENU();
}
static void lcd_preheat_abs_menu() {
START_MENU();
MENU_ITEM(back, MSG_PREPARE);
#if EXTRUDERS == 1
MENU_ITEM(function, MSG_PREHEAT_ABS, lcd_preheat_abs0);
#else
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H1, lcd_preheat_abs0);
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H2, lcd_preheat_abs1);
#if EXTRUDERS > 2
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H3, lcd_preheat_abs2);
#if EXTRUDERS > 3
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H4, lcd_preheat_abs3);
#endif
#endif
MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_ABS_BEDONLY, lcd_preheat_abs_bedonly);
#endif
END_MENU();
}
#endif // TEMP_SENSOR_0 && (TEMP_SENSOR_1 || TEMP_SENSOR_2 || TEMP_SENSOR_3 || TEMP_SENSOR_BED)
void lcd_cooldown() {
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#endif
thermalManager.disable_all_heaters();
lcd_return_to_status();
}
#if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
static void lcd_autostart_sd() {
card.autostart_index = 0;
card.setroot();
card.checkautostart(true);
}
#endif
#if ENABLED(MANUAL_BED_LEVELING)
/**
*
* "Prepare" > "Bed Leveling" handlers
*
*/
static uint8_t _lcd_level_bed_position;
// Utility to go to the next mesh point
// A raise is added between points if MIN_Z_HEIGHT_FOR_HOMING is in use
// Note: During Manual Bed Leveling the homed Z position is MESH_HOME_SEARCH_Z
// Z position will be restored with the final action, a G28
inline void _mbl_goto_xy(float x, float y) {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if MIN_Z_HEIGHT_FOR_HOMING > 0
+ MIN_Z_HEIGHT_FOR_HOMING
#endif
;
line_to_current(Z_AXIS);
current_position[X_AXIS] = x + home_offset[X_AXIS];
current_position[Y_AXIS] = y + home_offset[Y_AXIS];
line_to_current(manual_feedrate[X_AXIS] <= manual_feedrate[Y_AXIS] ? X_AXIS : Y_AXIS);
#if MIN_Z_HEIGHT_FOR_HOMING > 0
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
line_to_current(Z_AXIS);
#endif
stepper.synchronize();
}
static void _lcd_level_goto_next_point();
static void _lcd_level_bed_done() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_DONE));
lcdDrawUpdate =
#if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
#else
LCDVIEW_CALL_NO_REDRAW
#endif
;
}
/**
* Step 7: Get the Z coordinate, then goto next point or exit
*/
static void _lcd_level_bed_get_z() {
ENCODER_DIRECTION_NORMAL();
// Encoder wheel adjusts the Z position
if (encoderPosition && planner.movesplanned() <= 3) {
refresh_cmd_timeout();
current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP);
NOLESS(current_position[Z_AXIS], 0);
NOMORE(current_position[Z_AXIS], MESH_HOME_SEARCH_Z * 2);
line_to_current(Z_AXIS);
lcdDrawUpdate =
#if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
#else
LCDVIEW_REDRAW_NOW
#endif
;
}
encoderPosition = 0;
static bool debounce_click = false;
if (LCD_CLICKED) {
if (!debounce_click) {
debounce_click = true; // ignore multiple "clicks" in a row
mbl.set_zigzag_z(_lcd_level_bed_position++, current_position[Z_AXIS]);
if (_lcd_level_bed_position == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
lcd_goto_menu(_lcd_level_bed_done, true);
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
#if MIN_Z_HEIGHT_FOR_HOMING > 0
+ MIN_Z_HEIGHT_FOR_HOMING
#endif
;
line_to_current(Z_AXIS);
stepper.synchronize();
mbl.active = true;
enqueue_and_echo_commands_P(PSTR("G28"));
lcd_return_to_status();
//LCD_MESSAGEPGM(MSG_LEVEL_BED_DONE);
#if HAS_BUZZER
buzz(200, 659);
buzz(200, 698);
#endif
}
else {
lcd_goto_menu(_lcd_level_goto_next_point, true);
}
}
}
else {
debounce_click = false;
}
// Update on first display, then only on updates to Z position
// Show message above on clicks instead
if (lcdDrawUpdate) {
float v = current_position[Z_AXIS] - MESH_HOME_SEARCH_Z;
lcd_implementation_drawedit(PSTR(MSG_MOVE_Z), ftostr43(v + (v < 0 ? -0.0001 : 0.0001), '+'));
}
}
/**
* Step 6: Display "Next point: 1 / 9" while waiting for move to finish
*/
static void _lcd_level_bed_moving() {
if (lcdDrawUpdate) {
char msg[10];
sprintf_P(msg, PSTR("%i / %u"), (int)(_lcd_level_bed_position + 1), (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS));
lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_NEXT_POINT), msg);
}
lcdDrawUpdate =
#if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
#else
LCDVIEW_CALL_NO_REDRAW
#endif
;
}
/**
* Step 5: Initiate a move to the next point
*/
static void _lcd_level_goto_next_point() {
// Set the menu to display ahead of blocking call
lcd_goto_menu(_lcd_level_bed_moving);
// _mbl_goto_xy runs the menu loop until the move is done
int ix, iy;
mbl.zigzag(_lcd_level_bed_position, ix, iy);
_mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
// After the blocking function returns, change menus
lcd_goto_menu(_lcd_level_bed_get_z);
}
/**
* Step 4: Display "Click to Begin", wait for click
* Move to the first probe position
*/
static void _lcd_level_bed_homing_done() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_WAITING));
if (LCD_CLICKED) {
_lcd_level_bed_position = 0;
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
lcd_goto_menu(_lcd_level_goto_next_point, true);
}
}
/**
* Step 3: Display "Homing XYZ" - Wait for homing to finish
*/
static void _lcd_level_bed_homing() {
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_HOMING), NULL);
lcdDrawUpdate =
#if ENABLED(DOGLCD)
LCDVIEW_CALL_REDRAW_NEXT
#else
LCDVIEW_CALL_NO_REDRAW
#endif
;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_menu(_lcd_level_bed_homing_done);
}
/**
* Step 2: Continue Bed Leveling...
*/
static void _lcd_level_bed_continue() {
defer_return_to_status = true;
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
mbl.reset();
enqueue_and_echo_commands_P(PSTR("G28"));
lcd_goto_menu(_lcd_level_bed_homing);
}
/**
* Step 1: MBL entry-point: "Cancel" or "Level Bed"
*/
static void lcd_level_bed() {
START_MENU();
MENU_ITEM(back, MSG_LEVEL_BED_CANCEL);
MENU_ITEM(submenu, MSG_LEVEL_BED, _lcd_level_bed_continue);
END_MENU();
}
#endif // MANUAL_BED_LEVELING
/**
*
* "Prepare" submenu
*
*/
static void lcd_prepare_menu() {
START_MENU();
//
// ^ Main
//
MENU_ITEM(back, MSG_MAIN);
//
// Auto Home
//
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
//
// Set Home Offsets
//
MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets);
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
//
// Level Bed
//
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
MENU_ITEM(gcode, MSG_LEVEL_BED,
axis_homed[X_AXIS] && axis_homed[Y_AXIS] ? PSTR("G29") : PSTR("G28\nG29")
);
#elif ENABLED(MANUAL_BED_LEVELING)
MENU_ITEM(submenu, MSG_LEVEL_BED, lcd_level_bed);
#endif
//
// Move Axis
//
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
//
// Disable Steppers
//
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
//
// Preheat PLA
// Preheat ABS
//
#if TEMP_SENSOR_0 != 0
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 || TEMP_SENSOR_BED != 0
MENU_ITEM(submenu, MSG_PREHEAT_PLA, lcd_preheat_pla_menu);
MENU_ITEM(submenu, MSG_PREHEAT_ABS, lcd_preheat_abs_menu);
#else
MENU_ITEM(function, MSG_PREHEAT_PLA, lcd_preheat_pla0);
MENU_ITEM(function, MSG_PREHEAT_ABS, lcd_preheat_abs0);
#endif
#endif
//
// Cooldown
//
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
//
// Switch power on/off
//
#if HAS_POWER_SWITCH
if (powersupply)
MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81"));
else
MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80"));
#endif
//
// Autostart
//
#if ENABLED(SDSUPPORT) && ENABLED(MENU_ADDAUTOSTART)
MENU_ITEM(function, MSG_AUTOSTART, lcd_autostart_sd);
#endif
END_MENU();
}
#if ENABLED(DELTA_CALIBRATION_MENU)
static void lcd_delta_calibrate_menu() {
START_MENU();
MENU_ITEM(back, MSG_MAIN);
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_X, PSTR("G0 F8000 X-77.94 Y-45 Z0"));
MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_Y, PSTR("G0 F8000 X77.94 Y-45 Z0"));
MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_Z, PSTR("G0 F8000 X0 Y90 Z0"));
MENU_ITEM(gcode, MSG_DELTA_CALIBRATE_CENTER, PSTR("G0 F8000 X0 Y0 Z0"));
END_MENU();
}
#endif // DELTA_CALIBRATION_MENU
/**
*
* "Prepare" > "Move Axis" submenu
*
*/
float move_menu_scale;
static void _lcd_move(const char* name, AxisEnum axis, float min, float max) {
ENCODER_DIRECTION_NORMAL();
if (encoderPosition && planner.movesplanned() <= 3) {
refresh_cmd_timeout();
current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale;
if (min_software_endstops) NOLESS(current_position[axis], min);
if (max_software_endstops) NOMORE(current_position[axis], max);
line_to_current(axis);
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
encoderPosition = 0;
if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr31(current_position[axis]));
if (LCD_CLICKED) lcd_goto_previous_menu(true);
}
#if ENABLED(DELTA)
static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS);
static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); }
static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); }
static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); }
#else
static void lcd_move_x() { _lcd_move(PSTR(MSG_MOVE_X), X_AXIS, sw_endstop_min[X_AXIS], sw_endstop_max[X_AXIS]); }
static void lcd_move_y() { _lcd_move(PSTR(MSG_MOVE_Y), Y_AXIS, sw_endstop_min[Y_AXIS], sw_endstop_max[Y_AXIS]); }
#endif
static void lcd_move_z() { _lcd_move(PSTR(MSG_MOVE_Z), Z_AXIS, sw_endstop_min[Z_AXIS], sw_endstop_max[Z_AXIS]); }
static void lcd_move_e(
#if EXTRUDERS > 1
uint8_t e
#endif
) {
ENCODER_DIRECTION_NORMAL();
#if EXTRUDERS > 1
unsigned short original_active_extruder = active_extruder;
active_extruder = e;
#endif
if (encoderPosition && planner.movesplanned() <= 3) {
current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale;
line_to_current(E_AXIS);
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
encoderPosition = 0;
if (lcdDrawUpdate) {
PGM_P pos_label;
#if EXTRUDERS == 1
pos_label = PSTR(MSG_MOVE_E);
#else
switch (e) {
case 0: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E1); break;
case 1: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E2); break;
#if EXTRUDERS > 2
case 2: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E3); break;
#if EXTRUDERS > 3
case 3: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E4); break;
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
}
#endif //EXTRUDERS > 1
lcd_implementation_drawedit(pos_label, ftostr31(current_position[E_AXIS]));
}
if (LCD_CLICKED) lcd_goto_previous_menu(true);
#if EXTRUDERS > 1
active_extruder = original_active_extruder;
#endif
}
#if EXTRUDERS > 1
static void lcd_move_e0() { lcd_move_e(0); }
static void lcd_move_e1() { lcd_move_e(1); }
#if EXTRUDERS > 2
static void lcd_move_e2() { lcd_move_e(2); }
#if EXTRUDERS > 3
static void lcd_move_e3() { lcd_move_e(3); }
#endif
#endif
#endif // EXTRUDERS > 1
/**
*
* "Prepare" > "Move Xmm" > "Move XYZ" submenu
*
*/
#if ENABLED(DELTA) || ENABLED(SCARA)
#define _MOVE_XYZ_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
#else
#define _MOVE_XYZ_ALLOWED true
#endif
static void _lcd_move_menu_axis() {
START_MENU();
MENU_ITEM(back, MSG_MOVE_AXIS);
if (_MOVE_XYZ_ALLOWED) {
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
}
if (move_menu_scale < 10.0) {
if (_MOVE_XYZ_ALLOWED) MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
#if EXTRUDERS == 1
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
#else
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E1, lcd_move_e0);
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E2, lcd_move_e1);
#if EXTRUDERS > 2
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E3, lcd_move_e2);
#if EXTRUDERS > 3
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E4, lcd_move_e3);
#endif
#endif
#endif // EXTRUDERS > 1
}
END_MENU();
}
static void lcd_move_menu_10mm() {
move_menu_scale = 10.0;
_lcd_move_menu_axis();
}
static void lcd_move_menu_1mm() {
move_menu_scale = 1.0;
_lcd_move_menu_axis();
}
static void lcd_move_menu_01mm() {
move_menu_scale = 0.1;
_lcd_move_menu_axis();
}
/**
*
* "Prepare" > "Move Axis" submenu
*
*/
static void lcd_move_menu() {
START_MENU();
MENU_ITEM(back, MSG_PREPARE);
if (_MOVE_XYZ_ALLOWED)
MENU_ITEM(submenu, MSG_MOVE_10MM, lcd_move_menu_10mm);
MENU_ITEM(submenu, MSG_MOVE_1MM, lcd_move_menu_1mm);
MENU_ITEM(submenu, MSG_MOVE_01MM, lcd_move_menu_01mm);
//TODO:X,Y,Z,E
END_MENU();
}
/**
*
* "Control" submenu
*
*/
static void lcd_control_menu() {
START_MENU();
MENU_ITEM(back, MSG_MAIN);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu);
MENU_ITEM(submenu, MSG_VOLUMETRIC, lcd_control_volumetric_menu);
#if ENABLED(HAS_LCD_CONTRAST)
//MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63);
MENU_ITEM(submenu, MSG_CONTRAST, lcd_set_contrast);
#endif
#if ENABLED(FWRETRACT)
MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings);
MENU_ITEM(function, MSG_LOAD_EPROM, Config_RetrieveSettings);
#endif
MENU_ITEM(function, MSG_RESTORE_FAILSAFE, Config_ResetDefault);
END_MENU();
}
/**
*
* "Temperature" submenu
*
*/
#if ENABLED(PID_AUTOTUNE_MENU)
#if ENABLED(PIDTEMP)
int autotune_temp[EXTRUDERS] = { 150 };
const int heater_maxtemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP);
#endif
#if ENABLED(PIDTEMPBED)
int autotune_temp_bed = 70;
#endif
static void _lcd_autotune(int e) {
char cmd[30];
sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e,
#if HAS_PID_FOR_BOTH
e < 0 ? autotune_temp_bed : autotune_temp[e]
#elif ENABLED(PIDTEMPBED)
autotune_temp_bed
#else
autotune_temp[e]
#endif
);
enqueue_and_echo_command(cmd);
}
#endif //PID_AUTOTUNE_MENU
#if ENABLED(PIDTEMP)
// Helpers for editing PID Ki & Kd values
// grab the PID value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i(int e) {
#if DISABLED(PID_PARAMS_PER_EXTRUDER)
UNUSED(e);
#endif
PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
thermalManager.updatePID();
}
void copy_and_scalePID_d(int e) {
#if DISABLED(PID_PARAMS_PER_EXTRUDER)
UNUSED(e);
#endif
PID_PARAM(Kd, e) = scalePID_d(raw_Kd);
thermalManager.updatePID();
}
#define _PIDTEMP_BASE_FUNCTIONS(eindex) \
void copy_and_scalePID_i_E ## eindex() { copy_and_scalePID_i(eindex); } \
void copy_and_scalePID_d_E ## eindex() { copy_and_scalePID_d(eindex); }
#if ENABLED(PID_AUTOTUNE_MENU)
#define _PIDTEMP_FUNCTIONS(eindex) \
_PIDTEMP_BASE_FUNCTIONS(eindex); \
void lcd_autotune_callback_E ## eindex() { _lcd_autotune(eindex); }
#else
#define _PIDTEMP_FUNCTIONS(eindex) _PIDTEMP_BASE_FUNCTIONS(eindex)
#endif
_PIDTEMP_FUNCTIONS(0);
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
#if EXTRUDERS > 1
_PIDTEMP_FUNCTIONS(1);
#if EXTRUDERS > 2
_PIDTEMP_FUNCTIONS(2);
#if EXTRUDERS > 3
_PIDTEMP_FUNCTIONS(3);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
#endif //PID_PARAMS_PER_EXTRUDER
#endif //PIDTEMP
/**
*
* "Control" > "Temperature" submenu
*
*/
static void lcd_control_temperature_menu() {
START_MENU();
//
// ^ Control
//
MENU_ITEM(back, MSG_CONTROL);
//
// Nozzle:
// Nozzle [1-4]:
//
#if EXTRUDERS == 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#else //EXTRUDERS > 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#endif
#if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#endif
#if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
//
// Bed:
//
#if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif
//
// Fan Speed:
//
#if FAN_COUNT > 0
#if HAS_FAN0
#if FAN_COUNT > 1
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED " 1"
#else
#define MSG_1ST_FAN_SPEED MSG_FAN_SPEED
#endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_1ST_FAN_SPEED, &fanSpeeds[0], 0, 255);
#endif
#if HAS_FAN1
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 2", &fanSpeeds[1], 0, 255);
#endif
#if HAS_FAN2
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED " 3", &fanSpeeds[2], 0, 255);
#endif
#endif // FAN_COUNT > 0
//
// Autotemp, Min, Max, Fact
//
#if ENABLED(AUTOTEMP) && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &planner.autotemp_enabled);
MENU_ITEM_EDIT(float3, MSG_MIN, &planner.autotemp_min, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float3, MSG_MAX, &planner.autotemp_max, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float32, MSG_FACTOR, &planner.autotemp_factor, 0.0, 1.0);
#endif
//
// PID-P, PID-I, PID-D, PID-C, PID Autotune
// PID-P E1, PID-I E1, PID-D E1, PID-C E1, PID Autotune E1
// PID-P E2, PID-I E2, PID-D E2, PID-C E2, PID Autotune E2
// PID-P E3, PID-I E3, PID-D E3, PID-C E3, PID Autotune E3
// PID-P E4, PID-I E4, PID-D E4, PID-C E4, PID Autotune E4
//
#if ENABLED(PIDTEMP)
#define _PID_BASE_MENU_ITEMS(ELABEL, eindex) \
raw_Ki = unscalePID_i(PID_PARAM(Ki, eindex)); \
raw_Kd = unscalePID_d(PID_PARAM(Kd, eindex)); \
MENU_ITEM_EDIT(float52, MSG_PID_P ELABEL, &PID_PARAM(Kp, eindex), 1, 9990); \
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I ELABEL, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E ## eindex); \
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D ELABEL, &raw_Kd, 1, 9990, copy_and_scalePID_d_E ## eindex)
#if ENABLED(PID_ADD_EXTRUSION_RATE)
#define _PID_MENU_ITEMS(ELABEL, eindex) \
_PID_BASE_MENU_ITEMS(ELABEL, eindex); \
MENU_ITEM_EDIT(float3, MSG_PID_C ELABEL, &PID_PARAM(Kc, eindex), 1, 9990)
#else
#define _PID_MENU_ITEMS(ELABEL, eindex) _PID_BASE_MENU_ITEMS(ELABEL, eindex)
#endif
#if ENABLED(PID_AUTOTUNE_MENU)
#define PID_MENU_ITEMS(ELABEL, eindex) \
_PID_MENU_ITEMS(ELABEL, eindex); \
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_PID_AUTOTUNE ELABEL, &autotune_temp[eindex], 150, heater_maxtemp[eindex] - 15, lcd_autotune_callback_E ## eindex)
#else
#define PID_MENU_ITEMS(ELABEL, eindex) _PID_MENU_ITEMS(ELABEL, eindex)
#endif
#if ENABLED(PID_PARAMS_PER_EXTRUDER) && EXTRUDERS > 1
PID_MENU_ITEMS(MSG_E1, 0);
PID_MENU_ITEMS(MSG_E2, 1);
#if EXTRUDERS > 2
PID_MENU_ITEMS(MSG_E3, 2);
#if EXTRUDERS > 3
PID_MENU_ITEMS(MSG_E4, 3);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#else //!PID_PARAMS_PER_EXTRUDER || EXTRUDERS == 1
PID_MENU_ITEMS("", 0);
#endif //!PID_PARAMS_PER_EXTRUDER || EXTRUDERS == 1
#endif //PIDTEMP
//
// Preheat PLA conf
//
MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu);
//
// Preheat ABS conf
//
MENU_ITEM(submenu, MSG_PREHEAT_ABS_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu);
END_MENU();
}
/**
*
* "Temperature" > "Preheat PLA conf" submenu
*
*/
static void lcd_control_temperature_preheat_pla_settings_menu() {
START_MENU();
MENU_ITEM(back, MSG_TEMPERATURE);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &plaPreheatFanSpeed, 0, 255);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &plaPreheatHotendTemp, HEATER_0_MINTEMP, HEATER_0_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &plaPreheatHPBTemp, BED_MINTEMP, BED_MAXTEMP - 15);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings);
#endif
END_MENU();
}
/**
*
* "Temperature" > "Preheat ABS conf" submenu
*
*/
static void lcd_control_temperature_preheat_abs_settings_menu() {
START_MENU();
MENU_ITEM(back, MSG_TEMPERATURE);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &absPreheatFanSpeed, 0, 255);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &absPreheatHotendTemp, HEATER_0_MINTEMP, HEATER_0_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &absPreheatHPBTemp, BED_MINTEMP, BED_MAXTEMP - 15);
#endif
#if ENABLED(EEPROM_SETTINGS)
MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings);
#endif
END_MENU();
}
static void _reset_acceleration_rates() { planner.reset_acceleration_rates(); }
/**
*
* "Control" > "Motion" submenu
*
*/
static void lcd_control_motion_menu() {
START_MENU();
MENU_ITEM(back, MSG_CONTROL);
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX);
#endif
// Manual bed leveling, Bed Z:
#if ENABLED(MANUAL_BED_LEVELING)
MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1);
#endif
MENU_ITEM_EDIT(float5, MSG_ACC, &planner.acceleration, 10, 99000);
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &planner.max_xy_jerk, 1, 990);
#if ENABLED(DELTA)
MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &planner.max_z_jerk, 1, 990);
#else
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990);
#endif
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate[X_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate[Y_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate[Z_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999);
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_unit[X_AXIS], 5, 9999);
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_unit[Y_AXIS], 5, 9999);
#if ENABLED(DELTA)
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999);
#else
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999);
#endif
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_unit[E_AXIS], 5, 9999);
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
#endif
#if ENABLED(SCARA)
MENU_ITEM_EDIT(float74, MSG_XSCALE, &axis_scaling[X_AXIS], 0.5, 2);
MENU_ITEM_EDIT(float74, MSG_YSCALE, &axis_scaling[Y_AXIS], 0.5, 2);
#endif
END_MENU();
}
/**
*
* "Control" > "Filament" submenu
*
*/
static void lcd_control_volumetric_menu() {
START_MENU();
MENU_ITEM(back, MSG_CONTROL);
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers);
if (volumetric_enabled) {
#if EXTRUDERS == 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
#else //EXTRUDERS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 2
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &filament_size[2], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 3
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &filament_size[3], 1.5, 3.25, calculate_volumetric_multipliers);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
}
END_MENU();
}
/**
*
* "Control" > "Contrast" submenu
*
*/
#if ENABLED(HAS_LCD_CONTRAST)
static void lcd_set_contrast() {
ENCODER_DIRECTION_NORMAL();
if (encoderPosition) {
#if ENABLED(U8GLIB_LM6059_AF)
lcd_contrast += encoderPosition;
lcd_contrast &= 0xFF;
#else
lcd_contrast -= encoderPosition;
lcd_contrast &= 0x3F;
#endif
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
u8g.setContrast(lcd_contrast);
}
if (lcdDrawUpdate) {
#if ENABLED(U8GLIB_LM6059_AF)
lcd_implementation_drawedit(PSTR(MSG_CONTRAST), itostr3(lcd_contrast));
#else
lcd_implementation_drawedit(PSTR(MSG_CONTRAST), itostr2(lcd_contrast));
#endif
}
if (LCD_CLICKED) lcd_goto_previous_menu(true);
}
#endif // HAS_LCD_CONTRAST
/**
*
* "Control" > "Retract" submenu
*
*/
#if ENABLED(FWRETRACT)
static void lcd_control_retract_menu() {
START_MENU();
MENU_ITEM(back, MSG_CONTROL);
MENU_ITEM_EDIT(bool, MSG_AUTORETRACT, &autoretract_enabled);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT, &retract_length, 0, 100);
#if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_SWAP, &retract_length_swap, 0, 100);
#endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACTF, &retract_feedrate, 1, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_ZLIFT, &retract_zlift, 0, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER, &retract_recover_length, 0, 100);
#if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100);
#endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999);
END_MENU();
}
#endif // FWRETRACT
#if ENABLED(SDSUPPORT)
#if !PIN_EXISTS(SD_DETECT)
static void lcd_sd_refresh() {
card.initsd();
currentMenuViewOffset = 0;
}
#endif
static void lcd_sd_updir() {
card.updir();
currentMenuViewOffset = 0;
}
/**
*
* "Print from SD" submenu
*
*/
void lcd_sdcard_menu() {
ENCODER_DIRECTION_MENUS();
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
START_MENU();
MENU_ITEM(back, MSG_MAIN);
card.getWorkDirName();
if (card.filename[0] == '/') {
#if !PIN_EXISTS(SD_DETECT)
MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh);
#endif
}
else {
MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
}
for (uint16_t i = 0; i < fileCnt; i++) {
if (_menuItemNr == _lineNr) {
card.getfilename(
#if ENABLED(SDCARD_RATHERRECENTFIRST)
fileCnt-1 -
#endif
i
);
if (card.filenameIsDir)
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
else
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
}
else {
MENU_ITEM_DUMMY();
}
}
END_MENU();
}
#endif //SDSUPPORT
/**
*
* Functions for editing single values
*
* The "menu_edit_type" macro generates the functions needed to edit a numerical value.
*
* For example, menu_edit_type(int, int3, itostr3, 1) expands into these functions:
*
* bool _menu_edit_int3();
* void menu_edit_int3(); // edit int (interactively)
* void menu_edit_callback_int3(); // edit int (interactively) with callback on completion
* static void _menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
* static void menu_action_setting_edit_int3(const char* pstr, int* ptr, int minValue, int maxValue);
* static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, menuFunc_t callback); // edit int with callback
*
* You can then use one of the menu macros to present the edit interface:
* MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999)
*
* This expands into a more primitive menu item:
* MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
*
*
* Also: MENU_MULTIPLIER_ITEM_EDIT, MENU_ITEM_EDIT_CALLBACK, and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK
*
* menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
*/
#define menu_edit_type(_type, _name, _strFunc, scale) \
bool _menu_edit_ ## _name () { \
ENCODER_DIRECTION_NORMAL(); \
bool isClicked = LCD_CLICKED; \
if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \
if (lcdDrawUpdate) \
lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) / scale)); \
if (isClicked) { \
*((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) / scale; \
lcd_goto_previous_menu(true); \
} \
return isClicked; \
} \
void menu_edit_ ## _name () { _menu_edit_ ## _name(); } \
void menu_edit_callback_ ## _name () { if (_menu_edit_ ## _name ()) (*callbackFunc)(); } \
static void _menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \
lcd_save_previous_menu(); \
\
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; \
\
editLabel = pstr; \
editValue = ptr; \
minEditValue = minValue * scale; \
maxEditValue = maxValue * scale - minEditValue; \
encoderPosition = (*ptr) * scale - minEditValue; \
} \
static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
currentMenu = menu_edit_ ## _name; \
}\
static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
currentMenu = menu_edit_callback_ ## _name; \
callbackFunc = callback; \
}
menu_edit_type(int, int3, itostr3, 1);
menu_edit_type(float, float3, ftostr3, 1);
menu_edit_type(float, float32, ftostr32, 100);
menu_edit_type(float, float43, ftostr43, 1000);
menu_edit_type(float, float5, ftostr5, 0.01);
menu_edit_type(float, float51, ftostr51, 10);
menu_edit_type(float, float52, ftostr52, 100);
menu_edit_type(unsigned long, long5, ftostr5, 0.01);
/**
*
* Handlers for RepRap World Keypad input
*
*/
#if ENABLED(REPRAPWORLD_KEYPAD)
static void reprapworld_keypad_move_z_up() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z();
}
static void reprapworld_keypad_move_z_down() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z();
}
static void reprapworld_keypad_move_x_left() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x();
}
static void reprapworld_keypad_move_x_right() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x();
}
static void reprapworld_keypad_move_y_down() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y();
}
static void reprapworld_keypad_move_y_up() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y();
}
static void reprapworld_keypad_move_home() {
enqueue_and_echo_commands_P(PSTR("G28")); // move all axes home
}
#endif // REPRAPWORLD_KEYPAD
/**
*
* Audio feedback for controller clicks
*
*/
#if ENABLED(LCD_USE_I2C_BUZZER)
void lcd_buzz(long duration, uint16_t freq) { // called from buzz() in Marlin_main.cpp where lcd is unknown
lcd.buzz(duration, freq);
}
#endif
void lcd_quick_feedback() {
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
next_button_update_ms = millis() + 500;
#if ENABLED(LCD_USE_I2C_BUZZER)
#ifndef LCD_FEEDBACK_FREQUENCY_HZ
#define LCD_FEEDBACK_FREQUENCY_HZ 100
#endif
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS (1000/6)
#endif
lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#elif PIN_EXISTS(BEEPER)
#ifndef LCD_FEEDBACK_FREQUENCY_HZ
#define LCD_FEEDBACK_FREQUENCY_HZ 5000
#endif
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
#endif
buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#else
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
#endif
delay(LCD_FEEDBACK_FREQUENCY_DURATION_MS);
#endif
}
/**
*
* Menu actions
*
*/
static void menu_action_back() { lcd_goto_previous_menu(); }
static void menu_action_submenu(menuFunc_t func) { lcd_save_previous_menu(); lcd_goto_menu(func); }
static void menu_action_gcode(const char* pgcode) { enqueue_and_echo_commands_P(pgcode); }
static void menu_action_function(menuFunc_t func) { (*func)(); }
#if ENABLED(SDSUPPORT)
static void menu_action_sdfile(const char* filename, char* longFilename) {
UNUSED(longFilename);
card.openAndPrintFile(filename);
lcd_return_to_status();
}
static void menu_action_sddirectory(const char* filename, char* longFilename) {
UNUSED(longFilename);
card.chdir(filename);
encoderPosition = 0;
}
#endif //SDSUPPORT
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) {UNUSED(pstr); *ptr = !(*ptr); }
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback) {
menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
}
#endif //ULTIPANEL
/** LCD API **/
void lcd_init() {
lcd_implementation_init();
#if ENABLED(NEWPANEL)
#if BUTTON_EXISTS(EN1)
SET_INPUT(BTN_EN1);
WRITE(BTN_EN1, HIGH);
#endif
#if BUTTON_EXISTS(EN2)
SET_INPUT(BTN_EN2);
WRITE(BTN_EN2, HIGH);
#endif
#if BUTTON_EXISTS(ENC)
SET_INPUT(BTN_ENC);
WRITE(BTN_ENC, HIGH);
#endif
#if ENABLED(REPRAPWORLD_KEYPAD)
pinMode(SHIFT_CLK, OUTPUT);
pinMode(SHIFT_LD, OUTPUT);
pinMode(SHIFT_OUT, INPUT);
WRITE(SHIFT_OUT, HIGH);
WRITE(SHIFT_LD, HIGH);
#endif
#if BUTTON_EXISTS(UP)
SET_INPUT(BTN_UP);
#endif
#if BUTTON_EXISTS(DWN)
SET_INPUT(BTN_DWN);
#endif
#if BUTTON_EXISTS(LFT)
SET_INPUT(BTN_LFT);
#endif
#if BUTTON_EXISTS(RT)
SET_INPUT(BTN_RT);
#endif
#else // Not NEWPANEL
#if ENABLED(SR_LCD_2W_NL) // Non latching 2 wire shift register
pinMode(SR_DATA_PIN, OUTPUT);
pinMode(SR_CLK_PIN, OUTPUT);
#elif defined(SHIFT_CLK)
pinMode(SHIFT_CLK, OUTPUT);
pinMode(SHIFT_LD, OUTPUT);
pinMode(SHIFT_EN, OUTPUT);
pinMode(SHIFT_OUT, INPUT);
WRITE(SHIFT_OUT, HIGH);
WRITE(SHIFT_LD, HIGH);
WRITE(SHIFT_EN, LOW);
#endif // SR_LCD_2W_NL
#endif//!NEWPANEL
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
SET_INPUT(SD_DETECT_PIN);
WRITE(SD_DETECT_PIN, HIGH);
lcd_sd_status = 2; // UNKNOWN
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = 0;
#endif
lcd_buttons_update();
#if ENABLED(ULTIPANEL)
encoderDiff = 0;
#endif
}
int lcd_strlen(const char* s) {
int i = 0, j = 0;
while (s[i]) {
if ((s[i] & 0xc0) != 0x80) j++;
i++;
}
return j;
}
int lcd_strlen_P(const char* s) {
int j = 0;
while (pgm_read_byte(s)) {
if ((pgm_read_byte(s) & 0xc0) != 0x80) j++;
s++;
}
return j;
}
bool lcd_blink() {
static uint8_t blink = 0;
static millis_t next_blink_ms = 0;
millis_t ms = millis();
if (ELAPSED(ms, next_blink_ms)) {
blink ^= 0xFF;
next_blink_ms = ms + 1000 - LCD_UPDATE_INTERVAL / 2;
}
return blink != 0;
}
/**
* Update the LCD, read encoder buttons, etc.
* - Read button states
* - Check the SD Card slot state
* - Act on RepRap World keypad input
* - Update the encoder position
* - Apply acceleration to the encoder position
* - Set lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NOW on controller events
* - Reset the Info Screen timeout if there's any input
* - Update status indicators, if any
*
* Run the current LCD menu handler callback function:
* - Call the handler only if lcdDrawUpdate != LCDVIEW_NONE
* - Before calling the handler, LCDVIEW_CALL_NO_REDRAW => LCDVIEW_NONE
* - Call the menu handler. Menu handlers should do the following:
* - If a value changes, set lcdDrawUpdate to LCDVIEW_REDRAW_NOW and draw the value
* (Encoder events automatically set lcdDrawUpdate for you.)
* - if (lcdDrawUpdate) { redraw }
* - Before exiting the handler set lcdDrawUpdate to:
* - LCDVIEW_CLEAR_CALL_REDRAW to clear screen and set LCDVIEW_CALL_REDRAW_NEXT.
* - LCDVIEW_REDRAW_NOW or LCDVIEW_NONE to keep drawingm but only in this loop.
* - LCDVIEW_REDRAW_NEXT to keep drawing and draw on the next loop also.
* - LCDVIEW_CALL_NO_REDRAW to keep drawing (or start drawing) with no redraw on the next loop.
* - NOTE: For graphical displays menu handlers may be called 2 or more times per loop,
* so don't change lcdDrawUpdate without considering this.
*
* After the menu handler callback runs (or not):
* - Clear the LCD if lcdDrawUpdate == LCDVIEW_CLEAR_CALL_REDRAW
* - Update lcdDrawUpdate for the next loop (i.e., move one state down, usually)
*
* No worries. This function is only called from the main thread.
*/
void lcd_update() {
#if ENABLED(ULTIPANEL)
static millis_t return_to_status_ms = 0;
#endif
lcd_buttons_update();
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
bool sd_status = IS_SD_INSERTED;
if (sd_status != lcd_sd_status && lcd_detected()) {
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
#if ENABLED(LCD_PROGRESS_BAR)
currentMenu == lcd_status_screen
#endif
);
if (sd_status) {
card.initsd();
if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_INSERTED);
}
else {
card.release();
if (lcd_sd_status != 2) LCD_MESSAGEPGM(MSG_SD_REMOVED);
}
lcd_sd_status = sd_status;
}
#endif //SDSUPPORT && SD_DETECT_PIN
millis_t ms = millis();
if (ELAPSED(ms, next_lcd_update_ms)) {
next_lcd_update_ms = ms + LCD_UPDATE_INTERVAL;
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
lcd_implementation_update_indicators();
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#if ENABLED(ULTIPANEL)
#if ENABLED(REPRAPWORLD_KEYPAD)
#if ENABLED(DELTA) || ENABLED(SCARA)
#define _KEYPAD_MOVE_ALLOWED (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
#else
#define _KEYPAD_MOVE_ALLOWED true
#endif
if (REPRAPWORLD_KEYPAD_MOVE_HOME) reprapworld_keypad_move_home();
if (_KEYPAD_MOVE_ALLOWED) {
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) reprapworld_keypad_move_z_down();
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) reprapworld_keypad_move_x_left();
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) reprapworld_keypad_move_x_right();
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) reprapworld_keypad_move_y_down();
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) reprapworld_keypad_move_y_up();
}
#endif
bool encoderPastThreshold = (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP);
if (encoderPastThreshold || LCD_CLICKED) {
if (encoderPastThreshold) {
int32_t encoderMultiplier = 1;
#if ENABLED(ENCODER_RATE_MULTIPLIER)
if (encoderRateMultiplierEnabled) {
int32_t encoderMovementSteps = abs(encoderDiff) / ENCODER_PULSES_PER_STEP;
if (lastEncoderMovementMillis != 0) {
// Note that the rate is always calculated between to passes through the
// loop and that the abs of the encoderDiff value is tracked.
float encoderStepRate = (float)(encoderMovementSteps) / ((float)(ms - lastEncoderMovementMillis)) * 1000.0;
if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100;
else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10;
#if ENABLED(ENCODER_RATE_MULTIPLIER_DEBUG)
SERIAL_ECHO_START;
SERIAL_ECHO("Enc Step Rate: ");
SERIAL_ECHO(encoderStepRate);
SERIAL_ECHO(" Multiplier: ");
SERIAL_ECHO(encoderMultiplier);
SERIAL_ECHO(" ENCODER_10X_STEPS_PER_SEC: ");
SERIAL_ECHO(ENCODER_10X_STEPS_PER_SEC);
SERIAL_ECHO(" ENCODER_100X_STEPS_PER_SEC: ");
SERIAL_ECHOLN(ENCODER_100X_STEPS_PER_SEC);
#endif //ENCODER_RATE_MULTIPLIER_DEBUG
}
lastEncoderMovementMillis = ms;
} // encoderRateMultiplierEnabled
#endif //ENCODER_RATE_MULTIPLIER
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
}
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
}
#endif //ULTIPANEL
// Simply redraw the Info Screen 10 times a second
if (currentMenu == lcd_status_screen && !(++lcd_status_update_delay % 10))
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
if (lcdDrawUpdate) {
switch (lcdDrawUpdate) {
case LCDVIEW_CALL_NO_REDRAW:
lcdDrawUpdate = LCDVIEW_NONE;
break;
case LCDVIEW_CLEAR_CALL_REDRAW: // set by handlers, then altered after (rarely occurs here)
case LCDVIEW_CALL_REDRAW_NEXT: // set by handlers, then altered after (never occurs here?)
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
case LCDVIEW_REDRAW_NOW: // set above, or by a handler through LCDVIEW_CALL_REDRAW_NEXT
case LCDVIEW_NONE:
break;
}
#if ENABLED(DOGLCD) // Changes due to different driver architecture of the DOGM display
static int8_t dot_color = 0;
dot_color = 1 - dot_color;
u8g.firstPage();
do {
lcd_setFont(FONT_MENU);
u8g.setPrintPos(125, 0);
u8g.setColorIndex(dot_color); // Set color for the alive dot
u8g.drawPixel(127, 63); // draw alive dot
u8g.setColorIndex(1); // black on white
(*currentMenu)();
} while (u8g.nextPage());
#else
(*currentMenu)();
#endif
}
#if ENABLED(ULTIPANEL)
// Return to Status Screen after a timeout
if (currentMenu == lcd_status_screen || defer_return_to_status)
return_to_status_ms = ms + LCD_TIMEOUT_TO_STATUS;
else if (ELAPSED(ms, return_to_status_ms))
lcd_return_to_status();
#endif // ULTIPANEL
switch (lcdDrawUpdate) {
case LCDVIEW_CLEAR_CALL_REDRAW:
lcd_implementation_clear();
case LCDVIEW_CALL_REDRAW_NEXT:
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
break;
case LCDVIEW_REDRAW_NOW:
lcdDrawUpdate = LCDVIEW_NONE;
break;
case LCDVIEW_NONE:
break;
}
}
}
void lcd_ignore_click(bool b) {
ignore_click = b;
wait_for_unclick = false;
}
void lcd_finishstatus(bool persist=false) {
#if !(ENABLED(LCD_PROGRESS_BAR) && (PROGRESS_MSG_EXPIRE > 0))
UNUSED(persist);
#endif
#if ENABLED(LCD_PROGRESS_BAR)
progress_bar_ms = millis();
#if PROGRESS_MSG_EXPIRE > 0
expire_status_ms = persist ? 0 : progress_bar_ms + PROGRESS_MSG_EXPIRE;
#endif
#endif
lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW;
#if ENABLED(FILAMENT_LCD_DISPLAY)
previous_lcd_status_ms = millis(); //get status message to show up for a while
#endif
}
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
void dontExpireStatus() { expire_status_ms = 0; }
#endif
void set_utf_strlen(char* s, uint8_t n) {
uint8_t i = 0, j = 0;
while (s[i] && (j < n)) {
if ((s[i] & 0xc0u) != 0x80u) j++;
i++;
}
while (j++ < n) s[i++] = ' ';
s[i] = 0;
}
bool lcd_hasstatus() { return (lcd_status_message[0] != '\0'); }
void lcd_setstatus(const char* message, bool persist) {
if (lcd_status_message_level > 0) return;
strncpy(lcd_status_message, message, 3 * (LCD_WIDTH));
set_utf_strlen(lcd_status_message, LCD_WIDTH);
lcd_finishstatus(persist);
}
void lcd_setstatuspgm(const char* message, uint8_t level) {
if (level >= lcd_status_message_level) {
strncpy_P(lcd_status_message, message, 3 * (LCD_WIDTH));
set_utf_strlen(lcd_status_message, LCD_WIDTH);
lcd_status_message_level = level;
lcd_finishstatus(level > 0);
}
}
void lcd_setalertstatuspgm(const char* message) {
lcd_setstatuspgm(message, 1);
#if ENABLED(ULTIPANEL)
lcd_return_to_status();
#endif
}
void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#if ENABLED(HAS_LCD_CONTRAST)
void lcd_setcontrast(uint8_t value) {
lcd_contrast = value & 0x3F;
u8g.setContrast(lcd_contrast);
}
#endif
#if ENABLED(ULTIPANEL)
/**
* Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
* These values are independent of which pins are used for EN_A and EN_B indications
* The rotary encoder part is also independent to the chipset used for the LCD
*/
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
#define GET_BUTTON_STATES(DST) \
uint8_t new_##DST = 0; \
WRITE(SHIFT_LD, LOW); \
WRITE(SHIFT_LD, HIGH); \
for (int8_t i = 0; i < 8; i++) { \
new_##DST >>= 1; \
if (READ(SHIFT_OUT)) SBI(new_##DST, 7); \
WRITE(SHIFT_CLK, HIGH); \
WRITE(SHIFT_CLK, LOW); \
} \
DST = ~new_##DST; //invert it, because a pressed switch produces a logical 0
/**
* Read encoder buttons from the hardware registers
* Warning: This function is called from interrupt context!
*/
void lcd_buttons_update() {
#if ENABLED(NEWPANEL)
uint8_t newbutton = 0;
#if BUTTON_EXISTS(EN1)
if (BUTTON_PRESSED(EN1)) newbutton |= EN_A;
#endif
#if BUTTON_EXISTS(EN2)
if (BUTTON_PRESSED(EN2)) newbutton |= EN_B;
#endif
#if LCD_HAS_DIRECTIONAL_BUTTONS || BUTTON_EXISTS(ENC)
millis_t now = millis();
#endif
#if LCD_HAS_DIRECTIONAL_BUTTONS
if (ELAPSED(now, next_button_update_ms)) {
if (false) {
// for the else-ifs below
}
#if BUTTON_EXISTS(UP)
else if (BUTTON_PRESSED(UP)) {
encoderDiff = -(ENCODER_STEPS_PER_MENU_ITEM);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(DWN)
else if (BUTTON_PRESSED(DWN)) {
encoderDiff = ENCODER_STEPS_PER_MENU_ITEM;
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(LFT)
else if (BUTTON_PRESSED(LFT)) {
encoderDiff = -(ENCODER_PULSES_PER_STEP);
next_button_update_ms = now + 300;
}
#endif
#if BUTTON_EXISTS(RT)
else if (BUTTON_PRESSED(RT)) {
encoderDiff = ENCODER_PULSES_PER_STEP;
next_button_update_ms = now + 300;
}
#endif
}
#endif
#if BUTTON_EXISTS(ENC)
if (ELAPSED(now, next_button_update_ms) && BUTTON_PRESSED(ENC)) newbutton |= EN_C;
#endif
buttons = newbutton;
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
buttons |= slow_buttons;
#endif
#if ENABLED(REPRAPWORLD_KEYPAD)
GET_BUTTON_STATES(buttons_reprapworld_keypad);
#endif
#else
GET_BUTTON_STATES(buttons);
#endif //!NEWPANEL
#if ENABLED(REVERSE_MENU_DIRECTION)
#define ENCODER_DIFF_CW (encoderDiff += encoderDirection)
#define ENCODER_DIFF_CCW (encoderDiff -= encoderDirection)
#else
#define ENCODER_DIFF_CW (encoderDiff++)
#define ENCODER_DIFF_CCW (encoderDiff--)
#endif
#define ENCODER_SPIN(_E1, _E2) switch (lastEncoderBits) { case _E1: ENCODER_DIFF_CW; break; case _E2: ENCODER_DIFF_CCW; }
//manage encoder rotation
uint8_t enc = 0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if (enc != lastEncoderBits) {
switch (enc) {
case encrot0: ENCODER_SPIN(encrot3, encrot1); break;
case encrot1: ENCODER_SPIN(encrot0, encrot2); break;
case encrot2: ENCODER_SPIN(encrot1, encrot3); break;
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
}
}
lastEncoderBits = enc;
}
bool lcd_detected(void) {
#if (ENABLED(LCD_I2C_TYPE_MCP23017) || ENABLED(LCD_I2C_TYPE_MCP23008)) && ENABLED(DETECT_DEVICE)
return lcd.LcdDetected() == 1;
#else
return true;
#endif
}
bool lcd_clicked() { return LCD_CLICKED; }
#endif // ULTIPANEL
/*********************************/
/** Number to string conversion **/
/*********************************/
char conv[8];
// Convert float to rj string with 123 or -12 format
char *ftostr3(const float& x) { return itostr3((int)x); }
// Convert float to rj string with _123, -123, _-12, or __-1 format
char *ftostr4sign(const float& x) { return itostr4sign((int)x); }
// Convert unsigned int to string with 12 format
char* itostr2(const uint8_t& x) {
//sprintf(conv,"%5.1f",x);
int xx = x;
conv[0] = (xx / 10) % 10 + '0';
conv[1] = xx % 10 + '0';
conv[2] = 0;
return conv;
}
// Convert float to string with +123.4 / -123.4 format
char* ftostr31(const float& x) {
int xx = abs(x * 10);
conv[0] = (x >= 0) ? '+' : '-';
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = (xx / 10) % 10 + '0';
conv[4] = '.';
conv[5] = xx % 10 + '0';
conv[6] = 0;
return conv;
}
// Convert unsigned float to string with 123.4 format, dropping sign
char* ftostr31ns(const float& x) {
int xx = abs(x * 10);
conv[0] = (xx / 1000) % 10 + '0';
conv[1] = (xx / 100) % 10 + '0';
conv[2] = (xx / 10) % 10 + '0';
conv[3] = '.';
conv[4] = xx % 10 + '0';
conv[5] = 0;
return conv;
}
// Convert signed float to string with 023.45 / -23.45 format
char *ftostr32(const float& x) {
long xx = abs(x * 100);
conv[0] = x >= 0 ? (xx / 10000) % 10 + '0' : '-';
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = (xx / 100) % 10 + '0';
conv[3] = '.';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = xx % 10 + '0';
conv[6] = 0;
return conv;
}
// Convert signed float to string (6 digit) with -1.234 / _0.000 / +1.234 format
char* ftostr43(const float& x, char plus/*=' '*/) {
long xx = x * 1000;
if (xx == 0)
conv[0] = ' ';
else if (xx > 0)
conv[0] = plus;
else {
xx = -xx;
conv[0] = '-';
}
conv[1] = (xx / 1000) % 10 + '0';
conv[2] = '.';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = (xx) % 10 + '0';
conv[6] = 0;
return conv;
}
// Convert unsigned float to string with 1.23 format
char* ftostr12ns(const float& x) {
long xx = x * 100;
xx = abs(xx);
conv[0] = (xx / 100) % 10 + '0';
conv[1] = '.';
conv[2] = (xx / 10) % 10 + '0';
conv[3] = (xx) % 10 + '0';
conv[4] = 0;
return conv;
}
// Convert signed float to space-padded string with -_23.4_ format
char* ftostr32sp(const float& x) {
long xx = x * 100;
uint8_t dig;
if (xx < 0) { // negative val = -_0
xx = -xx;
conv[0] = '-';
dig = (xx / 1000) % 10;
conv[1] = dig ? '0' + dig : ' ';
}
else { // positive val = __0
dig = (xx / 10000) % 10;
if (dig) {
conv[0] = '0' + dig;
conv[1] = '0' + (xx / 1000) % 10;
}
else {
conv[0] = ' ';
dig = (xx / 1000) % 10;
conv[1] = dig ? '0' + dig : ' ';
}
}
conv[2] = '0' + (xx / 100) % 10; // lsd always
dig = xx % 10;
if (dig) { // 2 decimal places
conv[5] = '0' + dig;
conv[4] = '0' + (xx / 10) % 10;
conv[3] = '.';
}
else { // 1 or 0 decimal place
dig = (xx / 10) % 10;
if (dig) {
conv[4] = '0' + dig;
conv[3] = '.';
}
else {
conv[3] = conv[4] = ' ';
}
conv[5] = ' ';
}
conv[6] = '\0';
return conv;
}
// Convert signed int to lj string with +012 / -012 format
char* itostr3sign(const int& x) {
int xx;
if (x >= 0) {
conv[0] = '+';
xx = x;
}
else {
conv[0] = '-';
xx = -x;
}
conv[1] = (xx / 100) % 10 + '0';
conv[2] = (xx / 10) % 10 + '0';
conv[3] = xx % 10 + '0';
conv[4] = '.';
conv[5] = '0';
conv[6] = 0;
return conv;
}
// Convert signed int to rj string with 123 or -12 format
char* itostr3(const int& x) {
int xx = x;
if (xx < 0) {
conv[0] = '-';
xx = -xx;
}
else
conv[0] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
conv[1] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
conv[2] = xx % 10 + '0';
conv[3] = 0;
return conv;
}
// Convert unsigned int to lj string with 123 format
char* itostr3left(const int& x) {
if (x >= 100) {
conv[0] = (x / 100) % 10 + '0';
conv[1] = (x / 10) % 10 + '0';
conv[2] = x % 10 + '0';
conv[3] = 0;
}
else if (x >= 10) {
conv[0] = (x / 10) % 10 + '0';
conv[1] = x % 10 + '0';
conv[2] = 0;
}
else {
conv[0] = x % 10 + '0';
conv[1] = 0;
}
return conv;
}
// Convert unsigned int to rj string with 1234 format
char* itostr4(const int& x) {
conv[0] = x >= 1000 ? (x / 1000) % 10 + '0' : ' ';
conv[1] = x >= 100 ? (x / 100) % 10 + '0' : ' ';
conv[2] = x >= 10 ? (x / 10) % 10 + '0' : ' ';
conv[3] = x % 10 + '0';
conv[4] = 0;
return conv;
}
// Convert signed int to rj string with _123, -123, _-12, or __-1 format
char *itostr4sign(const int& x) {
int xx = abs(x);
int sign = 0;
if (xx >= 100) {
conv[1] = (xx / 100) % 10 + '0';
conv[2] = (xx / 10) % 10 + '0';
}
else if (xx >= 10) {
conv[0] = ' ';
sign = 1;
conv[2] = (xx / 10) % 10 + '0';
}
else {
conv[0] = ' ';
conv[1] = ' ';
sign = 2;
}
conv[sign] = x < 0 ? '-' : ' ';
conv[3] = xx % 10 + '0';
conv[4] = 0;
return conv;
}
// Convert unsigned float to rj string with 12345 format
char* ftostr5(const float& x) {
long xx = abs(x);
conv[0] = xx >= 10000 ? (xx / 10000) % 10 + '0' : ' ';
conv[1] = xx >= 1000 ? (xx / 1000) % 10 + '0' : ' ';
conv[2] = xx >= 100 ? (xx / 100) % 10 + '0' : ' ';
conv[3] = xx >= 10 ? (xx / 10) % 10 + '0' : ' ';
conv[4] = xx % 10 + '0';
conv[5] = 0;
return conv;
}
// Convert signed float to string with +1234.5 format
char* ftostr51(const float& x) {
long xx = abs(x * 10);
conv[0] = (x >= 0) ? '+' : '-';
conv[1] = (xx / 10000) % 10 + '0';
conv[2] = (xx / 1000) % 10 + '0';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = (xx / 10) % 10 + '0';
conv[5] = '.';
conv[6] = xx % 10 + '0';
conv[7] = 0;
return conv;
}
// Convert signed float to string with +123.45 format
char* ftostr52(const float& x) {
conv[0] = (x >= 0) ? '+' : '-';
long xx = abs(x * 100);
conv[1] = (xx / 10000) % 10 + '0';
conv[2] = (xx / 1000) % 10 + '0';
conv[3] = (xx / 100) % 10 + '0';
conv[4] = '.';
conv[5] = (xx / 10) % 10 + '0';
conv[6] = xx % 10 + '0';
conv[7] = 0;
return conv;
}
#endif // ULTRA_LCD